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Abstract: An increase in high aspect-ratio aircraft designs in recent years has led to more
flexible vehicles. Increased flexibility may, however, result in nonlinear aeroelastic behav-
ior which must be captured during the design stage. Time-domain simulations, in particular,
must be used to assess a flexible vehicle’s stability across a mission. However, in the con-
text of gradient-based vehicle and trajectory optimization, considering time-domain analyses
for nonlinear aeroelastic systems has remained elusive due to the complexity of determining
sensitivities of a time-marched solution. This paper develops a time-domain solution capability
which uses a collocation method including gradient information for optimization problems. The
aeroelastic time-domain solution is used to formulate take-off, climb, and landing constraints.
The constraint formulations are demonstrated on a multi-disciplinary design optimization prob-
lem of a blended wing body. Finally, a fully transient formulation for the nonlinear aeroelastic
system is presented and the ramification discussed.

NOMENCLATURE

D drag force, N

Isp specific impulse, s−1

L lift force, N

T thrust force, N

g gravitational acceleration, m
s2

h geodesic altitude, m

m aircraft mass, kg

r horizontal distance, m

v airspeed, m
s

M Mach number

Nf number of functions

T thrust, N

T0 static thrust, N

TET turbine entry temperature

ac speed of sound at cruise, m/s

CD aircraft drag coefficient

CL aircraft lift coefficient

Mc cruise Mach number

PB body frame offset vector
0Distribution Statement A. Approved for public release. Distribution unlimited. Case number: AFRL-

2024-3548.
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Pw local beam frame offset vector

p current atmospheric pressure,
Pa

p0 atmospheric pressure at sea
level, Pa

R aircraft range, m

sfc specific fuel consumption

t current atmospheric tempera-
ture, K

t0 atmospheric temperature at sea
level, K

vc cruise speed, m/s

Wf fuel weight, N

Ws structural weight, N

wx, wy, wz local beam frame coordinate
system vectors

xB, yB, zB body frame coordinates

xG, yG, zG global frame coordinates

α angle of attack, ◦

γ flight path angle, ◦

Π overall pressure ratio of the en-
gine

ηg engine gas generator efficiency

ηi engine inlet efficiency

ηd efficiency of the inlet

ηf efficiency of the fan

ηn efficiency of the nozzle

ηt efficiency of the turbine

κ isentropic constant

µ engine bypass ratio

ρ current atmospheric density,
kg
m3

ρ0 atmospheric density at sea
level, kg

m3

ζt engine throttle setting

ζn numerical relaxation factor

h vector containing all nodal po-
sitions and rotations

hw vector containing the nodal po-
sitions and rotations

Q1, Q2 matrices of the state space
equations

K (s) matrix exponential

s coordinate along the beam axis

u control inputs (in the state
space equations)

vB translational body velocity

β body velocities

εel element strain vector

εx extensional strain

κx twist curvature

κy bending curvature about wy

κz bending curvature about wz

ωB rotational body velocity

θB orientation of the body frame

CBG rotation matrix from the body
to the global frame

1 INTRODUCTION

The design of very flexible aircraft poses challenges, some of which arise from transient, nonlin-
ear aeroelastic effects. These are not limited to flutter and post-flutter behavior, but may include
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handling qualities, response to gust disturbances, etc. As very flexible aircraft may encounter
a wide range of displacements over their operational envelope, the stability of the vehicle may
differ greatly depending on structural displacements as well as transients.

While the importance of flutter on vehicle design has been investigated since the 1970’s, a
wealth of studies regarding the dynamic behavior of very flexible aircraft were only obtained
after the development of the NASA/Aerovironment Helios prototype. Helios encountered large
bending (and a large range of) deflections during several test flights. However, during a 2003
test flight, the vehicle encountered unusually large bending displacements due to atmospheric
disturbances, became unstable, and disintegrated after exceeding the aircraft’s design speed.
The loss of Helios proved to be a watershed moment for time-domain, nonlinear aeroelastic-
ity. After the incident, NASA tasked a Mishap Investigation Board (MIB) with determining
factors that contributed and led to the loss of the vehicle. As a part of its findings [1], the
MIB recommended that NASA “[d]evelop more advanced, multidisciplinary (structures, aeroe-
lastic, aerodynamics, atmospheric, materials, propulsion, controls, etc) ‘time-domain’ analysis
methods appropriate to highly flexible, morphing vehicles.”

Prior to the Helios accident, aeroelastic investigations centered around frequency-domain stud-
ies (e.g., [2,3]). However, the MIB findings resulted in research efforts regarding time-domain,
geometrically nonlinear aeroelasticity. Work by Su and Cesnik [4, 5], Shearer and Cesnik [6],
extended the nonlinear aeroelastic framework, UM/NAST, into the time domain. Patil and
Hodges [7] extended their NATASHA framework for transient nonlinear aeroelasticity and in-
vestigated the dynamic behavior of a Helios-like vehicle. Similarly, Wang et al. [8] studied
the transient behavior of a High Altitude Long Endurance (HALE) aircraft including unsteady
aerodynamics.

