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Abstract: The present paper focuses on the development of a numerical CFD methodology for 
the simulation of the flight dynamics of the flexible aircraft, in open loop and in closed loop as 
well. To do so, a modular environment is developed to couple the ONERA CFD solver elsA with 
Python modules implementing several simulation capabilities: prescribed complex trajectory, 6 
DoFs flight dynamics, structural linear dynamics, control surfaces actuations, control laws. The 
basic assumptions and numerical features of the developed environment are presented along with 
a reminder of the unsteady deformable capabilities of the elsA code, and several applications 
performed in the frame of the French DGAC funded MAJESTIC project on the HAR XRF1 
configurations are shown. In particular the topic of the simulation of active Gust Load 
Alleviation is examined. Perspectives are given on the future extension of the approach to the 
accounting for non-linear structural behaviour, and the possible use of other CFD solver such as 
CODA or the ONERA next generation solver SoNICS. 

Nomenclature: 

XG: coordinates of the center of gravity in inertial frame 
ωb: rotation rate in body axes, (𝑝𝑝, 𝑞𝑞, 𝑟𝑟): components of the rotation rate vector 
�𝐹𝐹𝑥𝑥,𝐹𝐹𝑦𝑦,𝐹𝐹𝑧𝑧�: components of the external forces, 𝑚𝑚: mass 
�𝑀𝑀𝑥𝑥,𝑀𝑀𝑦𝑦,𝑀𝑀𝑧𝑧�: components of the moments of external forces, 𝐽𝐽: inertia matrix 
𝐾𝐾:stiffness matrix, 𝑀𝑀: mass matrix, ω: pulsation, 𝑓𝑓: frequency, 𝜙𝜙: modal basis 
𝑞𝑞: generalized coordinates, 𝛾𝛾: generalized stiffness, 𝜇𝜇: generalized mass 
𝛼𝛼: angle of attack, 𝛿𝛿: HTP deflection angle 

1 INTRODUCTION 
The next generation of civil aircraft will have to be technically performing and ecologically 
friendly. One main issue is the reduction of the environmental footprint of aviation, through CO2 
emission and fuel consumption reduction. To do so, several levers may be operated. The mains 
are the improvement in engine efficiency, green fuel, mass optimization using innovative 
materials, and also aircraft shape optimization. 

Considering shape optimization, the main option is an increase of the wing span, in order to 
reduce the lift induced drag. This long term trend of aspect ratio increase is presented on Figure 1 
which compares the lift over drag ratio (L/D) to the wing aspect ratio (AR). An increase in aspect 
ratio is clearly related to drag gains. 
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Figure 1 Civil aircraft wing aspect ratio evolution 

However, increasing the wing aspect ratio leads to structural design and aeroelastic issues. 
Indeed, a larger wing span induces higher loads (bending moments) at wing root, which have to 
be sustained by a structural reinforcement leading to an increase in mass. In turn, this mass 
penalty is likely to induce drag penalty. Therefore, increasing the wing flexibility becomes 
mandatory, in order to reduce mass, while sustaining the higher loads. 

But the implementation of a highly flexible wing needs to carefully analyse the aeroelastic 
behaviour of the aircraft. In static, high levels of vertical deflection and twist may be reached, 
which must be considered in the design, for the whole flight envelope. In dynamic, increased 
flexibility may be responsible for flutter issues, high levels of dynamic response to manoeuvre or 
gust, which must be carefully cleared. Moreover, increased flexibility leads to lower structural 
modes frequencies, which may induce coupling with flight dynamics and control laws 
frequencies. Eventually, the wing structure may be flexible enough to require a non-linear 
formulation to properly model large displacements. 

The topic of the flight dynamics of the flexible aircraft has been studied by a number of authors. 
Among them, C. Cesnik from University of Michigan has been working for years on the topic. 
Collaboration with R. Palacios from Imperial College London recently lead to the publication of 
a handbook on the topic (Palacios [1]). In this book, the fundamentals of flight dynamics and 
structural dynamics are exposed, as well as the various assumption levels for the coupling of 
both disciplines. However, the topic of the coupling of CFD in the time domain is not covered in 
this book, where only low fidelity aerodynamics is considered (DLM, VLM, UVLM).  

