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Abstract: This paper presents a new simulation environment for time-domain nonlinear aeroe-
lastic analysis built for performance and that is suitable for modern hardware architectures such
as GPUs. The numerical library JAX and a novel description of the aircraft dynamics are
brought together into a highly vectorised codebase that achieves two orders of magnitude accel-
erations compare to conventional implementations. This brings full-vehicle simulations to run
close to if not in real-time, thus opening new possibilities for aircraft design optimization and
aeroelastic analysis.
The computational edge provided by GPUs is shown in a free-flying very flexible structure. It
follows an extensive verification by comparison with MSC Nastran full-FE linear and nonlin-
ear structural solutions on a representative aeroplane model. Furthermore, the nonlinear gust
response of an industrial configuration with over half a million degrees-of-freedom is com-
puted, and it is faster than its frequency-based, linear equivalent as implemented by commercial
packages. Therefore this could be harnessed by aircraft loads engineers to add geometrically
nonlinear effects to their existing workflows at no extra computational effort. Finally, automatic
differentiation on both static and dynamic responses is validated against finite-differences.

1 INTRODUCTION

The ever-growing need for performance and operating costs reduction, together with the current
push for sustainability in aviation, are driving new aircraft designs outside the conventional en-
velope. A particular feature are very high aspect ratio wings to minimise induced drag, which
when combined with advancements in lighter materials to reduce vehicle weight, can signifi-
cantly increase wing flexibility. In such a scenario, aeroelastic analysis are expected to become
critical in the very early phases of the wing design process: while the field was more impor-
tant in post-design stages to ensure in-flight integrity, it now becomes paramount to capture the
cross-couplings between disciplines. As highlighted in [1], formulations that include nonlinear
effects should be developed that not only enhance current modelling techniques but that also
allow rapid data turnaround for the industry. Real-time, hardware-in-the-loop flight simulators
would also benefit of actively controlled, deformable airplane models. This leads to a more
nonlinear landscape, where the overall aerodynamic performance needs to be calculated around
a flight shape with large deformations [2]; the input for efficient control laws account for the
steady state and nonlinear couplings [3]; and the loads ultimately sizing the wings are atmo-
spheric disturbances computed in the time-domain [4]. This is also the case for more radical
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configurations that may or may not exhibit high flexibility but whose aeroelastic behaviour is
more uncertain. A more holistic approach to the design also increases the complexity of the
processes exponentially, and the trade-offs and cost-benefit analysis may not be possible un-
til robust computational tools are in-place to simulate the different assumptions. High fidelity
structural [5] and aero-structural optimizations [6] which also include nonlinear flutter con-
straints due to geometric nonlinearities are good examples of the push for further integration in
the design process.
Certification of new air vehicles is another important aspect that requires 100,000s of load cases
simulations [7], as it considers manoeuvres and gust loads at different velocities and altitudes,
and for a range of mass cases and configurations. For roll manoeuvres, for instance, it has been
shown the importance of fully coupled nonlinear aeroelastic-flight dynamics solutions [8]. This
poses another challenge for new methods that aim to include new physics since they normally
incur in prohibitively expensive computational times. To tackle this, projection based reduced
order models have been employed even for high fidelity analysis [9], and are also blended with
machine learning models [10]. Lastly, the mathematical representation of the airframe, embod-
ied in the complex Finite-Element Models (FEMs) built by organizations, encompasses a level
of knowledge that is to be preserved when including the new physics mentioned above. This
has led to recent efforts geared towards building robust methods that incorporate nonlinear ef-
fects to those FEMs, either via stick models constructed for aeroelastic analysis [11], or using a
modal-based approximation [12].
Those previous considerations set the goals for the present work: 1) to be able to perform geo-
metrically nonlinear aeroelastic analysis, 2) to work with generic FEMs in a non-intrusive man-
ner, and 3) to achieve a computational efficiency that is equivalent to present linear methods
(if not faster). Grounded on previous developments where the first two points were demon-
strated [13], [14], [15] we tackle the third point herein with a new implementation that achieves
remarkable computational performance. The numerical library JAX [16] was leveraged to pro-
duce highly vectorised, automatically differentiated routines that are managed by a modular,
object-oriented approach in Python. The power of JAX for scientific computation has been
proved recently in fluid dynamics [17] and solid mechanics [18] applications. It provides a
unified computational framework that can be seamlessly deployed on CPUs, GPUs and TPUs
without needing to resort to Domain Specific Languages (DSL) [19]. In addition it also features
powerful parallelisation capabilities across devices, a hot research topic given the new era we
enter where software does not outlive hardware but potentially the other way around.
Our proposed method has two main inputs for the analysis: a linear (arbitrarily complex) FE
model, and frequency-dependent aerodynamic influence coefficient matrices that provide the
mapping between FE states and the corresponding aerodynamic forces (either in modal or in
physical coordinates). The latter are obtained herein from the Doublet Lattice Method (DLM)
and a rational function approximation (RFA) [20] to transform to the time domain. We have
also presented a more efficient data-driven approach that circumvents the lag selection process
of the RFA in [21] and which would also be suitable for more accurate Computational Flu-
ids Aerodynamics (CFD). Using the 3D FE model, a skeleton-like substructure along the main
load paths is derived, on which modal shapes and nonlinear couplings are evaluated in intrinsic
variables (velocities and strains) [22]. They conform a basis of a Galerkin-projection of the
geometrically-nonlinear 1D description [23] after which the projected equations are solved in
time-domain. Advantages of the approach are its direct and accurate map between the 3D and
1D domains, as it only requires of a modal condensation that is already available in many indus-
trial aeroelastic models to link the structural model to the aerodynamic loading. This is unlike
stick models which need of various post-processing steps to build the equivalent stiffness and
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mass models. Furthermore, we show how the full 3D solution using the nonlinear 1D solution
is computed to a good accuracy by reconstructing the cross-sectional elements and applying a
Radial Basis Function (RBF) interpolation to the remaining nodes in the domain. A well estab-
lished formulation effectively applied to large-scale aeroelastic models and now combined with
a highly vectorised implementation in JAX results in an extremely efficient nonlinear aeroelas-
tic solver. The overall procedure has been implemented in what we have named as Nonlinear
Modal Reduced Order Model (NMROM).
The structure of the rest of the paper is as follows. Sec. 2 presents a summary of the math-
ematical description that conforms the backbone behind the computational implementation of
FENIAX (Finite-Element models for Intrinsic Aeroelastics in JAX), the high performance soft-
ware for aeroelasticity we have built. Sec. 3 shows the verification cases that cover a very
flexible, free-flying structure, the static and dynamic structural response of a simplified aircraft
model, and the aeroelastic response to gusts of a full aircraft configuration. The performance
edge of the implementation is highlighted in all of the examples. Lastly, sec. 4 summarises the
the achievements and further developments planned for future work.

