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Abstract: The aviation industry is coming under increasing pressure from governments, regu-
latory organizations and the general public to reduce emissions. To address this, the industry has
come together and pledged to cut net carbon emissions to zero by 2050. To help meet this goal,
EMBRAER is exploring a wide range of bold but viable aircraft designs in the Energia concepts,
evaluating a range of sustainable concepts to carry up to 50 passengers, considering a number
of energy sources, propulsion architectures and airframe layouts. In addition, the company
is active member of FutPrint50 Project together with an international consortium of universi-
ties, SMEs and organizations to accelerate the technologies needed to deliver a hybrid-electric
aircraft that could enter service in 2035-40. From aeroelastic standpoint, the Green Aviation
will impose additional challenges in design, development and certification, mainly from lighter
structures in unusual configurations, with multiple engines and more electrification. Conse-
quently, it is important the evolution of aeroelastic industrial process in both prediction and
testing. The present paper is focused on an innovative approach to Flight Flutter Testing modal
identification by using Nature Inspired Algorithms to solve the nonlinear identification problem
without using gradients. The performance of this innovative approach is evaluated based on the-
oretical benchmarks and real Flight Flutter Testing data. The results encourage the future use of
more representative, adaptive or complex mathematical models during identification process.

1 INTRODUCTION

At the 77th IATA Annual General Meeting in Boston, USA, on 4 October 2021, a resolution
was passed by IATA member airlines committing them to achieving net-zero carbon emissions
from their operations by 2050. This pledge brings air transport in line with the objectives of
the Paris Agreement to limit global warming to well below 2°C. To succeed, it will require
the coordinated efforts of the entire industry (airlines, airports, air navigation service providers,
manufacturers) and significant government support. It will require a combination of maximum
elimination of emissions at the source, offsetting and carbon capture technologies [1].

Propulsion technology and structural evolutions are the key lever to reduce the emissions, rep-
resenting 78% of IATA’s strategy towards net zero CO2 emissions. It include wider use of
sustainable alternative fuels (SAF, electricity and hydrogen), unusual aircraft configurations,
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ultra-efficient aerodynamic and more electrified design. However, regardless of the key lever
or innovation used, the final aircraft should assure the equivalent level of safety of the actual
aviation industry or higher.

To help meet this goal, EMBRAER is exploring a wide range of bold but viable aircraft designs
in the Energia concepts [2], as shown in Figure 1. The Energia project is evaluating a range
of sustainable concepts to carry up to 50 passengers, considering a number of energy sources,
propulsion architectures and airframe layouts. In addition, the company is active member of
FutPrint50 Project [3] together with an international consortium of universities, SMEs and or-
ganizations to accelerate the technologies needed to deliver a hybrid-electric aircraft that could
enter service in 2035-40. All this to achieve the industry-wide goal of net carbon zero by 2050.

Figure 1: Embraer Energia Concepts.

From aeroelastic standpoint, the Green Aviation will potentially impose additional challenges in
design, development and certification of these new aircrafts. Lighter structures in unusual con-
figurations, with multiple engines and more electrification in terms of flight controls exemplify
these potential future challenges.

Consequently, it is important the evolution of aeroelastic industrial process in both prediction
and testing. The present paper is focused on an innovative approach to Flight Flutter Testing,
specifically on data reduction process for modal identification. In addition, operational effi-
ciency is a topic with paramont importance.

Flight Flutter Testing represents the biggest effort in experimental aeroelasticity and it is manda-
tory for the certification of a new aircraft. Modal parameters identification represents a critical
task in demonstrating that the aircraft is free from aeroelastic instability within its flight domain.

There are different methodologies currently used for modal identification in both frequency and
time domains, with positive and negative aspects in both cases. Frequency domain methods
typically try to fit a specific mathematical model to the measured transfer function by adjusting
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the model parameters, which requires the solution of a nonlinear problem.

