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Abstract: In the field of aeroelasticity, acquiring both static and dynamic aeroelastic charac-
teristics via wind tunnel test is useful. However, designing elastic wind tunnel models has been
conventionally laborious. To address this issue, this study aims to develop a numerical method
for designing elastic wind tunnel models by taking advantage of additive manufacturing tech-
nique. The wind tunnel model is designed to have equivalent static responses, eigenvalues, and
eigenvectors to full-scale aircraft. The internal structure of the wind tunnel model is recon-
structed using topology optimization. The optimization is performed using a level-set-based
method with conforming meshes. The proposed method successfully optimized the static char-
acteristic to meet a target static characteristic. As for the optimization of dynamic characteris-
tics, however, some numerical instabilities have been observed, preventing logical optimization
of eigenvalues and eigenmode shapes.

1 INTRODUCTION

It is attracting interest to design and control dynamic characteristics of structures as well as
static characteristics. In the field of aeroelasticity, the acquisition of aeroelastic characteristics
through wind tunnel testing remains important today, despite the development of numerical
computation methods and high-performance computers. The significance of aeroelastic anal-
ysis has increased due to the growing demand for designing higher-performance aircraft. In
transonic and supersonic airflow, where new developments are actively taking place, the cost of
numerical computation is impractically high. Also, the existence of geometrically nonlinear ef-
fects adds to the complexity of the analysis. Therefore, experimental testing using wind tunnel
models becomes indispensable. To analyze dynamic characteristics like flutter through wind
tunnel testing, it is essential to replicate not only the outer geometry but also structural proper-
ties such as mass and stiffness distribution. However, the scaled model’s specific stiffness and
overall density vary significantly based on the scale ratio and wind tunnel testing configurations,
making their replication challenging [1].

In recent years, the methodology for designing wind tunnel models has been developed along-
side technological innovations. Traditional wind tunnel models were constructed by designing
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non-load-bearing skin fairings, simplified internal structures, and incorporating weights for ad-
justments [2]. Such processes were time-consuming and costly. However, this situation is
changing with the emergence of Additive Manufacturing (AM) [3, 4]. Recent advancements
in AM allow for the fabrication of complex structures using various materials such as plastics,
metals and combinations of which [5]. Flutter tests of wind tunnel models manufactured by
metal 3D printing have been conducted [6], yet sufficient research has not been conducted on
methods for reverse-engineering the internal structures of wind tunnel models to meet given
structural characteristics. In designing structures using AM, topology optimization stands as
a prominent method. The primary challenge in topology optimization lies in determining the
sensitivity of input variables. Combined with automatic differentiation [7], this gradient com-
putation can be performed efficiently and accurately for a wide range of objective functions [8].
However, the application of topology optimization to the design of elastic wind tunnel models
has not been sufficiently explored.

This study aims to establish a method for designing elastic wind tunnel models with equivalent
static responses, eigenvalues, and eigenmodes to full-scale aircraft. This is because wind tunnel
models with the same static responses, eigenvalues, and eigenmodes are expected to exhibit the
same aerodynamic elastic behavior, even if their internal structures differ. Elastic wind tunnel
models are assumed to be formed using AM, and this is achieved by reconstructing the internal
structure through topology optimization. For topology optimization, a level-set-based method
using conforming meshes, which is expected to provide the highest accuracy, is adopted [9].

2 METHODOLOGY

2.1 Level-set topology optimization

A level-set-based approach is used in this work to optimize the topology of elastic wind tunnel
models. The overview of level-set topology optimization is summarized in [9]. In this work,
the value of the level-set function ϕ is

ϕ < 0 insie the material domain
ϕ = 0 on the boundary
ϕ > 0 outside the material domain

(1)

The optimization procedure in this work is divided into four stages as shown in Fig. 1.