In Nguyen [2], the authors develop the formulation for a flexible aircraft, considering a beam 
model of the wing coupled with rigid-body motions of the aircraft. Aeroelastic effect are taken 
into account using Theodorsen unsteady airfoil theory.  

Murua [3] investigate the gust response in open-loop and closed loop of an unmanned flexible 
aircraft. The equations are firstly derived in the case of large displacements using a non-linear 
beam model and the linearized for stability analysis. The aerodynamic modelling is base on a 
vortex-lattice model solved in the time domain. Linear controllers are included in the loop, in 
order to evaluate GLA capabilities on the HALE configuration. 

V. Portapas from Cranfield University presents in [4] an overview of the capabilities of the 
CA2LM framework. In this work aerodynamic forces are computed using steady and unsteady 
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strip theory approaches. More recently in its PhD thesis Pau-Castells examines in transonic the 
use of CFD-LFD (Linearized Frequency Domain) for the generation of an RFA (Rational 
Function Approximation) reduced model of the generalized unsteady aerodynamic forces in the 
case of the gust response of a civil aircraft.  

Considering CFD approaches, they have been implemented for gust response simulations by 
Heinrich in [5] at DLR. The same team (Ritter [6]) has more recently applied CFD to flight 
dynamics maneuvers using TAU code in a Virtual Flight Test numerical environment. 

In transonic, and for complex aircraft structures, the use of more sophisticated aerodynamic 
models has indeed to be considered for analysing the flight dynamics of flexible aircrafts. In this 
paper, we evaluate the use of CFD in the transonic regime for the resolution of the flexible 
aircraft flight dynamics, including gust response, in the case of a realistic long-range civil aircraft 
model. 

2 NUMERICAL METHODOLOGY 
A large number of numerical features are necessary to address flexible flight dynamics 
simulations using CFD in time domain. First of all, a CFD solver capable of unsteady flexible 
simulation is to be implemented. In this work, the elsA ONERA solver has been used. The main 
characteristics of the solver are detailed below, especially those which are mandatory for the 
targeted simulations. Besides the solver, a modular framework has been developed in order to 
couple the different features involved in these simulations: 

• Rigid aircraft flight dynamics module; 
• Structural dynamics solver; 
• Control surfaces actuation capability; 
• Mesh deformation; 
• Trim capabilities; 
• Gust modelling; 
• Control laws. 

These different components are described in the following sections. A specific point is devoted 
to the description of the assumptions leading to the decoupling of flight dynamics and structural 
dynamics equations. 

2.1 elsA solver features 
elsA is the ONERA software for complex external and internal flow simulations and for multi-
disciplinary applications involving aerodynamics (Cambier [7,8]). This covers the following 
disciplines and topics: 

• Aerodynamics, aeroelasticity, aerothermics coupling, aeroacoustics coupling; 
• Aircrafts, helicopters, turbomachinery, missiles, launchers, air intakes, nozzles, 

propulsive jets; 
• Research and industrial applications; 
• Euler, RANS, URANS, DES, LES simulations; 
• Calculation of sensitivities for optimum design. 
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2.1.1 Moving/Flexible grid capabilities of the elsA solver 
Motions and deformations of bodies may be taken into account in elsA for steady/unsteady 
applications (Dugeai [9]). Mesh deformation is allowed in dynamic using an ALE formulation of 
flow equations. Flow equations may either be described in a moving frame (implementing 
entrainment velocities) or in the fixed frame, where motion or deformation may be implemented 
by the prescription of grid velocities and the update of grid coordinates. In this case, which is the 
one adopted here for the presented simulations, boundary conditions must be adapted to cope 
with the local motion.  