2 THEORY AND IMPLEMENTATION

In this section we briefly describe the backbone theory of the proposed methods for nonlinear
aeroelastic modelling as continuation of the work in [14, 15]. A summary of implementation
details and computational algorithms are presented next.

2.1 Nonlinear aeroelastic system

We start with a global FE model of the airframe as illustrated in Fig. 1.

Step 2. FE condensation
and

eigenvalue problem
Step 3.

a. Nonlinear solution of active DoF
b. Displacement recovery of interpolation elements 

Step 4. Full 3D 
reconstruction via RBFs 

kernels

Step 1. FE 
model

Figure 1: Workflow of the solution process

It is common practice for large-scale aeroelastic models to feature lumped masses along a load
path axis that are attached to their corresponding cross-sectional nodes via interpolation ele-
ments. With those characteristics a reduced model can be obtained from a static condensation,
or Guyan reduction [24], that captures well the stiffness and inertia properties in the condensed
matrices, KKKa and MMMa (Step 1 in Fig. 1). In the case where the mass is given by a generic mass
model the method is also valid and dynamic condensation can be employed for additional ac-
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curacy, as demonstrated in [25]. The eigenvalue solution of the FEM yields the modal shapes,
ΦΦΦ0, and frequencies ωωω (Step 2, however, ΦΦΦ0 is defined on the master nodes and the figure shows
the full reconstructed modal shapes). The dynamics of this reduced model are described by a
system on nonlinear equations [23] written in material velocities, x1, and stresses, x2, as state
variables. A modal expansion of those is a key step in seamlessly mapping the global FEM into
the nonlinear description. The intrinsic modes are introduced and the projection of the state
variables is such xxx1 = ΦΦΦ1qqq1 and xxx2 = ΦΦΦ2qqq2. A resulting set of four intrinsic modal shapes are
directly linked to the displacement modal shapes coming from the global FEM:

1. Velocity modes, Φ1 = Φ0, which follow after the linear relation with displacements:
x1 = ẋ0, Φ1q1 = Φ0q̇0.

2. Momentum modes, Ψ1 =MaΦ0. Note from this definition that, for arbitrary distributed
mass models, the dynamic condensation technique will produce a fully-populated mass
matrix, and the various couplings will be captured after the matrix multiplication.

3. Force/moment modes, Φ2 = S(KaΦ0), represent the internal stress resultants in the
structure as the sum, S, along the main load-paths of equilibrium forces and moments
produced by the modal deformations. As a consequence, results are presented in the mid-
point between nodes because more information cannot be extracted in terms of linear
stresses from one node to the other.

4. Strain modes, Ψ2 = −Φ0d + EEE⊤Φ0m, with Φ0d the approximate derivative along s:
Φi

0d =
Φi+1

0 −Φi
0

∆si
; and Φ0m =

Φi+1
0 +Φi

0

2
, the displacement modal shape in between nodes.

EEE⊤ is a constant matrix as defined in [13].

Details of their computational implementation in JAX can be found in Algorithm 1 below.
Using the computed modal shapes, a dynamic system is obtained after a Galerkin projection of
the equations of motion [26, Ch. 8]:

q̇qq1 = ωωω ⊙ qqq2 −ΓΓΓ1 ::: (qqq1 ⊗ qqq1)−ΓΓΓ2 ::: (qqq2 ⊗ qqq2) + η

q̇qq2 = −ωωω ⊙ qqq1 +ΓΓΓ⊤
2 ::: (qqq2 ⊗ qqq1)

(1)

where ⊙ is the Hadamard product (element-wise multiplication), ⊗ is the tensor product op-
eration and ::: is the double dot product1. The equations have been written herein in compact
tensorial notation, which is in fact the way they have been implemented and vectorised. This
description is geometrically-exact, with nonlinearities encapsulated in the modal couplings of
the third-order tensors ΓΓΓ1 and ΓΓΓ2 (the former introduces the gyroscopic terms in the dynamics
and the latter introduces the strain-force nonlinear relation). ηηη is the modal projection of the ex-
ternal forcing terms. They are computed as integrals along the load-paths as an inner product:
⟨uuu,vvv⟩ =

∫
Γ
uuu⊤vvvds, for any uuu ∈ R6 and vvv ∈ R6, as

1The double dot product represents a contraction of the last two indexes of the first tensor with the first two
indexes of the second one; it however needs further specification as two alternative definitions can be adopted and
here we opt for the following: aaa ::: bbb =

∑
i

∑
j a..ijbij... This has implications on the definition of the transpose

of Γ2 in the second equation since for high order tensors multiple transpose operators can be defined. Consistency
is achieved by ensuring the dot product operation satisfies the following: xxx · (Γ ::: (yyy ⊗ zzz)) = yyy ·

(
Γ⊤ ::: (zzz ⊗ xxx)

)
,

which leads to the transpose of the third order tensor, Γ = Γijk, as Γ⊤ = Γjki.
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Γijk
1 = ⟨ΦΦΦ1i,L1(ΦΦΦ1j)ΨΨΨ1k⟩,

Γijk
2 = ⟨ΦΦΦ1i,L2(ΦΦΦ2j)ΨΨΨ2k⟩, (2)
ηi = ⟨ΦΦΦ1i, fff 1⟩

with L1 and L2 linear operators. The solution of Eqs. 4 correspond to Step 3 in Fig. 1, and can
be extended to form the full aeroelastic system with gravity forces, ηg, aerodynamic forces, ηa,
and gust disturbances, vg. Control states can also be included [25], but they are not necessary
for this work. For a set of reduced frequencies and a given Mach number, the DLM (or a higher
fidelity aerodynamic method) yields the Generalised Aerodynamic Forces (GAFs). The current
implementation uses Roger’s rational function approximation to those GAFs [20], which results
in the follower modal forces:

ηa = Q∞

(
AAA0q0 +

c

2U∞
AAA1q1 +

(
c

2U∞

)2

AAA2q̇1

+AAAg0vg +
c

2U∞
AAAg1v̇g +

(
c

2U∞

)2

AAAg2v̈g +

Np∑
p=1

λλλp

) (3)

where the AAAis are real matrices, c is the reference chord, Q∞ = 1
2
ρ∞U2

∞ is the dynamic pres-
sure, λλλp the aerodynamic states and Np the number of lags. The coupling of the structure and
aerodynamic equations combined with the aerodynamic lags gives the final ODE system:

q̇qq1 = Ω̂ΩΩqqq2 − Γ̂ΓΓ1 ::: (qqq1 ⊗ qqq1)− Γ̂ΓΓ2 ::: (qqq2 ⊗ qqq2) + η̂

q̇qq2 = −ωωω ⊙ qqq1 +ΓΓΓ⊤
2 ::: (qqq2 ⊗ qqq1)

λ̇p = Q∞Ap+2qqq1 +Q∞Ap+2v̇vvg −
2U∞γp

c
λp

(4)

the aerodynamic added-mass effect has been moved to the left-hand side such that A2 =

(III − ρ∞c2

8
AAA2)

−1, and it couples all DoF in qqq1. Thus the natural frequency terms become
Ω̂ΩΩ = A2diag(ωωω) and the nonlinear terms Γ̂ΓΓ = A2Γ. The effect of all external forces, aero, ηa,
gravity, ηg, and others, ηf , are combined in such that η̂ = A2

((
ηa − ρc2

8
AAA2q̇1

)
+ ηg + ηf

)
.

The calculation of nodal position vectors, ra, and rotation matrices, Rab is a postprocessing
step. The rotations are needed, however, within the solution process when gravity, or other dead
forces, are active (forces are naturally given in the material frame of reference and so those
forces need to be brought back to the inertial frame). Quaternions ζ = [ζ0, ζ1, ζ2, ζ3](s, t) =
[ζ0, ζζζx](s, t) can be used to parameterize the rotation, RRRab, such that given the angular velocity,
ωx, which is part of the velocity main variable, x1 = [vx,ωx],

ζ̇ζζ =

[
ζ̇0
ζ̇ζζx

]
=

[
−1

2
ωωω⊤

x ζζζx
1
2
(ζ0ωωωx − ω̃ωωxζζζx)

]
(5)

the quaternions, one per node, would be added to Eqs. 4 and march in time; the rotations can
be extracted at every step as

Rab =ζx ⊗ ζx + ζ20I3 + 2ζ0ζ̃x + (−(ζx · ζx)I3 + ζx ⊗ ζx)
=
(
2ζx ⊗ ζx + (ζ20 − ζx · ζx)I3

)
+ 2ζ0ζ̃x

(6)
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note that the first parenthesis in the second equality of this equation is the symmetric part of the
rotation and the last term the antisymmetric part.
Alternatively, the rotation and position in the inertial reference system can be calculated by
integration of strains along the domain, as in the Frenet-Serret formulas of differential geometry.
Following definition of strains and curvatures, packed in the variable x3 = [γγγ,kkk], we have

RRR′
ab = RRRabk̃kk

rrr′a = RRRab(γγγ + eeex)
(7)

where eeex = [1, 0, 0]. Analytical solutions to Eq. (7) can be obtained when the strain is assumed
constant between nodes and a piecewise constant integration is carried out, as is the case in
the current implementation. If a component in the load-path is discretized in n+1 points, strain
and curvatures are defined in the mid-points of the spatial discretization (n in total). γn and
κn are constant within the segment sn−1 ≤ s ≤ sn, and the position and rotation matrix after
integration are

Rab(s) = Rab(sn−1)HHH0(k, s)

ra(s) = ra(sn−1) +Rab(sn−1)HHH1(k, s) (ex + γn)
(8)

with the operatorsHHH0(k, s) andHHH1(k, s) obtained from integration of the exponential function
as defined in [27].

Note that when position and rotations are recovered from strain integration, there is still one
point that is either clamped or needs to be tracked from integration of its local velocity. In the
next section an optimized implementation of this algorithm is shown in JAX.
Lastly, once the nonlinear solution of the condensed model is computed, the corresponding full
3D state is calculated via a two postprocessing steps: firstly the displacements of the cross-
sectional nodes linked to the reduced model via the interpolation elements are computed using
the positions and rotations of the latter; secondly, Radial Basis Functions (RBFs) kernels are
placed on those cross-sections, thus building an intermediate model that is utilised to extrapo-
late the positions of the remaining nodes in the full model. This paves the way for a broader
multidisciplinary analysis where CFD-based aerodynamic loading could be used for the calcu-
lation of the nonlinear static equilibrium, and also with the transfer of the full deformed state
back to the original FE solver to study other phenomena such as local buckling.

2.2 Computational implementation
One of the main contribution of this work is a new computational implementation that achieves
accelerations of over 2 orders of magnitude with respect to its predecessor2. In addition, a
highly modular, flexible architecture based on software design patterns has been put in place,
which was further described in [28]. Moreover, the resulting nonlinear aeroelastic framework
is suitable for modern hardware architectures and able to compute sensitivities via algorithmic
differentiation (AD), as will be demonstrated herein. The key enabler was moving from standard
Python to a highly vectorised, JAX-based numerical implementation. JAX is a Python library
designed for high-performance numerical computing with focus on machine learning activities
[16]. It combines XLA (accelerated linear algebra) and Autograd, the former being a compiler
that optimises models for different hardware platforms, the latter is an Automatic Differentiation
(AD) tool in Python. Moreover, its extensible system of composable function transformations
provides a set of important features for Computational Science as illustrated in Fig. 2. For

2Both the new implementation and the examples of this paper can be found at https://github.com/
ACea15/FENIAX
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Vectorisation 
vmap

Compilation 
jit

Differentiation 
grad

Parallelisation  
pmap

AUTOGRAD
+
XLA

Figure 2: JAX capabilities for modern scientific computing

instance, the vmap function allows for complex vectorisation operations and the pmap function
for Single-Program Multiple-Data (SPMD) parallelisation. Both forward and reverse mode
automatic differentiation are supported. Finally the just-in-time compilation (jit) relies on the
XLA engine to compile and execute functions on CPUs but also on accelerators such as GPUs
and TPUs, offering a versatile solution for seamlessly connecting the software to various types
of hardware without requiring extra CUDA code, or a Domain Specific Language.
The tensor structure of the main components in the solution process is illustrated in Fig. 3 in the
sequential order they are computed, together with the asymptotic time and space complexities.
The discretization of the problem comprises Nn number of condensed nodes, Nm modes used in
the reduced order model and Nt time steps in the solution (if the problem is static, Nt represents
a ramping load stepping scheme). The intrinsic modes, Φ,Ψ ∈ RNm×6×Nn are computed from
the eigenvalue solution and the coordinates Xa ∈ R3×Nn of the active nodes. The nonlinear
couplings, Γ ∈ RNm×Nm×Nm are calculated next, from which the system in Eq. 4 is assembled
and solved to yield the solution states q ∈ RNt×Ns . Local velocities, internal forces and strain
fields X1,2,3 ∈ RNt×6×Nn are computed as a product of the corresponding intrinsic modes and
states, and their integration leads to the position tensor, ra with similar structure. In some cases,
such as when gravity forces are included, the evolution of the rotational matrix, Rab, needs to
be solved for too.