1. A scaled surface geometry is input and a structured grid is set inside the geometry to
parameterize the level-set function (LSF). The LSF parameter is denoted as ψ and is
initialized in this stage. The LSF parameter ψ is defined in the structured grid, and the
value of LSF is calculated as

ϕ = fRBF(ψ) (2)

where ϕ is the LSF value on the structured grid, and fRBF is a radial basis function (RBF)
interpolation function.

2. The boundary of the structure is extracted in STL format. The boundary is implicitly
defined by the LSF as the zero level set of the LSF and is approximated with triangle
polygons. For convenience, ϕ and the coordinates of nodes on the boundary vsurf are
linked by two mapping matrices M1, M2, which are calculated in every iteration, in the
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following form:

vsurf =
M1ϕ

M2ϕ
(3)

3. The material domain is discretized by tetrahedral elements, and the global stiffness matrix
and global mass matrix are calculated by the finite element method (FEM). The conform-
ing meshing is done by a third-party software TetGen [10]. The coordinates of surface
mesh nodes and vsurf are linked by another mapping matrixM3 in the following form:

vmeshSurf =M3vsurf (4)

so thatϕ and the resulting stiffness matrix and mass matrix are indirectly linked by simple
linear algebra calculation.

4. Structural analysis is done by FEM analysis. The objective function is calculated using
the results of the FEM analysis, and the gradient of the objective function Fobj w.r.t. ψ is
calculated. ψ is updated using the gradient information as

ψ = ψ − α
∂Fobj

∂ψ
(5)

where α is a step size. The updated ψ is converted to ϕ, and the process is repeated from
stage (2) to stage (4) until the convergence of the objective function.

Figure 1: Optimization procedure

The core part of the program is written with a Python library JAX [11]. With JAX’s Autograd
tool, in which JAX automatically differentiates Python codes, the optimization uses gradient
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information to update the design variables. The objective function is defined using total mass,
static deflection, eigenfrequencies, and eigenvectors. The FEM calculation is done by third-
party software MSC Marc and the results are imported into the JAX program, which is due to
the lack of fast solvers in JAX. The undergoing updates aim to replace this outsourcing with
a self-contained JAX program. The calculation of the gradient of static deflection w.r.t. input
global stiffness matrix is implemented via an implicit differentiation method [12]. The gradient
of eigenvectors w.r.t. input global stiffness matrix and input global mass matrix is calculated
via an approximation method described in 2.3.

2.2 Consideration of static deformation
The static characteristic of the wind tunnel model is represented by a compliance matrix of
its reduced order FE model. The reduction of the model is achieved by the Guyan reduction
method [13], which is exact for static analysis. The active nodes are randomly chosen from the
surface nodes of the model.

2.3 Approximation of eigenvector gradient
The calculation of eigenvector gradients for large sparse matrices is computationally expensive
as it requires all eigenvectors to calculate a single eigenvector gradient [14]. Several methods
have been proposed to approximate the eigenvector gradients. However, to the authors’ knowl-
edge, no method is suitable for calculating eigenvector gradients w.r.t. every element of the
matrix. In this study, an approximation of the eigenvector gradients is introduced with a simple
error estimation method. The characters used in this section do not hold any specific meaning
in other sections.

2.3.1 Gradient approximation
Consider a standard eigenvalue problem

Aui = λiui u⊤
i uj = δij (6)

where A is a n×n real symmetric matrix, ui is the i-th eigenvector, λi is the i-th eigenvalue,
and δij is the Kronecker delta. While the exact eigenvalue gradient is given as

∂λi

∂A
= u⊤

i ⊗ ui (7)

where ⊗ is the Kronecker product, the analytical eigenvector gradient is given as

∂ui

∂Akl

=
n∑

i ̸=j

(
1

λi − λj

(
∂A

∂Akl

ui

)
· uj

)
uj =

n∑
i ̸=j

(
[ui]l · [uj]k
λi − λj

)
uj (8)

where [ui]l is the l-th element of ui. The contribution of the j-th eigenvector to the gradient
of the i-th eigenvector decreases as the difference between the eigenvalues λi and λj increases.
Since our interest is in the lowest eigenvalues and eigenvectors, the approximation neglects the
contribution of the higher vectors.