Recently, the aeroelastic features of the solver have been extended by the capability of 
externalizing the mesh deformation step. In this approach, for unsteady moving/deformable 
simulations, the CFD grid (and the grid velocity as well) is prescribed to the CFD solver at each 
physical time step by an external Python module. This feature allows a much more user-friendly 
framework for the potential extension to a large range of unsteady flexible simulations. Indeed, 
in the case of aeroelastic coupling, aerodynamic loads are extracted at each time step and may be 
provided to a flight dynamics solver and in the flexible case, to a structural dynamics solver. In 
the rigid case, this feature has been used for the purpose of generating a ROM of the 
aerodynamic coefficients of a generic UCAV configuration, using CFD simulations of complex 
unsteady prescribed motions of the model (Isnard [10], Figure 2 ). In the present work, we 
extend this feature to the resolution of the flight dynamics of flexible models. 

 
Figure 2 : Constant pitch rotation rate CFD simulations of a Naca airfoil 

2.2 Flight dynamics model 
Flight dynamics equations describe the motion of the center of mass and of the evolution of the 
attitude of the aircraft (currently given by Euler angles) in the inertial ground frame of reference. 
Newton laws are applied for translation and rotation components. Translation equations are 
generally written in the inertial frame, whereas rotation equations are usually written in the body 
axes, and implement the rotation rates components (𝑝𝑝, 𝑞𝑞, 𝑟𝑟) and inertia matrices given in the 
body frame. 

The center of mass motion equations are written in the inertial frame as: 

𝑚𝑚𝑋𝑋�̈�𝐺 = 𝐹𝐹𝑎𝑎𝑖𝑖 + 𝐹𝐹𝑝𝑝𝑖𝑖 + 𝐹𝐹𝑔𝑔𝑖𝑖          (2.2. 1) 
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where the forces acting on the system may include aerodynamic, propulsion and gravity forces, 
expressed in the inertial frame. 

Rotation motion equations may be written (Caughey [11]), considering the body frame to be the 
inertia principal axes frame: 

�
𝑀𝑀𝑥𝑥
𝑏𝑏 = 𝐼𝐼𝑥𝑥�̇�𝑝 + �𝐼𝐼𝑧𝑧 − 𝐼𝐼𝑦𝑦�𝑞𝑞𝑟𝑟

𝑀𝑀𝑦𝑦
𝑏𝑏 = 𝐼𝐼𝑦𝑦�̇�𝑞 + (𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑧𝑧)𝑟𝑟𝑝𝑝

𝑀𝑀𝑧𝑧
𝑏𝑏 = 𝐼𝐼𝑧𝑧�̇�𝑟 + �𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑥𝑥�𝑝𝑝𝑞𝑞

          (2.2. 2) 

with 

𝐷𝐷 = �
0 −𝑟𝑟 𝑞𝑞
𝑟𝑟 0 −𝑝𝑝
−𝑞𝑞 𝑝𝑝 0

�           𝐽𝐽 = �
𝐼𝐼𝑥𝑥 0 0
0 𝐼𝐼𝑦𝑦 0
0 0 𝐼𝐼𝑧𝑧

�        𝜔𝜔𝑏𝑏 = �
𝑝𝑝
𝑞𝑞
𝑟𝑟
�         𝑀𝑀��⃗ 𝑏𝑏 = �

Mx
b

My
b

Mz
b
� 

The rotation rate evolution equation comes: 

�̇�𝜔𝑏𝑏 = 𝐽𝐽−1�𝑀𝑀��⃗ 𝑏𝑏 − 𝐷𝐷. 𝐽𝐽.𝜔𝜔𝑏𝑏�          (2.2. 3) 

This equation may be written in an elegant way using the quaternion 𝑄𝑄 = (𝑒𝑒0, 𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3) 
(Murman [12]) describing the attitude of the aircraft by: 

�̇�𝑄 =
1
2

 𝐿𝐿𝑇𝑇  𝜔𝜔𝑏𝑏              𝐿𝐿𝑇𝑇 (𝑄𝑄) = �

−𝑒𝑒1 −𝑒𝑒2 −𝑒𝑒3
𝑒𝑒0 −𝑒𝑒3 𝑒𝑒2
𝑒𝑒3 𝑒𝑒0 −𝑒𝑒1
−𝑒𝑒2 𝑒𝑒1 𝑒𝑒0

�          (2.2. 4) 

Note that using quaternions in the flight dynamics equations has a triple advantage: 

• it relieves the singularity of Euler angles at pitch angle 90°; 
• it allows a more robust numerical resolution with respect to the matrix formulation; 
• it allows a more compact (4 terms) description of the orientation of the aircraft axes wrt 

matrices (9 terms). 