A simplified version of the intrinsic modes evaluation is given in Algorithm 1 with input the
FE model, the corresponding eigenvalue solution, and a config object that encapsulates input
details such as the matrices required for averaging, Mavg, or computing the differences between
adjacent nodes, Mdiff , which are built from the connectivities in the load-paths.

The various functions in the algorithm make heavy use of JAX vmap function to vectorise the
contraction and expansion operations. For instance, the function moment_force is cast in
Algorithm 2 and connects together two vmap operations. The asymptotic time complexity of
Algorithm 1 is driven by the calculation of the internal moments associated with internal forces
since for each node a sum through the path-loads is carried out. Arguably a O(nlog(n)) or
even O(n) depending on the graph rather than O(n2) could be achieved with standard for-loops
and additional variables to describe the graph since there is repetition in the process; this part,
however, is not performance critical and no further optimisation is deemed required.

The function created by vmap loops the inputs through the axes specified in in_axes, piping
the resulting vector to the function given to vmap as the first argument, and the outputs are
saved across the axes given in out_axes. With the intrinsic modes computed, the algorithm
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Figure 3: Main data components in the sequential solution process together with their associated time and space
complexities

to compute the nonlinear couplings in 2 is shown below:

The new capabilities come at the expense of a higher restriction in the way the code is writ-
ten. Compilation and transformations in JAX only work for functionally pure programs, which
pushes the software to comply with a nonconventional functional paradigm. Some of these
characteristics are pure functions, i.e. functions that have no side effects, input/output stream
management needs to be placed outside the numerical algorithms or immutability of arrays.
These very constraints allow to achieve the capabilities describe above via the many abstrac-
tions implemented internally in the library. An example of this restrictions is the effectively
impossibility of jit-compile conventional for-loops (they are unrolled in the compilation there-
fore any input to the loop should always be small). The integration of strains to obtain position
and rotation fields as defined in Eq. 8 is a good example of a recursive operation that requires
more than vectorised operations to solve, as opposed to the previous algorithms. The function
jax.lax.scan, which can be differentiated both in forward and backward modes, provides
a fast solution for this operation where a previous computation in the loop has to be carried
forward (in our case every new computed position and rotation matrix are passed to the next
calculation). A greatly simplified version is shown in Algorithm 4 that has as inputs the position
and rotation matrix of the first node (given as clamped or calculated via quaternion integration),
the initial position of the nodes and the strain field, X3. The scan function iterates through the
first axis of the input tensor xs and also takes the initial carry state in the variable init. Such an
abstraction usually imposes various concatenation and deconcatenation operations of the data
in the process. In the real algorithm an additional for-loop wraps this function to account for
the various components in the aircraft (wings, fuselage, tail, etc.) that do not have contiguous
nodes to perform the integration. This for-loop is unrolled in the jit compilation but this is
not problematic since a very small number of components made up the whole aircraft.
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Algorithm 1: JAX-based computation of intrinsic modal shapes
input : FEM and eigenvalue solution: Xa,Ka,Ma,Φ0,ω, and config object
output: Intrinsic modal shapes
begin

import jax.numpy as jnp

Xm ← jnp.matmul(X⊤
a , Mavg) ▷ Get mid-node coordinates

Xd ← jnp.matmul(Xa, Mdiff) ▷ vector difference between
contigous nodes

∆s = jnp.linalg.norm(Xd, axis=0)
Φ1 ← Φ0

Φ1m ← jnp.tensordot(Φ1, Mavg, axes=(2, 0)) ▷ Velocity
modes at mid-node locations
ψ1v ← jnp.matmul(Ma, Φ0) ▷ Momenta modes
ψ1 ← reshape_modes(ψ1v, Nmodes, Nnodes) ▷ Nm×6×Nn
Φ2fv ← jnp.matmul(Ka, Φ0) ▷ Internal forces and moments
associated to modal shapes (Nm×6×Nn)

Φ2fv ← reshape_modes(Φ2fv, Nmodes, Nnodes)
Φ2f ← jnp.tensordot(Φ2fv, Mpaths, axes=(2, 0)) ▷ Sum of
internal forces and moments (Nm×6×Nn)
X3 ← coordinates_difftensor(X, Xm) ▷ mid-node vector to
every other node in the reduced model (3×Nn×Nn)
X3tilde ← -axis_tilde(X3) ▷ Cross-product in matrix form
(6×6×Nn×Nn)
ϕ2mn ← moment_force(ϕ2v, X3tilde) ▷ Moment distribution due
to nodal forces (Nm×6×Nn×Nn)
ϕ2m ← moment_contraction(ϕ2mn, Mpaths) ▷ Sum of internal
moments due to forces (Nm×6×Nn)

Φ2 ← Φ2f + ϕ2m ▷ Total value internal forces and moments
Eϕ ← ephi(E, ϕ1m) ▷ E times
ϕ1d ← jnp.tensordot(Φ1, Mdiff, axes=(2, 0)) ▷ Velocity
mode variation across nodes (Nm×6×Nn)
ψ2 ← - ϕ1d/∆s + Eϕ

Algorithm 2: Internal moments due to internal forces
Function moment_force(ϕ2v,X3tilde):

f1 ←− vmap(lambda u, v: jnp.tensordot(u, v, axes=(1,1),
in_axes=(None, 2), out_axes=2)) ;
f2 ←− vmap(f1, in_axes=(2, 3), out_axes=3) ;
f3 ←− f2(ϕ2v, X3tilde) ▷ Nm×6×Nn×Nn ;

return f3;