2.3.2 Error estimation
Define esj as

esj =

(
[ui]ls · [uj]ks

λi − λj

)
uj (9)

∥esj∥ = esj (10)
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The exact gradient vector vs exact and the approximated gradient vector vs approx are given as

vs exact =
n∑

j=1

esj, vs approx =
m∑
j=1

esj (11)

where m is the number of eigenvectors considered in the approximation and m < n.

Define new 1D vectors vexact and vapprox as

vexact = [v⊤1 exact, . . . ,v
⊤
S exact]

⊤, v = [v⊤1 approx, . . . ,v
⊤
S approx]

⊤ (12)

The cosine similarity between the exact and approximated gradient vectors is given as

v⊤exactvapprox

∥vexact∥∥vapprox∥
=

∑S
s=1

∑m
j=1 e

2
sj√∑S

s=1

∑n
j=1 e

2
sj

√∑S
s=1

∑m
j=1 e

2
sj

=

√√√√∑S
s=1

∑m
j=1 e

2
sj∑S

s=1

∑n
j=1 e

2
sj

(13)

Here we introduce a heuristic assumption that esj monotonically decreases at a rate of at least
first order w.r.t. j and becomes infinitesimal at j = n. Therefore

v⊤exactvapprox

∥vexact∥∥vapprox∥
=

√√√√∑S
s=1

∑m
j=1 e

2
sj∑S

s=1

∑n
j=1 e

2
sj

=

√√√√ ∑S
s=1

∑m
j=1 e

2
sj∑S

s=1

∑m
j=1 e

2
sj +

∑S
s=1

∑n
j=m e2sj

≥

√√√√ ∑S
s=1

∑m
j=1 e

2
sj∑S

s=1

∑m
j=1 e

2
sj +

∑S
s=1

∑n
j=m

(
n−j
n−m

esm
)2

=

√√√√ ∑S
s=1

∑m
j=1 e

2
sj∑S

s=1

∑m
j=1 e

2
sj +

1
(n−m)2

∑S
s=1 e

2
sm

∑n
j=m(n− j)2

(14)

In this way, the lower bound of the cosine similarity is approximated using m eigenvectors.

2.4 Aeroelastic scaling

In this study, the Mach number and dynamic pressure are control variables. In a wind tunnel
where the airflow is quasi 1D isentropic, the relation between the total temperature T0t and the
static temperature Tt is given by

T0t

Tt

= 1 +
γ − 1

2
M2 (15)

where γ is the heat capacity ratio and M is the Mach number. Using the temperature at flight
altitude Tf , the scaling factor for velocity κv, identical to the scaling factor for sonic speed, is
given as

κv =
at
aw

=

√
γRTt

γRTf

=

√
T0t(

1 + γ−1
2
M2

)
Tf

(16)

where at and aw are the sonic speeds at flight altitude and wind tunnel, respectively, and R is
the gas constant.
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The scale factor for length κl = Lt/Lf , the scale factor for the dynamic pressure κp = Pt/Pf

and κv give the other scaling factors as

κf = κpκ
2
l (17)

κt = κl/κv (18)
κm = κ3

l κp/κ
2
v (19)

where κf , κt and κm are the scaling factors for force, time and mass, respectively.

2.5 Loss function
The definition of the loss functions used in this work is given in this section. In optimiza-
tion with automatic differentiation, the choice of the loss function is up to the users. The loss
functions for mass, static deformation, eigenvalues, and eigenvectors are defined as

Fm =cm

∣∣∣∣ m(i)

mtarget
− 1

∣∣∣∣ (20)

Fs =cs∥C(i) −Ctarget∥F
2

(21)

Fλ =cλ

nλ∑
k

∣∣∣∣∣ λ
(i)
k

λtarget,k
− 1

∣∣∣∣∣ (22)

Fv =cv

nλ∑
k

(∣∣∣C(v(i)k ,vtarget,k)
∣∣∣− 1

)
(23)

where m is the mass, C is the compliance matrix of the reduced order model, λk is the k-th
eigenvalue, vk is the k-th eigenvector, nλ is the number of eigenvalues considered, and C(a, b)
is the cosine similarity between a of b. |□| denotes absolute value and ∥□∥F denotes Frobenius
norm. The superscript □(i) denotes values of the i-th iteration, and the subscription □target

denotes the target values. The coefficients c□ are the normalizers for each loss function. The
objective function is given as a weighted sum of these loss functions.