Some linearization schemes were proposed in the literature to promote a first approximation
to this nonlinear problem, such as multiplying the equation error by the denominator of the
transfer function [4] or using the unknown denominator as a weighting function in an iterative
scheme [5]. The linearization approach simplifies both mathematically and computationally the
problem, but under the penalty of not minimizing the true error function and overemphasizing
high frequency content, just to cite a few issues.

On the other hand, to classically solve the nonlinear minimization problem requires an initial
estimate of the unknown transfer function parameters, as well as the first-order derivative infor-
mation, which in turn may represent a hard or even unfeasible numerical task, specially when
more complex mathematical model are adopted.

Conversely, Nature Inspired Algorithms (NIAs) do not require the derivative information, paving
the way for the use of more complex or adaptive mathematical models in frequency domain,
supplemented with more robustness to local minima. These algorithms are smart in the path to
the optimum solution, with good numerical properties in general.

The present paper applies dissimilar NIAs - including Cuckoo Search, Differential Evolution,
Whale, Grey Wolf, and Particle Swarm - to solve the nonlinear problem based on classical
mathematical model in order to identify the modal parameters. The main goal is to verify the
feasibility of the NIAs to solve the nonlinear problem.

The outline of the paper is as follows. Initially, the mathematical foundation of the identification
problem is established. Next the Nature Inspired Algorithms are introduced and some of them
selected to be applied to identification problem. Then the performance of the selected NIAs are
evaluated based on theoretical benchmarks and real Flight Flutter Testing data.

2 MATHEMATICAL MODELING TO FLIGHT FLUTTER TESTING
One of the important tasks in Flight Flutter Testing and subsequent data analysis is to reach an
adequate aircraft response level for all vibration modes of interest. This can be satisfied by using
appropriate onboard excitation devices with sufficient control on both magnitude and frequency
bandwidth. Also, a robust flight test measurement array is fundamental for the acquisition of
artificial excitation and subsequent vibratory response.

Industrial test experience indicates that data obtained generally contains considerable response
level due to atmospheric operation, mainly promoted by turbulence and shock effects. Transient
components are also present in the response due to aircraft’s attitude changes, gust and shock
waves, specially during dives and operation at high Mach number. Small response components
are also promoted due to some systems operation, such as propulsion and hydraulics. The source
of all those excitations are considered operational and they cannot be normally measured.

Figure 2A exemplifies a scenario where the vibratory response is generated fundamentally from
the artificial excitation only, while Figure 2B presents a response due to both unmeasured ex-
citation sources and measured artificial excitation. These different scenarios were observed
during the same Flight Flutter campaign, but at different moments.

Beyond the excitation aspects, another relevant point to be observed in mathematical modeling
are the assumptions about the characteristics of the aeroelastic system itself, specifically about
linearity, temporal variance and initial conditions.
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Figure 2: Different raw response scenarios observed during the same real Flight Flutter Test campaign: (A) Vi-
bratory response is generated fundamentally from the artificial excitation and (B) Vibratory response
generated by additional unmeasured excitation sources, in addition to the artificial excitation.

Linearity means that the relationship between the excitation x(t) and the response y(t), both
being regarded as functions, is a linear mapping: If a is a constant then the system response to
ax(t) is ay(t); if ∆x(t) is a different excitation with system response ∆y(t) then the response
of the system to x(t) + ∆x(t) is y(t) + ∆y(t). This applies for all choices of a, x(t), ∆x(t). In
summary, the natural dynamic properties are unique and they do not change in function of the
response state.

Time invariance means that whether we apply an excitation to the system now or T seconds
from now, the response will be identical except for a time delay of T seconds. That is, if the
response due to excitation x(t) is y(t), then the response due to excitation x(t− T ) is y(t− T ).
Hence, the system is time invariant because the response does not depend on the particular time
the excitation is applied.

The initial conditions define the response state at starting time. Therefore, null initial condition
means that the system at starting time is at rest, with all response states equal to zero.

Considering both the excitation aspects and the characteristics of the aeroelastic system, the
mathematical modeling may be wondering in four different complexity levels:

• Low Complexity: it assumes strong hypothesis about both the aeroelastic system and
excitation. The system is assumed as linear, time-invariant with null initial conditions
and all response is generated by measured excitations.