In particular, Cesnik and coworkers focused on very flexible HALE aircraft and the coupled
nature of geometrical nonlinear aeroelasticity and rigid-body degrees of freedom. While this
work on transient nonlinear aeroelasticity resulted in the design of the University of Michigan’s
X-HALE aircraft [9], the design was not obtained from an optimization process (gradient-based
or -free). Optimization problems including geometrically nonlinear flutter constraints have been
conducted by Variyar [10] and by Lupp and Cesnik [11], this work was conducted in the fre-
quency domain and cannot be utilized for a time-domain trajectory optimization.

Meanwhile, transient trajectory optimization and simultaneous vehicle Multi-disciplinary De-
sign Optimization (MDO) have become a recent focus of research. A tool for conducting using
collocation for transient optimization problems, Dymos [12], was developed at NASA within
the context of the OpenMDAO framework, featuring methods for computationally efficient eval-
uation of derivatives [13]. Dymos has since been used for trajectory optimization of urban air
mobility vehicles by Falck and coworkers [14] as well as Hendricks and coworkers [15]. Jasa,
Mader, and Martins [16] conducted trajectory optimizations of a supersonic aircraft, subject to
thermal constraints. Hendricks et al. also conducted a trajectory optimization, optimizing the
vehicle’s propulsion system [17]. Lin, Carpenter, and de Weck [18] investigated a simultaneous
trajectory and vehicle design of a sounding rocket. Lupp et al. [19] used Dymos to include
transient flight mechanics as well as thermal and power subsystem constraints for the design of
a HALE aircraft.

However, trajectory optimization including geometrically nonlinear aeroelastic analyses (in the
time-domain) have not been applied to gradient-based optimization. Holden and Kroo [20]
investigated optimization problems enforcing aeroelastic stability using a beam structural model
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and a vortex lattice method (VLM) aerodynamic solution. While they used a collocation method
in an optimization problem to solve nonlinear aeroelastic equations of motion (EOM) in the time
domain, the dynamic constraint was used to enforce flutter stability and did not include rigid
body degrees of freedom. More recently, del Carre and Palacios [21] investigated trajectory
optimization including geometrical nonlinear aeroelastic effects and flight mechanics. They
modeled a HALE aircraft, subject to large deformations, and optimized it’s catapult launch
and take-off trajectory, but did not include vehicle design variables (beyond control surface
deflections). However, del Carre and Palacios used a Bayesian optimization process. As a
gradient-free method, this approach will likely scale poorly with increasing numbers of design
variables typical of large MDO problems.

This paper presents a methodology for conducting gradient-based trajectory optimizations of
very flexible vehicles, which may encounter geometrical nonlinearities. Structural modeling is
accounted for by a strain-based, geometrically exact beam formulation. Within the context of a
new nonlinear aeroelastic framework, Perseids, a theoretical formulation is presented for con-
ducting collocation-based time-domain simulations including rigid-body degrees of freedom.
The process is fully differentiated and conducive to large numbers of design variables.

The transient simulation is applied to both take-off and climb segments for a multi-disciplinary
design optimization of a Blended Wing Body (BWB) aircraft. The methodology used is ap-
plicable to performance assessments of aircraft, but not constraining of dynamic aeroelastic
instabilities. Finally, a fully transient, nonlinear aeroelastic formulation (including rigid body
degrees of freedom) that provides gradients for optimization is presented. Ramifications of the
formulation on the solution and optimization process are discussed.

2 NUMERICAL METHODS

Multi-disciplinary Design Optimization (MDO) has become a wide-spread tool used during
vehicle conceptual design. Gradient-based optimization, in particular, enables designs incor-
porating very large numbers of design variables. However, these methods require robust and
efficient access to derivative information. This section describes the MDO theory, methods
used to determine derivatives, and time integration techniques applicable to MDO problems
used within this work.

2.1 Multi-Disciplinary Design Optimization

Multi-disciplinary Design Optimization (MDO) is a subset of the larger optimization field and
encompasses optimization problems that feature multiple, distinct disciplines that interact with
each other. Multi-disciplinary problems are common in aerospace engineering, notably includ-
ing aeroelasticity, as well as overall aircraft design.

Researchers have formulated many different MDO architectures that vary in complexity and de-
gree of discipline-coupling. Some organizations favor architectures that feature loosely-coupled
MDO formulations, due to the “siloed” nature of their corporate structure [22]. On the other
hand, tighter coupling, which may enable greater performance gains, is often found in academic
and research-centric studies. Within this work, a tightly coupled approach was chosen, using the
modular analysis and unified derivatives (MAUD) MDO architecture [23] implemented within
the OpenMDAO framework [24].