3 RESULTS

Three different cases are presented to meet the following requirements: a) validate the current
structural and aeroelastic implementation against results from theory and MSC Nastran; b)
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Algorithm 3: Nonlinear Couplings implementation in JAX
input : Intrinsic modal shapes: Φ1, Φ2, Ψ1, Ψ2; nodal differences, ∆s

output: Intrinsic nonlinear modal couplings Γ1 and Γ2

begin
f1 ←− vmap(lambda u, v: jnp.tensordot(L1(u), v, axes=(1,
1), in_axes=(1, 2), out_axes=2)) ▷ iterate through nodes
f2 ←− vmap(f1, in_axes=(0, None), out_axes=0)
L1 ←− f2(Φ1, ψ1) ▷ Nm×6×Nm×Nm
Γ1 ←− jnp.einsum(isn,jskn→ijk, Φ1, L1)

f3 ←− vmap(lambda u, v: jnp.tensordot(L2(u), v, axes=(1,
1), in_axes=(1, 2), out_axes=2)) ▷ iterate nodes
f4 ←− vmap(f3, in_axes=(0, None), out_axes=0)
L2 ←− f4(Φ2, ψ2) ▷ Nm×6×Nm×Nm
Γ2 ←− jnp.einsum(isn,jskn,n→ijk, Φm1, L2, ∆s)

Algorithm 4: Strain and curvature integration via JAX scan
input : ra(0), Rab(0), Xa, X3
output: positional, ra, and rotation, Rab, tensor fields
begin

Function integrate_strains(carry, x):
f_Rab ←− vmap(lambda Rab_i, H0_i: Rab_i H0_i)
f_ra ←− vmap(lambda ra_i, Rab_i, H1_i, strain_i: ra_i
+ Rab_i H1_i ([1,0,0] +

strain_i)
)

strain, kappa, ds ←− deconcatenate(x)
Rab_carry, ra_carry ←− deconcatenate(carry)
Rab ←− f_Rab(Rab_carry, H0(kappa, ds))
ra ←− f_ra(ra_carry, Rab_carry, H1(kappa, ds), strain)

y ←− concatenate([Rab, ra])
carry ←− y

return carry, y

ds ←− jnp.linalg.norm(Xa[1:]-Xa[:-1])
init ←− concatenate([Rab0, ra0])
xs ←− concatenate([X3, ds])
carry, y ←− jax.lax.scan(integrate_strains, init, xs)
Rab, ra ←− deconcatenate(y)

show the computational advantage of deploying the code on GPUs; c) showcase and verify the
differentiable capabilities of the code. Starting with a canonical case of a free-flying structure,
moving to a representative aircraft without fuselage or engines, and ending with a fully fledged
aircraft model built by Airbus for research purposes.
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3.1 Canonical case: unsupported dynamics of very flexible structure

This example exemplifies the ability of our solvers to turn a generic linear free-free finite-
element model into a fully nonlinear solution that accounts for the rigid-body dynamics coupled
with large elastic deformations. It has already been presented in [13], though the novelties
introduced herein are the new optimised implementation that can run on accelerators and the
approach to recover the full 3D state from the reduced model. The beam version of this structure
was first studied by Simo and Vu-Quoc [29] and has served to verify several implementations of
nonlinear beam dynamics with rigid body motions [30]. A straight structure of constant square
cross section (side = 3, wall thickness = 3/10) is built consisting of 784 shell elements linked to
50 spanwise nodes via interpolation elements as depicted in Fig. 4 together with the material
properties and two types of loading: firstly, a dead-force in the x-direction and dead-moment
in the z-direction that yield a planar motion in the x-y plane; and secondly, the addition of a
moment in the y-direction which produces a three dimensional motion.
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Figure 4: FFS geometry, material properties and load cases

The free-flying evolution of the 3D model is shown in Fig. 5 for the planar motion and Fig. 6
for the loads giving rise to the full 3D deformations. It worth remarking the latter motion also
exhibits large torsional deformations which are combined with the also large bending displace-
ments and rigid-body modes.

4 = 0 4 = 2

4 = 4

4 = 6

4 = 8

4 = 10

Figure 5: Free-flying structure in the 2D plane

Because the applied load is a dead force we can track the position of the center-of-gravity (CG)
analytically as a verification exercise. Furthermore, the highly nonlinear nature of this problem
makes it a good example to showcase the strength of accelerators for large problems and to gain
insights as to when it might be better to deploy the codes in standard CPUs instead. Therefore
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2 = 0 2 = 3

2 = 4

2 = 5

2 = 6.5

2 = 10
2 = 8

Figure 6: Free-flying structure in the 3D plane

we perform a sweep with the number of modes kept in the solution from 50 to 300, which
determines the size of the system to be solved. The full modal basis is employed at 300 modes
and due to the nonlinear cubic term this entails operations of the order of O(107) at every time
step of the solution, making it a good case for accelerators. The increase in the number of modes
also restricts the incremental time step used in the explicit solver to preserve stability. Table 1
shows both computational time and CG error for the planar case in two scenarios: linking the
integration time-step to the largest eigenvalue λ in the solution dt = λ−0.5; and fixing it to
dt = 10−3. The error metric is defined as the L-2 norm divided by the time steps. Computations
have been carried out in AMD EPYC 7742 CPU processors and Nvidia GPU RTX 6000 at the
Imperial College cluster.

Table 1: FFB computational times in seconds and CG error

Nmodes CPU (time/err) GPU (time/err) CPU (time/err) GPU (time/err)
50 7/1.3e-1 9.9/1.3e-1 42/2.1e-2 58/2.1e-2

100 9.3/5.7e-2 10.4/5.7e-2 184/1.2e-2 65/1.2e-2
150 34/2.2e-2 14/2.2e-2 287/5.6e-3 67/5.6e-3
200 79/2e-3 22/2e-3 421/7.2e-4 76/7.2e-4
250 474/5.3e-4 38/5.3e-4 893/2.7e-4 94/2.7e-4
300 1869/2.54e-5 111/2.54e-5 1869/2.54e-5 111/2.54e-5

Fig. 7 and 8 illustrate the times and error results in the table for the second case with fixed
time step. The gain in performance from the GPU is is more impressive the larger the system
to solve, and for the full modal basis the CPU takes more than 31 minutes versus the less than
2 minutes in the GPU. Computational times in the 3D problem are similar and the error on the
CG position is slightly higher: for the 300 modes case, the error is 6.9e−5 versus the 2.54e−5
of the planar case.