• Medium Complexity: it assumes strong hypothesis only on the aeroelastic system. The
system is assumed as linear, time-invariant with null initial conditions and the response is
generated by measured and unmeasured excitations.

• High Complexity: it does not assume hypothesis about the aeroelastic system, only on
the excitation. It assumed that the response is generated by measured excitations only.

• Extreme Complexity: it does not assume any hypothesis about the aeroelastic system
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neither the excitation.

Beyond excitation aspects and the characteristics of the aeroelastic system, three topics are
fundamental in terms of mathematical modeling: (i) the model domain and; (ii) type of input.
and; (iii) electronics noise.

• Model Domain: It establishes the domain in which the mathematical model is defined,
typically time-domain, frequency domain or time-frequency domain.

• Type of Input: It establishes the type of input data used, typically time-histories, cor-
relations, Power Spectral Densities (PSDs), Positive-Spectrum or Frequency Response
Functions (FRFs).

• Electronics Noise: It establishes the presence of noise from the electronics of the mea-
surement array in both excitation and response data.

2.1 Classical Mathematical Modeling

The present paper will adopt the low complexity level, mainly because the focus is on inno-
vative approach to solve the associated identification problem by means of Nature Inspired
Algorithms.

In addition, the frequency domain was selected to allow focus solely on the frequency band
of interest. Morever, the amount of data to be processed is also greatly reduced, resulting in
improved computation times. FRF was selected as input data.

The combination of low complexity level in frequency domain using FRF was denominated
herein as Classical Mathematical Model.

Putting focus on the input data, it is interesting to observe that FRFs can be matematically
described as a rational function and expressed in different forms, including:

• Polynomial form, see Eq.1
• Pole-zero form, see Eq.2
• Pole-residue form, see Eq.3
• State-space form, see Eq.4

H(s, P ) =
α0 + α1s+ · · ·+ αns

n

β0 + β1 + · · ·+ βdsd
(1)

H(s, P ) = k

∏N
m=1 (s− zm)∏N
m=1 (s− am)

(2)

H(s, P ) =
N∑

m=1

rm
s− am

+ r0 (3)

H(s, P ) = cT (sI− A)−1b + r0 (4)

5



IFASD-2024-071

The polynomial form is the most classical and common form employed in the identification of
modal parameters and this form was used in several traditional approaches such as in Levy [4],
Sanathanan and Koemer [5], Richardson [6] among others.

Differently, in the present paper was considered advantageous the FRF description in terms of
pole-residue because the poles appears explicitly on the denominator, making it easier for NIAs
to operate.

Therefore, the mathematical problem to be minimized is described by Equation 5, which repre-
sent the absolute error between the experimental FRF and FRF model in terms of pole-residue,

` =

NoNi∑
m=1

Nf∑
k=1

∣∣∣∣∣Hm(ωk)−

{
N∑
j=1

(
Ajm

jωk − λj
+

A∗
jm

jωk − λ∗j

)
+ LR + (jωk)2UR

}∣∣∣∣∣ (5)

with Nf the number of the frequency lines, No the number of the measured outputs and Ni the
number of the measured inputs. The parameter A represents the residuals, N the order, λ the
poles and Hm(ωk) the measured FRF in terms of acceleration. In addition, UR and LR are the
upper and lower residual terms, important to reduce the effects of out-of-band dynamics.

The norm-1 was selected for the error computation in Equation 5 because it is less sensitive
to outliers (noise in FRFs) than norm-2. The possibility of using different non-linear objective
functions may be beneficial for optmization process and it can be explored by using NIAs.

In order to reduce the computational time taken by the NIA, the minimization task consists in
three basic steps : (i) first the poles are guessed by the NIA algorithm, (ii) the residuals A and
the UR and LR terms are obtained by a linear least-squares procedure and (iii) the objective
function described by 5 is evaluated. This process is repeated recursively until convergence
criteria is met.