Introducing the flight dynamics state variable 𝑊𝑊 = �𝑋𝑋�̇�𝐺 ,𝑋𝑋𝐺𝐺 ,𝜔𝜔𝑏𝑏 ,𝑄𝑄�
𝑇𝑇

 the problem may be 
formulated using a first order in time ODE: 

𝑑𝑑𝑊𝑊
𝑑𝑑𝑑𝑑

= 𝐹𝐹(𝑊𝑊)         (2.2. 5) 

Where flux 𝐹𝐹 is given by: 

𝐹𝐹(𝑊𝑊) =

⎝

⎜
⎛

1
𝑚𝑚
𝐹𝐹𝚤𝚤���⃗

0
𝐽𝐽−1𝑀𝑀��⃗ 𝑏𝑏

0 ⎠

⎟
⎞

+

⎝

⎜
⎛

𝑂𝑂3 𝑂𝑂3 𝑂𝑂3
𝐼𝐼3 𝑂𝑂3 𝑂𝑂3
𝑂𝑂3 𝑂𝑂3 −𝐽𝐽−1𝐷𝐷. 𝐽𝐽

    
𝑂𝑂3,4
𝑂𝑂3,4
𝑂𝑂3,4

𝑂𝑂4,3 𝑂𝑂4,3     
1
2

 𝐿𝐿𝑇𝑇 𝑂𝑂4 ⎠

⎟
⎞
𝑊𝑊          (2.2. 6) 

This equation may be solved using a numerical integration scheme where mechanical terms are 
implicited.  
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During the time domain flight dynamics simulation, the aerodynamic forces and moments 𝐹𝐹𝚤𝚤���⃗  and 
𝑀𝑀��⃗ 𝑏𝑏 depends on the flight dynamics state 𝑊𝑊 resulting in a coupling between flight dynamics 
equations and aerodynamics. Therefore, in order to solve the flight dynamics/aerodynamics 
coupling, a fixed-point loop is to be implemented to ensure the unsteady equilibrium. 

2.3 Flight dynamics of the flexible model 
In this paper, the structural model is considered to stay linear. Therefore, a projection of the 
mechanical equations on the free-free modes of the structure is performed.  

The free-free modal basis is obtained solving the classical eigen value problem 

(𝐾𝐾 −𝜔𝜔2𝑀𝑀)𝑋𝑋 = 0          (2.3. 1) 

where 𝐾𝐾 is the unconstrained stiffness matrix of the structure, 𝑀𝑀 the mass matrix, and 𝑋𝑋 the 
physical displacement vector of the structure. Due to the lack of constraints, the stiffness matrix 
is singular and the system exhibits in general 6 rigid modes with zero eigen value (internal 
mechanisms may introduce additional rigid modes, but this case will not be considered here). 

Hence, the free-free modal basis 𝜙𝜙 may be written 𝜙𝜙 = (𝜙𝜙𝑅𝑅 ,𝜙𝜙𝑆𝑆) where 𝜙𝜙𝑅𝑅 stands for the 6 rigid 
modes which happens to be combinations of the 3 free translations and the 3 free rotations of the 
model, and 𝜙𝜙𝑆𝑆 a certain number 𝑁𝑁𝑆𝑆 of flexible modes. As explained, the rigid modes are 
associated to a zero eigen value, which corresponds to a null frequency. The 𝐾𝐾 is therefore 
singular of dimension 𝑁𝑁𝑆𝑆 + 6 and of rank 𝑁𝑁𝑆𝑆, and we have 𝐾𝐾𝜙𝜙𝑅𝑅 = 0. 