More disciplines that are tightly coupled often results in larger numbers of design variables. As
a result, many traditional methods for design space exploration, such as Design of Experiments
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(DOE) or gradient-free optimization methods (e.g., genetic algorithms) become intractable due
to the curse of dimensionality.

Gradient-based algorithms, by contrast, are able to negotiate these larger design spaces effi-
ciently. Fundamentally, these methods implement Newton-Raphson or Newton-Raphson-like
root-finding algorithms and apply them to the derivatives of the objective function. Unlike
gradient-free methods, which use heuristics to determine convergence, the convergence criteria
for gradient-based algorithms is:

∂f

∂x
!
= 0, (1)

or ∣∣∣∣∂f∂x
∣∣∣∣ ≤ ϵ, (2)

where f is the objective function, x is the vector of design variables, and ϵ is a user-defined
numerical tolerance.

2.2 Automatic Differentiation
Automatic Differentiation (AD), also referred to as algorithmic differentiation, is a method
of obtaining gradients that has become increasingly popular in recent years. Generally, AD
describes tools that are able to determine gradients by decomposing the individual operations
in computer programs.

While AD can be implemented in a variety of forms, it fundamentally decomposes the software
into a series of operations (e.g., lines of code) Vi, to which the derivatives are known. Addi-
tionally, local variables are stored in an array vi. Every line of code is differentiated and the
total derivatives of the functions with respect to the design variables of interest are determined
either via forward- or back-substitution. Similar to semi-analytical methods [25, 26], there are
two methods for determining the total derivatives using AD. The forward mode is given by:

(I −DV )Dv = I, (3)

or the reverse mode is given by:

(I −DV )
T DT

v = I. (4)

The matrices in Equations 3 and 4 are:

DV =



0 0 0 0 0
∂V2

∂v1
0 0 · · · 0

∂V3

∂v1

∂V3

∂v2

. . . . . . ...
...

... . . . 0 0
∂Vn

∂v1
∂Vn

∂v2
· · · ∂Vn

∂vn−1
0


(5)

Dv =



0 0 0 0 0
dv2
dv1

0 0 · · · 0

dv3
dv1

dv3
dv2

. . . . . . ...
...

... . . . 0 0
dvn
dv1

dvn
dv2

· · · dvn
dvn−1

0


(6)
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Figure 1: Performance and scalability benchmark comparing Enzyme, CoDiPack, and the analytical gradient so-
lution. The results were obtained by averaging 100 benchmark runs.

The forward mode solution is akin to solving for one column of DV from Equation 3 using
forward substitution. These operations are executed together with the original code. The re-
verse mode solves the derivatives using back substitution. This requires storing the individual
operations and variables in what is typically called a tape. As with the analytical methods, the
forward and reverse modes are applicable for different problems. The forward mode is typi-
cally more efficient when the number of functions, Nf , is greater than the number of variables
of interest, Nx, while the reverse mode is faster for Nx > Nf .

If implemented correctly, AD derivatives are exact to machine precision, as all individual opera-
tions are differentiated analytically. However, the implementation using AD can be challenging
as potentially significant changes to the software’s build system and source code are required.
Two main approaches exist for applying AD: source code transformation tools (such as Tape-
nade [27]) and operator overloading tools (such as CoDiPack [28]). However, both require
significant modifications to existing code to function and, especially in the case of operator
overloading, may result in a substantial performance penalty compared to the primal function
evaluation.

Recently, another class of AD tool has emerged: compiler-based AD. Moses and Churavy [29]
introduced a method for efficiently determining derivatives of source code at compile time us-
ing the LLVM compiler [30]. To use this method, the source code must be lightly modified
(using annotations, such as pragma statements in C/C++). LLVM then compiles the source
into LLVM IR (intermediate representation) and performs a code optimization step. After this
initial compiler optimization, the source code is differentiated with the Enzyme AD compiler
plugin, generating the requested gradient functions. Next, another compiler optimization step
is conducted to optimize the generated gradients, before generating the final binary files (e.g.,
libraries or executables). This results in very efficient gradients compared to operator overload-
ing tools, as many operator overloading libraries prevent compiler optimization of the primal
function evaluation as well as the gradient.

A performance comparison of various AD tools was conducted using the n-dimensional Rosen-
brock function [31] (Figure 1). While CoDiPack outperforms other operator overloading li-

6



IFASD-2024-9

braries (Adept), it incurs a significant performance penalty compared to the evaluation of the
analytical gradient. Enzyme AD, by comparison, performs comparably to the analytical gradi-
ent evaluation, even outperforming it for small numbers of variables1. While not benchmarked
in this work, Moses and Churavy [29] observed performance improvements using Enzyme AD
compared to Tapenade. Due to the performance advantages, Perseids uses a combination of
CoDiPack and Enzyme to obtain gradients.