The practical drawback of adopting the Classical Mathematical Model is the need to reduce the
effect of operational conditions and associated unmeasured excitation sources on the vibratory
response of the aircraft by means of test execution restrictions and/or data pre-processing.

In a real test campaign, the inclusion of test restrictions - such as no test execution when tur-
bulence level is significantly - may reduce the efficiency of the campaign impacting negatively
its costs. These impacts encourage the future use of more representative, adaptive or complex
mathematical models for the identification process.

3 NATURE INSPIRED ALGORITHMS

Nature inspired algorithms are gradient-free optimization solvers which are based on notorious
biological or physical phenomena found in nature.

These algorithms do not require a complete description of the optimization problem. The only
demand is the objective function to be minimized. As such, they are useful tools for solving
non-linear and complex optimization problems with a plethora of local minima.

According to Mirjalili and Lewis [7], they can be categorized into three distinct groups: evolution-
based, physics-based, and swarm-based methods.
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Evolution-based are inspired on evolution theory, by which the fittest individuals of a given
population are more likely to pass on their genes to the next generations. In the mathemat-
ical optimization context, the fittest individuals are those which present the lowest values of
the objective function. The initial population is randomly generated and it evolves according
to mating, reproduction, crossover and mutation mechanisms to diversify the population along
iterations, with the fittest individuals being more likely to generate offspring and to persist
through iterations. Genetic Algorithms (GA) [8], which are based on Darwinian evolution, are
arguably the most popular evolution-inspired optimization algorithms. Other examples are Dif-
ferential Evolution (DE) [9], Evolution Strategy (ES) [10] and Biogeography-Based Optimizer
(BBO) [11].

Physics-based optimization algorithms, on the other hand, are inspired by physical laws or
space theories. The most well-known algorithm of this class is perhaps the Simulated An-
nealing (SA) [12], which is based on thermodynamic laws that drive the annealing process in
metallurgy. There are also several algorithms based on space theories, such as the Gravitational
Local Search (GLSA) [13] and the Big-Bang Big-Crunch (BBBC) [14], to cite a few.

The swarm-based are tipically inspired by the social behavior of animals or insects. Two of the
most proeminent algorithms in this class are the Particle Swarm Optimization (PSO) [15] and
the Ant Colony Optimization (ACO) [16]. The PSO takes inspiration in the flocking behavior of
birds: this gathering of individuals travel, forage or migrate in a collective fashion, constantly
reacting to the environment. In the mathematical optimization context, this flock of birds is
driven by the lowest objective function value in the search domain. Meanwhile, the ACO is
based on the foraging behavior of ants: each individual of the colony searches for a food source
(i.e., best solution) while leaving pheromones in its path, to communicate others of its findings.
It has been famously used to solve the NP-hard traveling salesman problem. Other popular
algorithms include the Cuckoo Search Algorithm (CS) [17], the Whale Optimization Algorithm
(WOA) [7] and the Grey Wolf Optimization Algorithm (GWO) [18].

Regardless of their inspiration, all population-based (evolutionary and swarm) search for the
global minimum of the objective function by generating multiple solutions (individuals) and
modifying them according to the population characteristics. In the first search phase, to avoid
being stuck at a local minimum, these algorithms encourage a random behavior from individ-
uals, in what is called the exploration phase. Once the search domain has been surveyed, the
individuals focus on the most promising areas in search of the global minimum, in what is
known as the exploitation phase. An adequate balance between exploration and exploitation
phases is of paramount importance for the correct convergence of population-based optimiza-
tion algorithms.

One can also find in the literature metaheuristics based on human behavior. Examples are
Tabu Search (TS) [19], Teaching Learning Based Optimization (TLBO) [20], Harmony Search
(HS) [21], Imperialist Competitive Algorithm (ICA) [22], among others.

Table 1 collects some Nature-Inspired Optimization Algorithms for reference1. They are cate-
gorized according to the respective inspiration, class and year of proposal.

In order to give a deeper inside about the Nature Inspired Algorithms, one of the most popular
will be presented in more details in the next section.

1It represents a small sample of algorithms, for more comprehensive review see [23]
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Table 1: Sample of nature-inspired algorithms developed over the years.