Considering the classical structural dynamics equations in the body frame we have: 

𝑀𝑀�̈�𝑋 + 𝐾𝐾𝑋𝑋 = 𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡          (2.3. 2) 

Note that 𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡 may include additional terms due to rotation (centrifugal, Coriolis), if the body 
frame is accelerated wrt the Galilean reference frame.  
If we project the structural dynamics equations on the free-free modal basis, introducing the 
physical displacement decomposition on modal basis 𝜙𝜙 as follows 

𝑋𝑋 = 𝜙𝜙𝑞𝑞 = (𝜙𝜙𝑅𝑅 ,𝜙𝜙𝑆𝑆) �
𝑞𝑞𝑅𝑅
𝑞𝑞𝑆𝑆�           (2.3. 3) 

we obtain: 

�
𝜙𝜙𝑅𝑅𝑡𝑡

𝜙𝜙𝑆𝑆𝑡𝑡 �𝑀𝑀(𝜙𝜙𝑅𝑅 ,𝜙𝜙𝑆𝑆) �
𝑞𝑞𝑅𝑅
𝑞𝑞𝑆𝑆�
̈

+ �
𝜙𝜙𝑅𝑅𝑡𝑡

𝜙𝜙𝑆𝑆𝑡𝑡 �𝐾𝐾(𝜙𝜙𝑅𝑅 ,𝜙𝜙𝑆𝑆) �
𝑞𝑞𝑅𝑅
𝑞𝑞𝑆𝑆� = �

𝜙𝜙𝑅𝑅𝑡𝑡

𝜙𝜙𝑆𝑆𝑡𝑡 � 𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡          (2.3. 4) 

and due to the properties of orthogonality of 𝑀𝑀 and 𝐾𝐾 with respect to the modal basis, and that of 
zero stifness of the rigid modes we have: 

�
𝜙𝜙𝑅𝑅𝑡𝑡 𝑀𝑀𝜙𝜙𝑅𝑅 0

0 𝜙𝜙𝑆𝑆𝑡𝑡 𝑀𝑀𝜙𝜙𝑆𝑆
� �
𝑞𝑞𝑅𝑅
𝑞𝑞𝑆𝑆�
̈

+ �
0 0
0 𝜙𝜙𝑆𝑆𝑡𝑡 𝐾𝐾𝜙𝜙𝑆𝑆

� �
𝑞𝑞𝑅𝑅
𝑞𝑞𝑆𝑆� = �

𝜙𝜙𝑅𝑅𝑡𝑡

𝜙𝜙𝑆𝑆𝑡𝑡 � 𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡           (2.3. 5) 

Introducing the generalized mass and stiffness matrices 𝜇𝜇 and 𝛾𝛾, the system may be written: 

�
𝜇𝜇𝑅𝑅𝑞𝑞�̈�𝑅 − 𝜙𝜙𝑅𝑅𝑡𝑡 𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡 = 0

𝜇𝜇𝑆𝑆𝑞𝑞�̈�𝑆 + 𝛾𝛾𝑆𝑆𝑞𝑞𝑆𝑆 − 𝜙𝜙𝑆𝑆𝑡𝑡 𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡 = 0
          (2.3. 6) 

At this point several points must be made: 
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• The upper part of above equation corresponds to the linearization of flight dynamics 
equations described in §2.2. 𝜇𝜇𝑅𝑅 corresponds to the projection of the mass and inertia 
matrices on the 𝜙𝜙𝑅𝑅 base, which is a combination of pure translation/rotation modes. 

• If the mechanical properties (stiffness and mass matrices and modes) are supposed to be 
constant, the coupling between flight dynamics (upper equation) and structural dynamics 
(lower equation) only occurs through the external forces 𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡 

• External forces 𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡, depends on the state of the flexible system, which includes 𝑞𝑞𝑅𝑅 , 𝑞𝑞�̇�𝑅 
(linerization of the flight dynamics state variables 𝑊𝑊 of §2.2) and 𝑞𝑞𝑠𝑠, 𝑞𝑞�̇�𝑠, generalized 
coordinates of the projected structural dynamics system. 