3.2 Representative aeroplane model: structural verification

A representative FE model of a full aircraft without engines is used to demonstrate a versatile
solution that accounts for geometric nonlinearities in a very efficient manner and only needs
modal shapes and linear FE matrices from a generic FE solver as inputs. Another of the goals
set for this work was to achieve an equally flexible strategy in the automatic calculation of
derivatives across the various solvers in the code. The structural static and dynamic responses
and their sensitivities with respect to input parameters are verified against MSC Nastran and
finite differences respectively.
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Figure 7: Performance CPU vs GPU comparison in free-flying structure (fixed time step)

Figure 8: Error metric CG position for planar case

13



IFASD-2024-82

The aircraft’s main wing is composed of wing surfaces, rear and front spars, wing box and
ribs with composite materials employed in the construction. Flexible tail and rear stabiliser
are rigidly attached to the wing, as shown in Fig. 9. This aircraft was first shown in [25] and
is a good test case as it is not very complex yet representative of aircraft FE models and it is
available open source.

Figure 9: Representative aeroplane structural FE model

A Guyan reduction is employed in the reduction process and Fig. 10 illustrates the accuracy
of the condensed model by comparing the 3D modal shapes. No differences can be appreci-
ated for the first few modes (the lowest frequency corresponding to a bending mode agrees in
both models at ω1 = 4.995 rads/s) so we show higher frequency modes: a high order bend-
ing mode (ω10 = 60.887/60.896 rads/s in full versus reduced models) and a torsional mode
(ω20 = 107.967/107.969 rads/s). This very good preservation of the full model leads to an
excellent accuracy in the static and dynamic results presented below. It is important to remark
this aircraft model is very conventional without high-aspect ratio wings. Therefore while this
modelling strategy would not be suitable for every engineering structure, as long as there is a
dominant dimension and deformations in the other two remain small (as is the case in high level
descriptions of aircraft, bridges or wind turbines) it has been found to produce very good ap-
proximations when compared with full dimensional solutions. The computations in this section
were carried out on a standard CPU with a i7-6700 processor.

(a) Torsional mode

(b) Bending mode

Figure 10: Full VS reduced order models modal shape
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3.2.1 Geometrically nonlinear static response

The static equilibrium of the aircraft under prescribed loads is first studied with follower loads
normal to the wing applied at the tip of each wing. The response for an increasing load stepping
of 200, 300, 400, 480 and 530 KN is computed. Nonlinear static simulations on the original
full model (before condensation) are also carried out in MSC Nastran and are included. The
interpolation elements in Nastran are used to output the displacements at the condensation nodes
for direct comparison with the NMROM results. Geometric nonlinearities are better illustrated
by representing a sectional view of the wing as in Fig. 11, where deformations in the z-direction
versus the metric S =

√
x2 + y2 are shown. MSC Nastran linear solutions (Solution 101)

are also included to appreciate more clearly the shortening and follower force effects in the
nonlinear computations.

Figure 11: Static geometrically-nonlinear effects on the aircraft main wing

The tolerance in the Newton solver was set to 10−6 in all cases. A convergence analysis with
the number of modes in the solution is presented in Fig. 12. 5, 15, 30, 50, 100 modes are
used to build the corresponding NMROMs. The error metric is defined as the L-2 norm di-
vided by the total number of nodes (only the condenses ones in this case): ϵ = ||uNMROM −
uNASTRAN ||/NumNodes. It can be seen the solution with 50 modes already achieves a very
good solution even for the largest load which produces a 25.6% tip deformation of the wing
semi-span, b = 28.8 m. The displacement difference with the full FE solution at the tip in this
case is less than 0.2%.

Figure 12: Modal convergence static solution of representative aircraft

The 3D structural response has been reconstructed using the approach in Fig. 1. The nodes
connected by the interpolation elements (RBE3s) to the ASET solution are reconstructed first

15



IFASD-2024-82

and subsequently a model with RBFs kernels is used to extrapolate to the rest of the nodes in the
full FE. A very good agreement is found against the geometrically-nonlinear Nastran solution
(SOL 400). Fig. 14 shows the overlap in the Nastran solution (in red) and the NMROM (in
blue) for the 530 KN loading.

Figure 13: Static 3D solution for a solution with 50 modes and 530 KN loading (Full NASTRAN solution in red
versus the NMROM in blue).

Figure 14: Static 3D solution for a solution with 50 modes and 530 KN loading (Full NASTRAN solution in red
versus the NMROM in blue).

The error metric of this 3D solution is also assessed in Fig. 15, for the solution with 50 modes.
The discrepancy metric is of the same order than the previously shown at the reduction points.
This conveys an important point, that there is no significant accuracy loss in the process of
reconstructing the 3D solution.

Next we compare the computational times for the various solutions presented in this section in
Table 2. Computations of the six load steps in Fig. 11 are included in the assessment. A near
50 times speed-up is achieved with our solvers compared to Nastran nonlinear solution, which
is one of the main strengths of the proposed method. As expected, the linear static solution in
Nastran is the fastest of the results, given it only entails solving a linear, very sparse system of
equations.

Table 2: Computational times static solution

NMROM (modes: 5, 15, 30, 50, 100) NASTRAN 400 NASTRAN 101
Time [s] 6.7, 6.63, 6.79, 7.06, 9.55 345 1.02
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Figure 15: 3D discrepancy comparison between full FE and NMROM solutions

3.2.2 Differentiation of static response

The AD for the static solvers is first verified as follows: the load stepping shown above be-
comes a pseudo-time interpolation load such that a variable τ controls the amount of load-
ing and we look at the variation of the wing-tip displacement as a function of this τ . If
f(τ = [1, 2, 3, 4, 5, 6]) = [200, 250, 300, 400, 480, 530] KN, with a linear interpolation between
points, the derivative of the z-component of the tip of the wing displacements is computed at
τ = 1.5, 3.5, 5.5, as show in Fig. 16 with red points. Table 3 shows a very good agreement

3

Figure 16: Static tip displacement with pseudo-time stepping load

against finite-differences (FD) with an epsilon of 10−3. Note how the derivative at each of the
marked points corresponds approximately to the slope in the graph at those very points. And the
biggest slope occurs precisely in between tau of 4 and 5 when the prescribed loading undergoes
the biggest change from 300 to 400 KN.

Table 3: AD verification in static problem

τ f(τ) [m] f ′(τ) (AD) f ′(τ) (FD)
1.5 2.81 0.700 0.700
3.5 4.527 1.344 1.344
5.5 6.538 0.623 0.623
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3.2.3 Large-amplitude nonlinear dynamics

This test case demonstrates the accuracy of the NMROM approach for dynamic geometrically-
nonlinear calculations and was first introduced in [14]. The right wing of Fig. 9 is considered
and dynamic nonlinear simulations are carried out and compared to MSC Nastran linear and
nonlinear analysis (SOL 109 and 400, respectively) on the full FE model. A force is applied
at the wing tip with a triangular loading profile, followed by a sudden release of the applied
force to heavily excite the wing. The force profile is given in Fig. 17. The applied force is then
ftip = α× fffmaxf(0.05, 4) = [−2× 105, 0., 6× 105]f(0.05, 4) where α has been set to 1.