ALGORITHM INSPIRATION CLASS YEAR OF PROPOSAL
SA [12] Metallurgy Process Physics 1983
GA [8] Natural Selection Evolution 1992
PSO [15] Bird Flocking Swarm 1995
DE [9] Natural Selection Evolution 1997
GLSA [13] Gravitational Attraction Physics 2003
ACO [16] Ant Colony Swarm 2006
MS [24] Monkey Swarm 2007
CS [17] Cuckoo Swarm 2009
EHO [25] Elephant Swarm 2015
WOA [7] Whale Swarm 2016
DSOA [26] Dolphin Swarm 2016
MSSA [27] Salps Swarming Swarm 2017
EPC [28] Emperor Penguins Colony Swarm 2019
SFO [29] Sailfish Swarm 2019
SSA [30] Squirrel Swarm 2019
GEO [31] Golden Eagle Swarm 2021

3.1 Cuckoo Search Algorithm

Cuckoo Search algorithm was proposed by Xin-She Yang and Suash Deb in 2009 [17]. It has
been successfully applied to solve various optimization problems, such as speech reorganiza-
tion, parameter tuning, and image processing but no direct application for parameter identifica-
tion was found in the literature by the present authors. The following explanation is based on
the work of Xin-She Yang [32].

It is based on the distinctive reprodution strategy of some species of this bird family. Instead
of laying their eggs on a self-built nest, female cuckoos will do it on other species nests. The
cuckoo hatchling will eventually be brought up and fed by birds of this other species, as if it
was a chick of their own. Figure 3B illustrates this behavior.

Figure 3: The brood parasitism behavior of cuckoo birds: (A) Cuckoo lays its egg (the bigger one) in the nests of
other bird species and (B) The host birds raise the cuckoo chick as their own.

In case the host bird spots the cuckoo egg, it decides between removing this alien egg from the
nest or building a new one in another area. The identification task can be a challenging one,
however: some cuckoo species are skilled at mimicking the appearance of the host birds eggs
(see Figure 3A).
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Another characteristic of this brood parasitism behavior is that the cuckoo egg usually hatches
earlier than host ones: in such cases, the cuckoo chick will often toss the host eggs off the
communal nest, therefore increasing its share of food and, thus, its own chance of survival.

These cuckoo traits form the basis of the optimization algorithm, which adopts the following
assumptions [32]:

• Each cuckoo lays one egg at a time, and dump its egg in randomly chosen nest;
• The best nests with high quality of eggs will carry over to the next generations;
• The number of available host nests is fixed, and the egg laid by a cuckoo is discovered

by the host bird with a probability pa ∈ [0, 1]. In this case, the host bird can either throw
the egg away or abandon the nest, and build a completely new nest. For simplicity, this
last assumption can be approximated by the fraction pa of the n nests are replaced by new
nests (with new random solutions);

• Each egg in a nest represents a solution, and a cuckoo egg represent a new solution, the
aim is to use the new and potentially better solutions (cuckoos) to replace a not-so-good
solution in the nests.

The perturbation of the current solutions, as well as the location of the newly built nests are
all driven by Lévy Flights. Named after the french mathematician Paul Lévy, the Lévy Flight
is a random walk characterized by straight-line paths punctuated by sharp 90 degree turns.
Some birds and insects exhibit this behaviour in their movement. By allowing both long and
short movements, this process is adequate for both exploration and exploitation search phases.
The greedy selection strategy ensures the best solutions are always kept from generation to
generation.

This algorithm can be extended to the more complicated case where each nest has multiple eggs
representing a set of solutions. For this present work, we will use the simplest approach where
each nest has only a single egg.

The pseudo code of the Cuckoo Search algorithm for minimization problems is reproduced from
[32] in Algorithm 1. Numerically functional codes can be found in the literature in different
languages as Python and Matlab. In addition, several evolutions of this original algorithm can
also be found.

3.2 NIAs Selection

Motivated by the No Free Lunch Theorem2 [33], six NIAs were selected for further evaluation
to minimize the nonlinear error function described by Equation 5.