2.3 Assembling Total Derivatives
Another method for determining coupled derivatives is using the unified derivative equations
(UDE) [23]. Assuming functions in residual form, the UDE in forward mode are:

[I] =
[
∂R
∂v

] [
dv

dr

]
, (7)

or reverse (adjoint) mode:

[I] =
[
∂R
∂v

]T [
dv

dr

]T
, (8)

where v is the vector of all outputs of the disciplines in the MDO problem and r is the vector
of all residual values. Equations 7 and 8 form the basis for OpenMDAO [24] to determine
the total derivatives used by gradient-based optimizers. Note, to determine the problem’s total
derivatives, only the partials of the individual disciplines are required and no derivatives of the
coupling terms must be provided. This eases the implementation of coupled analyses, as only
the derivatives of the analyses are required, instead of also having to provide derivatives of the
coupling (as is the case in the coupled adjoint approach).

Similar to the coupled adjoint approach, every design variable requires one solution of Equa-
tion 7 (forward mode). Conversely, Equation 8 (reverse mode) must be solved once for every
objective or constraint, making the choice of solution mode depend on the problem definition.

2.4 Time Integration Methods within MDO
The trajectory optimization problems investigated in this work require a transient solution
of the nonlinear aeroelastic EOM. One approach to solving the equations of motion in the
time-domain is to use an integration method (e.g., the trapezoidal or generalized-α integra-
tion schemes [32] used in University of Michigan’s Nonlinear Aeroelastic Simulation Tool-
box (UM/NAST)). For explicit time-integration schemes, the process is inherently sequential
(Figure 2a. Furthermore, within the context of optimizations, determining derivatives for a
time-marched solution can be computationally expensive, as the perturbation methods (such as
finite-differencing or complex step) may be computationally prohibitive and other methods such
as AD would require a very large tape to record a transient solution, resulting in large amounts
of system memory needed and long derivative evaluation times.

Another approach, used in this work, is the use of colocation or pseudo-spectral methods such
as Legendre-Gauss-Lobatto (LGL) [33] or Radau [34] methods. While a time-stepped solu-
tion (such as Euler time-integration) is sequential by nature, the Ordinary Differential Equa-
tions (ODE)s in the collocation method can be evaluated in parallel (Figure 2b). By contrast,

1Note: Enzyme AD is able to outperform user-written gradient functions in some cases due to its use of two
compiler optimization cycles. As a result the function being differentiated has already been optimized once prior
to generating gradients, which, in turn, are optimized. Hand-written gradient functions may not utilize code opti-
mizations of the initial function.
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Optimizer x

f (x) Time-Stepped Solution

(a) Time-stepped solution

Optimizer x

f (x) , defects,BC’s ODE evaluation

(b) Collocation methods

Figure 2: Conceptual comparison of a time-stepped (sequential) time-domain simulation and a colocation method
used in an optimization problem.

the collocation methods have been used successfully for transient, gradient-based optimization
problems [12, 14].

To leverage OpenMDAO, this work uses the Dymos framework [12, 14]. As most available
aeroelastic tools use explicit time-integrated solutions, this work first derives the formulation
(Section 3) needed by the collocation-based transient solution.

3 GEOMETRICALLY NONLINEAR AEROELASTIC FORMULATION

The underlying formulation used in the strain-based, nonlinear beam solver was initially derived
at the Active Aeroelasticity and Structures Research Laboratory (A2SRL) at the University of
Michigan by several generations of graduate students advised by and collaborating with Prof.
Carlos Cesnik (Cesnik and Brown [35], Shearer and Cesnik [36], Su and Cesnik [5], among
others). This section describes the theoretical basis of the Perseids aeroelastic framework for
nonlinear, coupled, static analyses.

3.1 Coordinate Systems and Conventions

Three main coordinate systems exist for the description of the geometrically nonlinear beam
solution subject to rigid body motion: the global (G), the body (B), and local node (w) frames
(Figure 3). A vector, PB, describes the offset of the body from the global frame and the orien-
tation with respect to the global frame is defined by the quaternion vector, ζ:

PB =


xB

yB

zB

 , ζ =


q0

q1

q2

q3

 . (9)

Rigid body motion of the body frame (relative to the global frame) is captured by three linear
and three angular velocities:

b =

[
pB

θB

]
, ḃ = β =

[
vB

ωB

]
. (10)

Each structural member contains a user-defined number of beam elements. A geometrically
nonlinear, constant strain, three-noded beam element is used. The strain states for every beam
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Figure 3: Global, body, and nodal/local coordinate system definitions used in the Perseids aeroelastic toolbox and
UM/NAST theoretical formulation.