2.4 Structural dynamics equations in the moving body frame 
The structural dynamics equations projection on the flexible free-free modes is now written: 

𝜇𝜇𝑆𝑆𝑞𝑞�̈�𝑆 + 𝛾𝛾𝑆𝑆𝑞𝑞𝑆𝑆 = 𝜙𝜙𝑆𝑆𝑡𝑡 𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡          (2.4. 1) 

This equation is written in the moving body frame. Doing so, it’s mandatory to consider 
additional force terms due to acceleration of the body frame with respect to the Galilean 
reference frame: Coriolis acceleration, and entrainment acceleration. Therefore, right hand side 
forces exhibit the following components: aerodynamics, gravity, propulsion, Coriolis and 
entrainment forces: 

𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡 = 𝐹𝐹𝑎𝑎 + 𝐹𝐹𝑔𝑔 + 𝐹𝐹𝑝𝑝 + 𝐹𝐹𝐶𝐶𝑜𝑜𝐶𝐶 + 𝐹𝐹𝑒𝑒𝑒𝑒𝑡𝑡𝐶𝐶          (2.4. 2) 

Let’s first show that gravity forces and uniform (not depending on spatial location) acceleration 
forces do not act on free-free flexible modes: 

𝜙𝜙𝑆𝑆𝑡𝑡 𝐹𝐹𝑔𝑔 = � �⃗�𝑔.𝜙𝜙�⃗ 𝑆𝑆 𝜌𝜌(𝑀𝑀) 𝑑𝑑𝑑𝑑
𝛺𝛺

= �⃗�𝑔.�  𝜙𝜙�⃗ 𝑆𝑆 𝜌𝜌(𝑀𝑀) 𝑑𝑑𝑑𝑑
𝛺𝛺

= 0          (2.4. 3) 

due to the fact that flexible modes are orthogonal wrt to mass to rigid modes, which includes 
translation constant shapes (∫  𝜙𝜙�⃗ 𝑆𝑆 𝜌𝜌(𝑀𝑀) 𝑑𝑑ΩΩ = 0) 

In this paper we will neglect the effect of Coriolis acceleration (𝐹𝐹𝐶𝐶𝑜𝑜𝐶𝐶 = 0). Considering the 
entrainment acceleration, it is made of three terms, the first one being due to the acceleration of 
the origin B of the body frame. This term is uniform and its projection on flexible free-free 
modes vanishes just like uniform gravity forces. The second one is due the rotation acceleration 
𝑑𝑑𝜔𝜔���⃗
𝑑𝑑𝑡𝑡

 and will be neglected. The third term is the centrifugal term 𝜔𝜔��⃗ × �𝜔𝜔��⃗ × B𝑀𝑀������⃗ �. In this paper we 
will only consider uniform acceleration maneuver (which means large radius of curvature of the 
trajectory compared to the aircraft dimensions), which excludes large rotation rates motions). 
These maneuvers are then considered as generating additional loads factor (2.5g for example). In 
this case, the projection of the centrifugal force field on flexible free-free modes also vanishes 
just as shown above. 

Eventually, the projection of the total forces acting on the aircraft in the body frame reduces to 
that of aerodynamics and propulsion forces: 

𝜙𝜙𝑆𝑆𝑡𝑡 𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡 = 𝜙𝜙𝑆𝑆𝑡𝑡 𝐹𝐹𝑎𝑎 + 𝜙𝜙𝑆𝑆𝑡𝑡 𝐹𝐹𝑝𝑝 
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Considering zero axial acceleration of the aircraft, propulsion forces are balanced by the axial 
drag aerodynamic force. 

2.5 Summary of the assumptions made 
Assumptions which will hold for the current paper simulations presented below are now 
summarized: 

• The dynamic deflections of the structure are limited enough to consider a constant inertia 
matrix. 

• Flight dynamics equations are solved keeping the non-linear §2.2 equations, instead of 
the linearized version obtained by modal projection §2.3 

• Modal equations of eq. 2.3.6, lower are solved for structural dynamics 
• Coriolis acceleration may be neglected in the solving of structural dynamics equations 
• Rotation acceleration entrainment forces may be neglected 
• Centrifugal forces are only due to uniform acceleration maneuver 
• Propulsion forces are balancing drag axial forces (no axial acceleration) 
• Due to the previous 4 points, only lateral and vertical aerodynamic forces are to be 

considered in the right-hand side of free-free modal structural dynamics equations (2.4.1) 

3 TRIM SIMULATION 
In order to perform aircraft flight dynamics simulations for maneuver or gust response, it’s first 
necessary to obtain the static equilibrium of the aircraft. Therefore, considering symmetry of the 
aircraft, a longitudinal trim simulation is performed in order to balance weight vs lift and get 
zero pitching aerodynamic moment. This goal is reached by tuning simultaneously the angle of 
attack of the aircraft and the deflection angle of the horizontal tail plane. This section presents 
the numerical methodology developed for CFD trimmed simulations.  