The selection criteria was based on engineering judgment considering, among others, the sim-
plicity of implementation, expected number of flops and similar applications found in the liter-
ature. For example, the PSO was included based on the similar work developed by Elkafafy et
al. [34], meanwhile the DE was selected by its simplicity and low computational effort.

Table 2 presents the selected algorithms3, including some details about them.

2NFL theorem basically states that there is no single algorithm that can be most efficient to solve all types of
problems.

3The algorithms GWO and WOA were implemented considering improved and modified versions of the origi-
nals.
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Algorithm 1 Pseudo code of the Cuckoo Search

Require: Objective Function f(x),x = (x1, x2, · · · , xn)T

Require: Generate initial population of n host nests xi

while t < MaxGeneration or StopCriterion do
Get a cuckoo randomly to generate a solution by Lévy flights and evaluate its fitness Fi

Choose a nest among n (say, j) randomly and evaluate its fitness Fj

if Fi < Fj then
Replace the solution in the nest j by the new solution i

end if
A fraction (pa) of worse nests are abandoned and new ones are generated
Keep best solutions (or nests with quality solutions)
Rank the solutions and find the current best

end while
Postprocess results and visualization

Table 2: Selected nature-inspired algorithms for Flight Flutter Testing application.

ALGORITHM INSPIRATION CLASS YEAR OF PROPOSAL
PSO [15] Bird Flock Swarm 1995
DE [9] Genetic Evolution 1997
FFLY [32] FireFly Swarm 2007
CS [17] Cuckoo Swarm 2009
GWO [18] Wolf Swarm 2014
WOA [7] Whale Swarm 2016

The selected algorithms were in-house implemented using Python language and validated by
using optimization benchmark functions, including Rosenbrock, Beale and Booth 2D functions.
Once the correct implementation was verified, the algorithms were cleared to the next evaluation
phase represented by real identification problem.

4 PERFORMANCE EVALUATION FOR SELECTED NIAS

All the six algorithms presented in Table 2 were evaluated based on three different phases
in evolutionary way. First and second phases are based on a theoretical benchmark, which
represents the aeroelastic behavior of an aircraft and comply with all hypothesis of classical
mathematical modeling. Phase three represents a real aircraft during its Flight Flutter Testing.

The purpose of the first phase is the evaluation of both computational performance and capa-
bility to find the minimum of objective function. In this phase, all six selected NIAs were used
to solve the same problem, which is characterized by a single test condition. Only the two best
NIAs will pass to the second phase.

In the second phase, the aeroelastic behavior is changing as a function of control parameter (as
for instance, dynamic pressure) in order to simulate different scenarios, such as modal coupling
and unbalanced damping. This represents a hypothetical aeroelastic modal evolution. The
purpose of this phase is verify the robustness of two best NIAs in different and more difficult
aeroelastic scenarios. Only one will pass to the last phase.

The purpose of third and last phase is final verification of the capability of the best NIA in a real
Flight Flutter Testing case. In this phase not all hypothesis of classic mathematical modeling
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are satisfied completely.

All algorithms were evaluated as similarly as possible, by using the same population size, max-
imum number of iterations, initialization type, among others.

4.1 Theoretical Benchmark Evaluation

The theoretical benchmark represents the evolution of aeroelastic behavior described by dimen-
sionless natural frequency and modal damping as function of a control parameter (for instance,
dynamic pressure) for three vibration modes. Figure 6 shows the benchmark characteristics.

Spotchecks at ten different conditions were taken and used in the theoretical investigation. They
were designed in order to represent typical aeroelastic behavior, including high modal coupling,
unbalanced damping, hump mode and even close to flutter condition.

The spotcheck No.1 was considered for the first phase evaluations. It represents the simplest
dynamic system, characterized by 3 spaced modes and balanced modal damping. Low level of
electronic noise was included directly in real and imaginary parts of FRF in order to increase
the representativeness of the problem. For simplicity, only one FRF was used.