element are: extensional, twist, and two bending curvatures (in-plane and out-of-plane):

εel =


εx

κx

κy

κz

 . (11)

The w frame, located at every node, describes the beam nodes’ location and orientation in
relation to origin of the body frame (Figure 3). Analogous to PB, the vector Pw describes the
offset of the w frame from the body frame. A column vector h can be defined that contains a
point’s spatial position and orientation information. The vector Pw and the coordinate system
unit vectors (described in the body frame) wx, wy, and wz, which are stacked to obtain the vector
hw:

hw (s) =


Pw(s)

wx(s)

wy(s)

wz(s)

 . (12)

For the spatial information of the same point in the global frame, the corresponding h vector is
defined as:

h (s) =


Pb + Pw(s)

wx(s)

wy(s)

wz(s)

 . (13)
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The rotational transformation from the body to the global frame can be expressed via the quater-
nion vector (Eq. 9):

CBG =


q20 + q21 − q22 − q23 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q20 − q21 + q22 − q23 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q20 − q21 − q22 + q23

 . (14)

Finally, the kinematic relationship between the strain (state variable), the boundary node hBC ,
and the beam displacements (represented in the vector h) is captured by the matrix exponential:

hw(s) = eK(s−s0)hBC (15)

with

K (s) =


0 1 + εx 0 0

0 0 κz −κy

0 −κz 0 κx

0 κy −κx 0


12×12

. (16)

For further details on the strain-based formulation, the reader is encouraged to review the com-
prehensive description provided by Su and Cesnik [4, 5].

3.2 Static Aeroelastic Solution

The static governing equations of the static aeroelastic problem were introduced by Cesnik and
Brown [35], Shearer and Cesnik [36], and Su and Cesnik [5]:[

KF KT
c

Kc 0

]
︸ ︷︷ ︸

Kk

[
ε

λc

]
︸︷︷ ︸
ys,k

=

[
f

fc

]
︸︷︷︸
fk

. (17)

The lower row of the equations contains the absolute and relative constraints for the system,
which are enforced using Lagrange multipliers, λc. Previously, Equation 17 has been solved
using a recursive, load-stepped approach using a constant relaxation factor, ζn:

ys,k+1 = ζnys,k + (1− ζn)K
−1
k fk. (18)

Note that the inverse of Kk is not computed, but rather the entire K−1
k fk term is determined by

solving the linear system from Equation 17. This solution approach has been applied success-
fully in the UM/NAST for static aeroelastic studies.
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Another solution approach is to formulate the static problem in residual form:

Rs = fk −Kkys. (19)

While this may appear to be a linear system, the dependency of the stiffness matrix, K, on
the static states, ys, results in nonlinear residual equations. To avoid convergence issues when
applying a root-finding algorithm, a relaxation factor, ζn, is included to obtain the residual for
the k-th iteration:

Rs,k = ζn (k) fk −Kkys,k. (20)

Solving the nonlinear static problem within an MDO context therefore becomes an implicit
process, with the states ys as an input. The states can be determined using a nonlinear Newton
solver combined with a Krylov method (GMRES [37, 38]) for linear solutions (determining
gradients). To improve convergence speed and stability, Perseids employs an Armijo-Goldstein
linesearch [39]. The implicit formulation offers the advantage of using Newton’s method (which
converges quadratically) and typically yields tighter convergence than the pseudo-time-stepping
approach.

4 DESIGN STUDIES

A gradient-based MDO problem is formulated to demonstrate the transient trajectory optimiza-
tion including nonlinear aeroelasticity. This section describes the models used and the assump-
tions made for each phase of flight. Finally, a gradient-based optimization is conducted to
demonstrate the theoretical formulations in this work.

4.1 Blended Wing Body Model

A notional BWB configuration is used within this work to explore the application of the theo-
retical formulation on a sample MDO problem. The BWB model allows the parametric modi-
fication of the aerodynamic planform, structural geometry, and engine. This section describes
the assumptions and parameterization of the aircraft model.

4.1.1 Geometry

The BWB consists of two wing sections: the body and wing sections (Figure 4a). The body is
a trapezoidal configuration, while the wing section is defined by a swept planform of constant
chord. The entire planform can be uniquely defined using six geometric design variables: the
body span (bbody), body chord (cbody), body sweep angle (φbody), total wing span (b), wing chord
(cwing), and wing sweep angle (φwing). In addition to the planform variables, five spline control
points are used to define both the planform twist and thickness distributions.