×	# $, & 	×	' ; 	 #($, &) + $ + 1 − $
& /	 if	/	 ≤ &	

0	 otherwise

Figure 17: Ramping load profile for dynamic simulation of representative wing

The dynamic response is presented in Fig. 18, where results have been normalised with the
wing semi-span (l = 28.8 m.). As expected, linear analysis over-predicts vertical displacements
and does not capture displacements in the x and y directions. NMROMs were built with 5,
15, 30, 50 and 100 modes. A Runge-Kutta four is used to march the equation in time with
time steps corresponding to the inverse of the largest eigenvalue in the NMROM, i.e. dt =
[27.34, 6.62, 2.49, 1.27, 0.575]× 10−3 s.

Figure 18: Span-normalised wing-tip displacements

As in the previous example, the 3D shape of the model is retrieved and compared against the full
nonlinear dynamic solution as illustrated in Fig. 19 (Nastran solution in yellow and NMROM
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with 50 modes in blue). The times at positive and negative peaks are displayed. Even though a
wing of such characteristics would never undergo this level of deformations, these results further
support the viability of the methodology to solve highly geometrically nonlinear dynamics, on
complex models and with minimal computational effort.

Figure 19: Snapshots of wing 3D dynamic response comparing NMROM (blue) and NLFEM3D (yellow)

Next we look at the differences of the dynamic simulations with the same metric employed
above that now evolves in time. Integrator errors accumulate and discrepancies grow with time
but still remain small. In fact the differences between Nastran and our dynamic solvers are
comparable to the static example with the highest load (around the 5× 10−5 mark), both cases
inducing over 25 percent deformations of the wing semi-span.

Figure 20: L-2 norm per node differences between Nastran full FE solution and NMROM with 50 modes

An impressive reduction of computational time is achieved by our solvers as highlighted in
Table 4. The nonlinear response of the full model in Nastran took 1 hour 22 minutes, which is
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over two orders of magnitude slower than the NMROM with 50 modes resolution, which proved
very accurate. The significant increase in computational effort when moving from a solution
with 50 modes to 100 modes is due to various factors: vectorised operations are limited and
the quadratic nonlinearities ultimately lead to O(N3

m) algorithms; the time-step needs to be
decreased for the Runge-Kutta integration to remain stable; the additional overheads that come
with saving and moving larger tensors, from the modal shapes, the cubic modal couplings, to
the system states (note times shown account for all the steps from start to end of the simulation,
including saving all the data for postprocessing).

Table 4: Computational times representative wing dynamic solution

NMROM (modes: 5, 15, 30, 50, 100) NASTRAN 400 NASTRAN 109
Time [s] 2.79, 2.92, 4.85, 12.14, 155.3 4920 33.6

3.2.4 Differentiation of dynamic response

We move now to one of the main highlights of this work, i.e. the ability to compute gradi-
ents via automatic differentiation in geometrically nonlinear dynamic problems. The maximum
root loads occurring in a wing subjected to dynamic loads is a good test case as it can be a
critical metric in sizing the aircraft wings, especially high-aspect ratio ones. Thus we look at
the variation of the maximum z-component of the vertical internal forces as a function of α in
the loading profile of Fig. 17. Effectively, the slope of the loading increases with α. Table 5
shows the derivatives computed using FD with an epsilon of 10−4 and AD in reverse-mode on
the example with 50 modes resolution. In this case the FD needed tweaking of epsilon while
application of AD was straight forward with no need for checkpoints and took around three
times the speed of a single calculation.

Table 5: Automatic differentiation in dynamic problem

α f(α) [KN/m] f ′(α) (AD) f ′(α) (FD)
0.5 1706.7 3587.71 3587.77
1.0 3459.9 3735.26 3735.11
1.5 5398.7 3957.81 3958.31

The increase in the internal loading, f(α), above the linear correlation with α is a consequence
of very high frequency dynamics being excited after the ramping load is suddenly released.
In fact in the z-component of the wing-tip evolution in Fig. 21 we can see a maximum tip
displacement of 4.36m, 7.91m and 10.83m, for α = 0.5, 1, 1.5 i.e smaller than the proportional
linear response. On the contrary, in Fig. 22 the evolution of the root loads show a response with
much higher frequencies and the maximum occurs in the free dynamical response of the wing,
which is higher as we increase α.
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Figure 21: Span-normalised wing-tip z-displacement for the various load profiles

Figure 22: Wing root loads, z-component
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3.3 Industrial-level case: full-aircraft gust response

The studies presented in this section are based on a reference configuration developed to in-
dustry standards known as XRF1, which is representative of a long-range wide-body transport
airplane. The version with a wing-tip extension in [15] is employed to verify a gust response
against NASTRAN linear solution. Fig. 23 shows the reference FE model with three modal
shapes. The FE model contains a total of around 177400 nodes, which are condensed into 176
active nodes along the reference load axes through interpolation elements. A Guyan or static
condensation approach is used for the reduction. The aerodynamic model contains ∼ 1, 500
aerodynamic panels. The simulations are carried out with a modal resolution of 70 modes and
a time step in the Runge-Kutta solver of 0.005.

Wing torsionWing bending

Fuselage lateral bending

Figure 23: Modified XRF1 reference configuration with characteristic modal shapes

To verify the accuracy of the reduction method we show now a comparison of some of the most
relevant natural frequencies in Table 6 (normalized with the lowest frequency). It is common
practice in this industrial aeroelastic models to represent the mass model as lumped masses
along the load axis (provided by the mass department which thoroughly tracks the multiple
components and combines them into sectional lumped points with inertia). As explained above,
this makes the Guyan reduction match an exact condensation and explains the accuracy of the
results.