3 NUMERICAL RESULTS
In this section, optimization results for the single objective cases are presented. The JAX pro-
gram is run on an NVIDIA GeForce RTX 4090, and MSC Marc is run on an i9-9980XE CPU.

3.1 Model description
The reference wind tunnel model is described in this section. The wind tunnel model is a scaled-
down model of a test wing with NASA SC(2)-07 14 airfoil. The scaling factors are calculated
as explained in 2.4. The configuration of the full sale wing and scaling factors are shown in
Tables 1-2.

Table 1: Configuration of the full-scale wing

Semispan length 8 m
Root chord 2 m
Sweep back angle 20◦

Flight Mach num. 0.85

Table 2: Scaling factor for the wind tunnel model

Length κl 0.03
Dynamic pressure κp 2.4
Time κt 0.028
Mass κm 5.6×10−5

The wing structure is defined as a shell model with a uniform thickness of 3 mm. The material
properties are provided in Table 3.
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Table 3: Material properties

Young’s modulus 70 GPa
Poisson’s ratio 0.3
Density 2700 kg/m3

The same material properties are used for the wind tunnel model. The overview of the full-scale
wing is shown in Fig. 2.

Figure 2: Overview of the full-scale wing

3.2 Calculation results

The LSF parameter ψ is defined in a structured grid system. The value of the level-set function
ϕ at each grid point is initialized so that the initial wind tunnel model design has uniformly
distributed holes inside the bulk material domain as shown in Fig. 3.

Figure 3: Initialization of the level-set function

In each iteration process, the derivative of the loss function Fs w.r.t. the LSF parameter ψ
is calculated by Automatic Differentiation. The LSF parameter ψ is updated by the gradient
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descent method as

ψ(k+1) = ψ(k) − α
∂Fs

∂ψ
, (24)

where α is a step size.

3.2.1 Static deformation optimization result

The optimization result for the static deformation is presented in this section. The value of
the loss function at each iteration step is shown in Fig. 4. The value of the loss function was
reduced to less than half after optimization. The distribution of the holes inside the wind tunnel
model after the final iteration is shown in Fig. 5. Notably, the size of the holes at the wing root
increased significantly, indicating substantial changes during the optimization process. This
implies that the stiffness in the region near the root greatly influences the overall deformation
behavior, which is a reasonable outcome. Furthermore, the difference in wingtip displacement
under vertical load decreased from 29% to 2.7% before and after optimization.

Figure 4: Loss function value during optimization Figure 5: Wind tunnel model in 35th iteration

3.2.2 Eigenvalue optimization result

Two optimization results for the eigenvalue are presented in this section.

In the first case, only the first eigenvalue is optimized. The values of the loss function Fλ at each
iteration step are shown in Fig. 6 and the wind tunnel model after the final iteration is shown in
Fig. 7. The eigenfrequency of the first mode in the initial and final iteration is shown in Table
4. During the optimization process, a sharp increase in the loss function value was observed
in the 7th iteration, yet the value recovered small in the final iteration. After 9 iterations, the
inner structure of the wind tunnel model has changed notably. The holes in the wing tip region
became small, while in the middle section, the holes became large and some merged with each
other. The holes in the wing root section have not changed. The eigenfrequency of the first
mode was reduced to 152.2 Hz from 154.0 Hz after optimization, which is close to the target
value of 152.0 Hz.
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Figure 6: Loss function value during optimization Figure 7: Wind tunnel model in 9th iteration