While these parameters are used to determine the wing planform, no analyses are conducted
directly using it. Instead, aerodynamic (VLM) and structural models (wing box definition, shell
and/or beam model) are generated from the design variables. While a shell model has been cre-
ated for the BWB, the structural models used in this work utilize equivalent beam properties and
are automatically generated after every design variable update (Figure 4b). The meshing pro-
cess provides analytical gradients, therefore making this approach feasible for gradient-based
optimization.
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(a) Wing planform

VLM mesh

wing box

beam ref. axis

(b) Analysis geometry

Figure 4: Planform and analysis geometry of the baseline BWB model.
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4.1.2 Weights
While the BWB model supports detailed weight analyses based on structural and component
sizing, Raymer’s weight estimations for fighter aircraft [40] are used within this work. Raymer’s
equations were determined from statistical regressions of existing designs. As such, it reason-
ably predicts the weight of conventional configurations, but will have shortcomings for under-
represented design configurations. It is noteworthy, that when these equations were developed,
BWB configurations were not common. Despite the possible errors associated with using this
method for this work, it provides a simple model to account for weight and enable design trade-
offs.

Another rationale for choosing this weight model for this work was the implicit nature of
Raymer’s method. This arises from the coupled nature of the weight of individual compo-
nents and the design gross weight of the vehicle. The design gross weight is the sum of all
components:

Wdg =
∑

Wi. (21)

However, the wing weight of the BWB is not determined from the Raymer weight equations.
Instead, the structural wing weight is approximated from the wing box dimensions and thick-
nesses. This approach adds fidelity to the weight approximation, while still utilizing the statis-
tical data that anchors Raymer’s method.

4.1.3 Aerodynamics
A VLM solver, Open AeroStruct [41], serves as the aerodynamic solver for this work. Open
AeroStruct was created at the University of Michigan and uses OpenMDAO to set up and solve
the VLM governing equations. OpenAeroStruct offers mesh manipulation utilities, however,
these are not used within this work, instead employing custom tools to remesh the planform for
every design iteration.

It should also be noted that while OpenAeroStruct is useful for simple studies and not rep-
resentative of industry tools, within this work it serves as a surrogate and could be replaced
with higher fidelity tools. For the purposes of this study, OpenAeroStruct will be run from an
external data center, emulating the aerodynamic discipline being evaluated at a different orga-
nization. OpenAeroStruct’s simplicity is therefore beneficial to limit the computational costs of
this study.

4.1.4 Engine
The engine model and its fuel consumption is a key factor in a fuel burn minimization problem.
For conceptual design studies, engines are often pre-selected and data provided. In other cases,
simple surrogate models may be provided by the engine manufacturers that allow for some
variation in engine sizing parameters without exposing the (proprietary) engine model. The
BWB model utilizes a parametric engine model proposed by Torenbeek [42] to enable trade-
offs between the vehicle and engine designs.

In Torenbeek’s model, the thrust to static thrust ratio is a function of environmental quantities
such as the density ratio and Mach number, and the engine throttle setting (ζt), as well as the
engine bypass ratio (µ):

T

T0

= ζt

(
ρ

ρ0

)
e
−0.35M

(
ρ
ρ0

)√
µ
. (22)
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The specific fuel consumption (sfc) is provided by the following equation:

sfc =
0.697

√
t
t0

(
ϕ− ϑ− χ

ηc

)
√

5ηn (1 + ηfηtµ)
(
G+ 0.2M2µ ηd

ηfηt

)
−M (1 + µ)

, (23)

with:

χ = ϑ
(
Π

κ−1
κ − 1

)
; (24)

ϑ = 1 +
κ− 1

2
M2; (25)

the gas generator function,

G =

(
ϕ− χ

ηc

)1− 1.01(
η

κ−1
κ

i (χ+ ϑ)
)(

1− χ
ϕηcηt

)
 ; (26)

and the normalized turbine entry temperature,

ϕ =
TET

t
. (27)

For this study, the fan efficiency, ηf , is set at 0.85, the compressor efficiency, ηc, at 0.84, the
turbine efficiency, ηt, at 0.87, and the nozzle efficiency, ηn, at 0.98. The gas generator efficiency

ηg = 1− 0.7M2 (1− ηd)

1 + 0.2M2
(28)

and inlet efficiency:

ηi = 1− (1.3 + 0.25µ)
∆p

p
(29)

are determined parametrically. For this work, the pressure loss, ∆p
p

, at the inlet is assumed to
be two percent.