While the previous results where purely structural, now the dynamic response to an atmospheric
disturbance or gust is computed. This aeroelastic analysis is a requirement for certification pur-
poses and it is one of the main drivers in sizing the wings of high aspect ratio wings. Further-
more, the previous examples showed the advantage of our approach in terms of computational
speed, but other than that results could be obtained with commercial software. The geometri-
cally nonlinear aeroelastic response, however, it is not currently available in commercial solu-
tions that are bounded to linear analysis in the frequency domain. Other research codes feature
those additional physics, yet are limited to simple models. Thus the added value in the proposed
approach comes at the intersection between the nonlinear physics arising from large integrated
displacements, computational efficiency and the ability to enhance the models already built for
industrial use.
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Table 6: Normalised natural frequencies of the modified XRF1 clamped model

Mode Type ωfullωfullωfull ωcondensationωcondensationωcondensation Error (%)
First out-of-plane wing bending (1) 1.0 1.0 0.0001
First out-of-plane wing bending (2) 1.04948 1.04949 0.0004

First fuselage bending (3) 1.4285 1.4288 0.025
Fuselage lateral bending + wing out-of-plane bending (4) 1.5093 1.5099 0.038

Wing and pylon lateral roll bending (5) 2.1449 2.1449 0.0007
...

First in-plane wing bending (13) 3.156 3.155 0.03
Second in-plane wing bending (14) 3.25655 3.2566 0.0016

...
First wing torsion (28) 7.675 7.676 0.01

Second wing torsion (29) 7.7368 7.7366 0.002

3.3.1 Linear response for low intensity gust

A verification exercise is introduced first by applying two 1-cos gust shapes at a very low in-
tensity, thus producing small deformations and a linear response. The flow Mach number is
0.81. A first gust is applied that we name as G1 of length 67 m and peak velocity 0.141 m/s,
and a second gust, G2, of 165 m and peak velocity of 0.164 m/s. Fig. 24 shows the normalised
wing-tip response with our NMROM that accurately reproduces the Nastran 146 solution based
on the full FE model.

Figure 24: Wing-tip response to low intensity gust

3.3.2 Nonlinear response for high intensity gust

Next we increase the gust intensity by a factor of 200 in order to show the effects of geometric
nonlinearities that are only captured by the nonlinear solver. As seen in Fig. 25, there are major
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differences in the x and y components of the response due to follower and shortening effects,
and a slight reduction in the z-component. These are well known geometrically nonlinear effects
that are added to the analysis with no significant overhead.

Figure 25: Wing-tip response to high intensity gust

Snapshots of the 3D response are reconstructed for the G1 gust using the method verified above
at the time points where tip displacement are maximum and minimum, i.e. 0.54 and 0.84
seconds. The front and side views together with the aircraft reference configuration are shown
in Fig. 26.

In terms of simulation times, the nonlinear solution with 70 modes has taken around 17 sec-
onds, while the Nastran solution took around 81 seconds. These 81 seconds do not account for
the whole simulation time because that would include the time to sample the DLM aerodynam-
ics which are input into the NMROM as a post-processing step. Instead, the increase in time
when adding an extra gust subcase to an already existing analysis is reported, i.e. the difference
between one simulation that only computes one gust response and another with two. It is re-
markable that the explicit solvers are faster on the nonlinear solution than the linear solution by
a commercial software. Besides our highly efficient implementation, the main reason for this
might be the Nastran solution involves first a frequency domain analysis and then an inverse
Fourier transform to obtain the time-domain results.

3.3.3 Aeroelastic AD verification

Similarly to the examples above, we now validate the AD implementation for the nonlinear
aeroelastic response to the gust G1. The sensitivity of the six components of the wing root
loads are computed with respect to the gust parameters wg and Lg, and the flow parameter ρinf .
The results are presented in 7. A very good agreement with the finite differences is found with
ϵ = 10−4.
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t = 0.54 s

t = 0.84 s

t = 0 s

Figure 26: Snapshots of XRF1 Nonlinear gust response

Table 7: AD verification for the response to gust

wg Lg ρinf

f1 (AD) 12.180 -0.690 477.208
f1 (FD) 12.180 -0.690 477.198
f2(AD) 19.088 -1.015 712.485
f2(FD) 19.088 -1.015 712.514
f3(AD) 65.574 18.764 1464.910
f3(FD) 65.574 18.764 1464.909
m1(AD) 126.648 6.961 2883.370
m1(FD) 126.648 6.961 2883.371
m2(AD) 330.759 84.098 5931.723
m2(FD) 330.759 84.099 5930.027
m3 (AD) 252.128 24.212 7179.735
m3 (FD) 252.128 24.211 7180.023

4 CONCLUSIONS

This paper has presented a modal-based description that incorporates geometrically nonlinear
effects due to structural slenderness onto generic FE models initially built for linear analysis.
This nonlinear aeroelastic framework accounts for follower aerodynamic forces, geometric stiff-
ening and the coupling between elastic and rigid-body DoF. While the underlying theory had
already been introduced, a new implementation was put in-place for both high-performance and
software modularity, with the numerical library JAX as the engine powering the computations.
This has allowed time-domain computations in near real-time with two orders of magnitude
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speed-ups compared to conventional implementations. Three major highlights about the new
implementation have been introduced in this work: 1) the propagation of derivatives in the so-
lution process via the AD tool embedded in JAX with structural and aeroelastic examples that
include static and dynamic responses; 2) show how the program running the computations can
be deployed on standard CPUs but also on modern hardware architectures such as GPUs, and
demonstration of performance gains with accelerations of over 30 times with respect to the CPU
for large problems; 3) the ability to recover the full 3D state from the reduced-order-model was
verified against MSC Nastran full nonlinear solution. This completes a differentiated aeroelas-
tic framework that can run very efficiently in modern hardware architectures while enhancing
traditional FE models that can be very complex by construction but lack the physics of geomet-
rically nonlinear effects.
A relevant amount of test cases accompany the software, of which a subset has been presented
herein to illustrate the aforementioned features in the code. They have have been arranged in
order of model complexity. Firstly, a very flexible, unsupported shell structure undergoing cou-
pled rigid and flexible motions in vacuum. Secondly, a representative model of an aircraft with-
out engines and fuselage is employed to verify the 3D structural static and dynamic nonlinear
response against MSC Nastran and their corresponding sensitivities against finite-differences.
Lastly, the dynamic aeroelastic response to a gust on a full aircraft model built to industry stan-
dards is shown together with the derivatives with respect to flow and gust parameters.
As for future work, a strategy to compute manoeuvre and dynamic load envelopes that can also
be differentiated via AD will be built. This will be enabled using parallelisation of distributed
accelerators such that the thousands of loads cases are computed fast. Increasing the fidelity
in the load calculations to consider CFD-based aerodynamics would be an additional necessary
step in order to achieve a more accurate nonlinear aeroelastic methodology.
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