Table 4: Eigenfrequency of the first mode in each iteration

Eigenfrequency of 1st mode
Iteration 0 154.0 Hz
Iteration 9 152.2 Hz

Target value 152.0 Hz

In the second case, the first two eigenvalues are optimized simultaneously. The Eigenfrequen-
cies of the first and second modes in the initial and 7th (best case) iterations are shown in Table
5. The values of the loss function Fλ at each iteration step are shown in Fig. 8. The values
of Fλ slightly improved until the 7th iteration, yet failed to converge in the following iteration.
The eigenfrequency of the first mode was reduced to 153.7 Hz from 154.0 Hz after optimization
and the eigenfrequency of the second mode was increased to 648.4 Hz from 647.3 Hz after op-
timization. Although the improvement is relatively small, the optimization managed to reduce
the eigenfrequency of the first mode while increasing the eigenfrequency of the second mode
simultaneously.

Figure 8: Loss function value during optimization
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Table 5: Eigenfrequencies of the first and second modes in each iteration

Eigenfrequency of 1st mode Eigenfrequency of 2nd mode
Iteration 0 154.0 Hz 647.3 Hz
Iteration 7 153.7 Hz 648.4 Hz

Target value 152.0 Hz 655.2 Hz

3.2.3 Eigenvector optimization result

The optimization result for the eigenvector is presented in this section. The first eigenmode
shape in the initial state was already close to the target shape and the cosine similarity was more
than 0.999. Therefore, the first two eigenmodes were optimized simultaneously. The values of
the loss function Fv at each iteration step are shown in Fig. 9. The mean cosine similarity of
the first and second mode shapes from the target mode shapes is shown in Table 6. The value
of Fv became minimum at the 5th iteration and started diverging in the following iteration. The
value of the mean cosine similarity is slightly improved after optimization.

Figure 9: Loss function value during optimization Figure 10: Wind tunnel model in 5th iteration

Table 6: Mean cosine similarity of 1st and 2nd modeshapes

Mean cosine similarity of 1st and 2nd modeshapes
Iteration 0 0.991
Iteration 5 0.993

4 DISCUSSION

In the case of static deformation optimization, the loss function decreased monotonously, in-
dicating that the optimization process was successful. However, in the case of eigenvalue op-
timization, the loss function fluctuated around the initial value. Also, irrationally large sensi-
tivities have been observed during the calculation. In a simple test case where the number of
total degrees of freedom is up to 5,000, the gradients calculated via automatic differentiation
coincided with the gradients calculated via the finite difference method. However, in the case of
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a more complex model with 100,000 degrees of freedom, large discrepancies were observed. In
some cases, the maximum eigenvalue gradients, normalized to 1, with respect to the coordinate
values of a single node exceeded 1,000. This gradient value should be at least less than 0.001.
These large values can be significant noise and conceal the actual gradient information, result-
ing in divergence of the optimization process. A possible cause of this problem is the existence
of low-quality elements in the mesh. The results of eigenvalue analysis are more significantly
affected by the quality of the mesh compared to the results of static deformation analysis. This
problem is more prominent in the case of eigenvector optimization.

5 CONCLUSION

A topology optimization method for optimizing the dynamic and static characteristics of a struc-
ture is proposed. As a demonstration, the method is applied to a wind tunnel model design
problem and the optimization results for static and dynamic optimization cases are shown. In
the dynamic optimization case, extraordinarily large sensitivities were observed during the cal-
culation, resulting in the potential loss of actual gradient information. The ongoing work is to
investigate the cause of this problem and to develop a solution. In the current implementation,
some elements in the derivative of the loss functions Fλ and Fv are overly estimated, resulting
in an exploding gradient problem. This is possibly due to the existence of low-quality elements
in the mesh. Because of the computational cost in calculating the mapping matrix M3 in Eq.
4, the number of nodes is virtually limited to 100,000. The proceeding modification includes
adding a preprocessing step to accelerate the calculation of the mapping matrixM3 to allow for
a larger number of nodes.
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