4.2 Mission Description and Modeling

The total aircraft mission is subdivided into multiple mission phases: take-off, climb, and cruise.
Each of these phases is modeled differently. While the take-off and climb segments are transient
and modeled in Dymos, the cruise segment is approximated using Breguet’s range equation.
This section details the underlying assumptions and equations of motion for the individual flight
phases.
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4.2.1 Take-Off

The take-off phase follows the balanced field length approach by Raymer [40] and is itself
divided into distinct segments: roll, rotation, initial climb, and rejected take-off. During the roll
phase, the ODE is expressed as:

Fr = mg − L cosα− T sinα, (30)

v̇ =
T cosα−D − Frµr

m
, (31)

ṙ = v. (32)

The roll phase extends until v1 (in accordance to certification requirements), before the aircraft
transitions to the rotate and then the climb segment. The ODE for the climb segment adds the
altitude and flight path angle as states [43]:

v̇ =
T

m
cosα− D

m
− g sin γ, (33)

γ̇ =
T

mv
sinα +

L

mv
− g cos γ

v
, (34)

ḣ = v sin γ, (35)
ṙ = v cos γ. (36)

The angle of attack, α, and the thrust, T , serve as control variables and are driven by the opti-
mizer. The runway length along with the altitude at the end of the initial climb are constrained
in this study. The required runway length constraint equates to the class of runway the aircraft
is designed for and is implemented as an inequality constraint:

rend ≤ rmax. (37)

Likewise, the altitude is constrained as an inequality:

hend ≤ hmin = 35ft, (38)

and represents the certification requirement that the aircraft be able to climb to 35 ft by the end
of the runway. Additional constraints are enforced on the vehicle aerodynamics during climb to
ensure stall free flight2:

CL(t) ≤ 1.0 (39)

Nonlinear aeroelasticity is accounted within this ODE by obtaining the lift and drag values from
the static aeroelastic solution in Perseids (Figure 5). To this end, the atmospheric, aerodynamic,
and structural properties, as well as states (speed) are passed to the static aeroelastic solution.
The resulting lift and drag are then transferred to the flight mechanics equations. The resulting
method takes aeroelastic performance into account. Furthermore, (steady) structural stress dur-
ing take-off and climb can be constrained using the aeroelastic solution (though not exercised
in this work).

2The vehicle aerodynamics use potential flow. However, the stall constraint prevents the optimizer selecting
angles of attack that would result in a stall under realistic conditions.
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Figure 5: XDSM diagram of the ODE including static, geometrically nonlinear aeroelastic effects.

4.2.2 Climb
The climb phase of the flight is modeled according to the ODE in Equations 33–36. Again, for
this phase, the angle of attack and the thrust are used as control variables by the optimizer. The
climb phase begins at 200m and ends at cruise altitude (6 km). Unlike the initial climb during
take-off, a constraint on the flight path angle is enforced upon reaching cruise altitude, so that
the aircraft stops climbing (γ !

= 0).

4.2.3 Cruise
The cruise phase is driven by a required aircraft range, with the vehicle fuel burn being the
quantity of interest (and the objective of the optimization). The fuel burn is determined from
the aircraft range. The Breguet range equation3 can be written as [45–47]:

R =
vcCL

CD sfc
ln

(
W1

W2

)
. (40)

R =
vcCL

CD sfc
ln

(
m1

m2

)
(41)

=
Mc ac CL

CD sfc
ln

(
m1

m2

)
(42)

The initial mass, m1, is the combined weight of the structure and fuel, while the weight at the
end of the trip, m2, is just the structural weight (no fuel reserves considered), i.e.,

m1 = ms +mf (43)
m2 = ms (44)

The fuel weight and fuel mass are thereby determined by rearranging the range equation:

mf = ms

(
e
R

CD sfc

CL vc − 1

)
(45)

The fuel mass (fuel burn) serves as the objective for this design study.
3While the range equation derives its name from Louis Breguet, as Cavcar [44] notes, the origin of the equation

can be traced to multiple sources.
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Figure 6: XDSM diagram of the BWB optimization subject to take-off and climb constraints.

4.3 Gradient-Based Results

A gradient-based MDO problem is formulated to demonstrate the transient trajectory optimiza-
tion including nonlinear aeroelasticity. The design problem is formulated as a fuel burn mini-
mization problem consisting of take-off, climb, and cruise phases (Figure 6). The optimization
formulation is given by:

minimize: mf ,

with respect to:
x = [bwing, cwing, αb, φi, ti]

T ,

subject to:
CL,cruise = 0.5,

Vfuel ≤ Vwingbox,

|σMises| ≤ σAl ,

rto ≤ 1500m,

hto ≤ 35ft,

tclimb ≤ 400s.

The design variables for the problem are the wing span, wing chord, body angle of attack, wing
twist, and wing box thicknesses. The cruise lift coefficient, fuel volume, cruise stress, take-
off length, altitude (at the end of the runway), and climb time are constrained. The IPOPT
optimizer [48] is used to drive the problem due to its ability to navigate large numbers of design
variables and constraints (as imposed by the collocation methods used by Dymos).

17



IFASD-2024-9

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Figure 7: Thickness distribution of the optimal BWB wingbox (in meters).