Figure 4 presents the convergence behavior for all six selected NIAs. It can be immediately
observed that four of them reach the minimum value of objective function (CS, DE, WOA and
GWO) but two fail (PSO and FFLY). The non-convergence of PSO4 and FFLY was considered
sufficient for disqualification of both algorithms for the present application.

Figure 4: Convergence behavior for all six selected NIAs for snapshot No.1

The four convergent algorithms found the minimum of objective function with different run
times. The fastest5 one was DE with 11.7s to found the minimum, followed by WOA with

4Further investigation has shown that the convergence of PSO is assured by doubling the number of particle,
but under the penalty of increase on the computational time.

5At this moment, the focus was on the convergency aspects not in the total computational time.
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Figure 5: Final Fitting Results for the two best algorithms (DE and WOA) and two worst (PSO and FFLY). FRF
represented in Bode diagram, magnitude only.

15.9s. The third one was GWO with 17.4s and the slowest the CS with 32.3s.

Table 3 presents6 the identified modal parameters7 for all three modes, including the exact
values used in the simulation. Except for the disqualified ones (PSO and FFLY) all the other
algorithms presented very similar results with negligible differences among them. In addition,
they demonstrated good precision, with slightly error to the exact values of natural frequency
and modal damping.

Table 3: Numerical results for modal identification at snapshot No.1

MODE 1 MODE 2 MODE 3
Freq [-] Damp [-] Freq [-] Damp [-] Freq [-] Damp [-]

EXACT 1.00000 2.00000 1.57000 1.00000 1.96000 1.50000
CS 0.99988 1.99757 1.56996 0.99872 1.96019 1.50215
DE 0.99990 1.99984 1.57002 0.99994 1.95998 1.50290

WOA 0.99990 1.99984 1.57002 0.99994 1.95998 1.50290
GWO 0.99990 1.99984 1.57002 0.99994 1.95998 1.50290
PSO 0.99940 1.99393 0.82766 8.33283 1.96523 1.87147

FFLY 0.99979 1.99361 2.19411 7.45238 1.99272 4.83731

In order to illustrate the fitting results found, Figure 5 presents the final fitting results for the
two best algorithms (DE and WOA) and two worst (PSO and FFLY).

6Larger number of significant digits were set in order to show the numerical differences.
7Modal shapes were not included because they are determined after the optimization using traditional approach,

as described earlier in the present paper.
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From the results it can be concluded that the algorithms that presented best performance overall
during the first phase of the evaluation process were the DE and WOA. Therefore, they were
selected to be used in the next evaluation phase.

Figure 6 presents the results obtained by first phase winners DE and WOA and compare them
with the exact results. From the results it can be seen that there are practically no differences
between the results for both natural frequencies and damping. Numerically, the highest errors
found were of 0.3% in natural frequency and 1.4% for modal damping.

Figure 6: Theoretical benchmark, representing the aeroelastic behavior.

Both algorithms produced very similar numerical results in terms of identified natural frequency
and modal damping for all three modes at the ten spotchecks. Therefore it was considered
a technical draw in terms of quality of the solution produced, even for the more complicated
spotchecks (#5 and #10) as illustrated by Figure 7.

On the other hand, the computational performance was quite different between DE and WOA.
In average, the DE was 26% faster than WOA, being 75% faster in some spotchecks. Evidently
the computational performance is affected by the initial population set-up, but the performance
of DE was constantly faster than WOA.
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Figure 7: Final Fitting Results for the two best algorithms (DE and WOA) for most complicated spotchecks #5 and
#10, respectivelly. FRF represented in Bode diagram, magnitude only.

From the superior performance and fine identification results produced, the DE algorithm is the
best among the six evaluated algorithms for the present application.

4.2 Real Flight Flutter Testing Evaluation

The experimental evaluation is based on two spotcheks from a real Flight Flutter Test campaign.
These spotcheks were selected at the same flight condition and aircraft configuration, but each
one focused on the identification of symmetric and antisymmetric vibration mode shapes. This
strategy was employed for completeness in terms of dynamic complexity and it was considered
representative and appropriate for the present application.