3.1 Residual formulation 
The static equilibrium is written as  

�
𝐹𝐹𝑧𝑧 = 𝐹𝐹𝑧𝑧_𝑡𝑡𝑔𝑔𝑡𝑡
𝑀𝑀𝑦𝑦 = 0           (3.1. 1) 

With 𝛼𝛼 being the angle of attack and 𝛿𝛿 the HTP deflection angle, we define the trim variable  

𝑇𝑇 = �𝛼𝛼𝛿𝛿� 

The trim problem may be written in residual form: 

𝑅𝑅(𝑇𝑇) = 0         𝑅𝑅(𝑇𝑇) = �
𝐹𝐹𝑧𝑧(𝑇𝑇) − 𝐹𝐹𝑧𝑧_𝑡𝑡𝑔𝑔𝑡𝑡

𝑀𝑀𝑦𝑦(𝑇𝑇) � 

This non-linear problem could be solved using a Newton-like method, which needs the 

aerodynamic jacobian matrix 
𝜕𝜕𝑅𝑅
𝜕𝜕𝑇𝑇

. In this paper, the resolution of the trim problem is performed 
using a structural dynamics system-like dynamic problem: 

𝜇𝜇�̈�𝑇 + 𝛽𝛽�̇�𝑇 = 𝑅𝑅(𝑇𝑇)         (3.1. 2) 
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which reduces to 𝑅𝑅(𝑇𝑇) = 0 at static convergence. Let 𝑇𝑇𝑠𝑠 be the solution of the trim problem 
(𝑅𝑅(𝑇𝑇𝑠𝑠) = 0) and 𝜏𝜏 = 𝑇𝑇 − 𝑇𝑇𝑠𝑠 the offset to 𝑇𝑇𝑠𝑠 variable, we may split residual 𝑅𝑅(𝑇𝑇) in highlighting 
its linear and non-linear (𝑅𝑅𝑁𝑁𝑁𝑁(𝜏𝜏) with 𝑅𝑅𝑁𝑁𝑁𝑁(0) = 0) contributions: 

𝑅𝑅(𝑇𝑇) = 𝑅𝑅(𝑇𝑇𝑠𝑠) +
𝜕𝜕𝑅𝑅
𝜕𝜕𝑇𝑇

𝜏𝜏 + 𝑅𝑅𝑁𝑁𝑁𝑁(𝜏𝜏) =
𝜕𝜕𝑅𝑅
𝜕𝜕𝑇𝑇

𝜏𝜏 + 𝑅𝑅𝑁𝑁𝑁𝑁(𝜏𝜏) 

The dynamic equations for the offset 𝜏𝜏 is written: 

𝜇𝜇�̈�𝜏 + 𝛽𝛽�̇�𝜏 −
𝜕𝜕𝑅𝑅
𝜕𝜕𝑇𝑇

𝜏𝜏 = 𝑅𝑅𝑁𝑁𝑁𝑁(𝜏𝜏)         (3.1. 3) 

where 
𝜕𝜕𝑅𝑅
𝜕𝜕𝑇𝑇

 may be seen as an aerodynamic stiffness matrix given by: 

𝜕𝜕𝑅𝑅
𝜕𝜕𝑇𝑇

= �

𝜕𝜕𝐹𝐹𝑧𝑧
𝜕𝜕𝛼𝛼

𝜕𝜕𝐹𝐹𝑧𝑧
𝜕𝜕𝛿𝛿

𝜕𝜕𝑀𝑀𝑦𝑦

𝜕𝜕𝛼𝛼
𝜕𝜕𝑀𝑀𝑦𝑦

𝜕𝜕𝛿𝛿

�           (3.1. 4) 

These terms correspond to the dimensioned forces classically obtained via the flight dynamics 
aerodynamic coefficients (𝐶𝐶𝑧𝑧𝑧𝑧, 𝐶𝐶𝑧𝑧𝑧𝑧, 𝐶𝐶𝑚𝑚𝑧𝑧, 𝐶𝐶𝑚𝑚𝑧𝑧). 