The optimization converged in 187 iterations resulting in the vehicle depicted in Figure 7. While
the optimization converged, it should be noted that neither the take-off, nor the climb constraints
were active. Again, it should be noted, that this optimization accounts for nonlinear aeroelas-
ticity from a performance perspective.

5 FULLY TRANSIENT TRAJECTORY OPTIMIZATION FORMULATION

The trajectory optimization studies presented within this work assumed static aeroelastic re-
sponses. As a result, there is no structural coupling between time steps. This approximation
holds true for quasi-steady problems. However, as mentioned in the introduction to this work,
fully transient aeroelastic solutions with tight coupling of rigid-body degrees of freedom may
be necessary for very flexible aircraft. This section present the theoretical formulation needed
to transition from static to fully unsteady aeroelastic trajectory optimization.

The coupled aeroelastic equations of motion that govern Perseids were originally developed by
Shearer [32] and Su [5] for use in UM/NAST:[

MFF MFB

MBF MBB

][
ε̈

β̇

]
+

[
CFF CFB

CBF CBB

][
ε̇

β

]
+

[
KFF 0

0 0

][
ε

b

]
=

[
fF

fB

]
, (46)

−1

2
Ωζζ = ζ̇ , (47)[

CGB

0

]
β = ṖB. (48)

In addition to strain states, the equations of motion include nonlinear rigid body degrees of
freedom. While not necessary for all analyses, the EOM (Equations 46–48) can be augmented
with unsteady aerodynamics using Peters’ finite state aerodynamics [49]:

F1

[
ε̈

β̇

]
+ F2

[
ε̇

β

]
β + F3λ = λ̇. (49)

To solve the problem with Dymos the EOM must be reformulated into state-space form. The
governing equations (Equations 46–49) were rearranged by Brown [2] to obtain a set of first
order ODE:

Q1ẏ = Q2y + f (y, ẏ, u, vg) (50)
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Figure 8: Climb trajectory of the BWB.
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Figure 9: Take-off trajectories for the optimal BWB configuration.

In this system of equations, the system states y (including rigid-body degrees of freedom (DOF)
and unsteady aerodynamics) and control states u are:

y =



ε

ε̇

β

ζ

PB


, u =


u1

u2

...

un

 . (51)

Note, that control inputs are user defined (based on the vehicle) and include all control surfaces
and forces (such as thrust) that are of interest to the problem. The linearized ODE in Equation
50 can be rearrange to obtain:

ẏ = f̃ (y, u) (52)

= Q−1
1 Q2︸ ︷︷ ︸
A

y +Q−1
1

∂f

∂u︸ ︷︷ ︸
B

u. (53)

Equation 52 forms the basis for an ODE component within Perseids which is then provided
to Dymos to obtain the time-domain component. The strains, ε, and constraint states, λc, are
passed from the static solution to the dynamic solver component. With these initial conditions,
the dynamic component solves the equations of motion in the time-domain by determining the
state rate, ẏ (rather than the linearized matrices that are required for frequency domain solutions)
at each point of evaluation.
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Figure 10: XDSM diagram of a fully coupled dynamic aeroelastic trajectory optimization.

This procedure can either be applied to the entire aeroelastic system (including rigid body de-
grees of freedom) or only including the strain states. Within this work, the gradient-based MDO
problem was augmented by the strain states only. The resulting states were used to determine
the lift and drag of the aircraft, which were transferred to the same flight mechanics equations
used for the quasi steady case (Figure 10).

While the dynamic gradient-based optimization was run for this paper, it did not converge. A
likely cause for this can be found in the increase in numbers of states and constraints the op-
timizer needs to negotiation. The quasi-steady optimization features 5 states per collocation
point, whereas the dynamic aeroelastic problem features 125. This results in additional compu-
tational cost per iteration as well as a significant burden to the optimizer.

6 CONCLUDING REMARKS

This paper presented a geometrically nonlinear formulation for including quasi-steady aeroelas-
tic effects into trajectory optimization. The method was applied to take-off and climb trajectory
optimization, allowing designers to investigate aeroelastic performance and its effect on aircraft
requirements and certification specifications. The quasi-steady formulation was amended to
incorporate full structural dynamic states. This formulation could enable future transient, geo-
metrically nonlinear aeroelastic optimizations of very flexible vehicles (such as HALE aircraft)
during critical flight phases (climb, gust response, roll constraints, etc.).

However, optimizations using the fully transient formulation failed to converged when using
collocation methods. Exposing large numbers of states as design variables and constraints to
the optimizer proves challenging and counterproductive to achieving MDO problems with larger
number of disciplines and load cases. As such, it appears necessary to solve the transient prob-
lem either by using a sub-optimization problem or a nonlinear solver, to avoid overburdening
the top-level optimizer. Future studies are required to demonstrate the practicality of such an
approach.
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