FRFs were estimated by using state-of-art EMBRAER process and supplied for both the Em-
braer Principal Frequency-Domain Algorithm (E-PFDA) and the NIA Differential Evolution
(DE). Good quality FRFs were generated.

Figure 8 shows the experimental FRFs plotted with those synthesized from the identified modal
parameters. It can be claimed good identification results. In particular, the DE synthesized
curve is very similar to the one obtained by E-PFDA algorithm.

Table 4 presents the numerical identification results found by both, the E-PFDA and NIA DE.
Eleven vibration modes were identified in the frequency range of interest. In addition, this
table presents two indicators: the Natural Frequency Difference (NFD) and Natural Damping
Difference (NDD), which represents the percentual differences found for the DE with respect
to the E-PFDA.

NFD values lower than 1% were obtained for all identified modes, which represents a very
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Figure 8: Experimental Fitting Results for the Embraer Principal Frequency-Domain Algorithm (E-PFDA) and the
NIA Differential Evolution (DE). FRF represented in Bode diagram, magnitude only.

good performance in terms of natural frequency identification. In general, NDD lower than 8%
were observed, except for mode #7 wich presented 28.9 % error. The performance in terms of
damping was considered good to satisfactory.

Table 4: Dimensionless numerical results for experimental modal identification by using reference algorithm E-
PFDA and NIA differential evolution.

E-PFDA DE INDICATORS
Mode # Sym Freq [-] Damp [-] Freq [-] Damp [-] NFD[%] NDD[%]

1 SYM 1.00 4.17 1.01 3.97 0.50 -4.76
2 ASY 1.10 2.21 1.11 2.20 0.16 -0.56
3 SYM 1.13 1.68 1.14 1.55 0.81 -7.57
4 ASY 1.19 1.44 1.19 1.47 0.05 2.22
5 ASY 1.27 2.14 1.27 2.08 -0.07 -2.61
6 SYM 1.35 1.80 1.35 1.80 -0.10 0.44
7 SYM 1.62 1.21 1.62 1.56 -0.18 28.90
8 ASY 1.60 1.95 1.61 1.89 0.53 -3.14
9 ASY 2.00 0.81 2.00 0.75 -0.04 -7.12

10 SYM 2.23 1.07 2.23 1.07 0.03 0.67
11 SYM 2.42 1.00 2.42 1.04 0.04 3.73

On the other hand, the computational performance was quite different between E-PFDA and
NIA DE. In general, the E-PFDA runs in a fraction of second but the DE took minutes to solve
the problem. The computational performance was considered the main drawback for industrial
application of NIA DE.
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5 CONCLUSION AND FUTURE WORK

This article proposed an innovative experimental methodology based on gradient-free optimiza-
tion using Natural Inspired Algorithms. The main motivation is the use of more representative
and adaptive mathematical models during the modal identification process of Flight Flutter Test
campaign.

The conclusions indicate the feasibility of the NIAs to solve the nonlinear problem, with su-
perior performance of the Differential Evolution algorithm. The results encourage a deeper
research using more representative and adaptive mathematical models for the modal identifica-
tion process.

Artificial Inteligence (AI) may be employed to select the most representative mathematical
model structure at each test point executed, removing potential test execution restrictions (such
as no test execution when turbulence level is significantly) and contributing for the increase of
test campaign eficiency.

The major drawback is the computational time for finding the minimum. Better computational
implementation, smarter use of initial population and parallel computation may help in this
direction. To save time, a simpler analysis strategy consists in the sequential identification in
narrow frequency bandwidths up to cover the target frequency range.

The possibility of using non-linear objective functions may be beneficial for optmization pro-
cess. In the present paper, it was used the norm-1 instead of traditional norm-2 because it is less
sensitive to noise in FRFs. Even different structures for the objective function may be explored.

Complementary, it is reasonable to assume that better NIAs may exist to solve the nonlinear
problem in the modal identification process. No Physics-based methods were included herein
and other Evolution-based may perform better, specially in terms of computational time. Fur-
ther research is necessary and welcome in this direction.
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