3.2 Resolution of the trim equation 
The aim of the dynamic approach proposed in the previous section for the resolution of trim 
equations is to get a solution quickly converging to the static equilibrium without altering the 
aerodynamic stiffness of the system. Therefore, mass 𝜇𝜇 and damping 𝛽𝛽 in eq. (3.1.1) must be 
properly tuned to get: 

• high characteristic frequency 𝑓𝑓𝑡𝑡𝑔𝑔𝑡𝑡 of the system wrt to simulation duration 𝑇𝑇, i.e. 𝑓𝑓𝑡𝑡𝑔𝑔𝑡𝑡 ≪
1
𝑇𝑇
 

• high damping value leading to an aperiodic behavior of the dynamic system, 

in order to obtain a reduction of the desired number of orders of magnitude of the residual 𝑅𝑅(𝑇𝑇) 
during the time domain simulation.  

 
Figure 3 : Example of dynamic resolution of a simplified test model trim problem 

Hence, masses and damping values are selected as follows, considering for simplification only 
diagonal terms of the jacobian matrix 𝜕𝜕𝑅𝑅

𝜕𝜕𝑇𝑇
: 

𝜇𝜇𝑧𝑧 = −
𝜕𝜕𝐹𝐹𝑧𝑧
𝜕𝜕𝛼𝛼

/�2𝜋𝜋 𝑓𝑓𝑡𝑡𝑔𝑔𝑡𝑡�
2

          𝜇𝜇𝑧𝑧 = −
𝜕𝜕𝑀𝑀𝑦𝑦

𝜕𝜕𝛿𝛿
/�2𝜋𝜋 𝑓𝑓𝑡𝑡𝑔𝑔𝑡𝑡�

2
         (3.2. 1) 
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𝛽𝛽𝑧𝑧 = 𝑐𝑐𝑐𝑐𝑒𝑒𝑓𝑓 ∗  2�−
𝜕𝜕𝐹𝐹𝑧𝑧
𝜕𝜕𝛼𝛼

𝜇𝜇𝑧𝑧           𝛽𝛽𝑧𝑧 = 𝑐𝑐𝑐𝑐𝑒𝑒𝑓𝑓 ∗  2�−
𝜕𝜕𝑀𝑀𝑦𝑦

𝜕𝜕𝛿𝛿
𝜇𝜇𝑧𝑧           (3.2. 2) 

Simple assumptions on 𝐶𝐶𝑧𝑧𝑧𝑧 and 𝐶𝐶𝑚𝑚𝑧𝑧 provides approximate values for aerodynamic sensitivities  
𝜕𝜕𝐹𝐹𝑧𝑧
𝜕𝜕𝑧𝑧

 and 𝜕𝜕𝑀𝑀𝑦𝑦

𝜕𝜕𝑧𝑧
 able to drive the scheme to the trim solution (example shown on Figure 3).  

4 MESH DEFORMATION 
The simulation of flight dynamics problems in the case of a flexible model needs to face two 
different problems of model deformation: 

• Mesh deformation due to flexibility 
• Geometry modification due to the actuation of control surfaces 

In this paper, both are addressed using mesh deformation techniques. 

4.1 Control surface actuation 
The exact accounting for control surface actuation in the CFD grid is a complex problem, which 
may be addressed using several techniques: 

• Mesh deformation 
• Sliding meshes along the fuselage or in a fluid gap; 
• Overset grid techniques, 
• Immersed boundaries (IBM). 

The simplest method which does not imply mesh connectivity modification is the mesh 
deformation technique. Indeed, it faces several drawbacks: 1) fluid gap flow not represented, 2) 
deformation smoothing mandatory, 3) amplitude of deflections limited. However, due to its 
simplicity, this method will be used in this paper (the approach could be improved in future 
works). 
As explained above, the smoothing of the control surface deflection has to be performed. To do 
so, a convolution of the exact surface motion (rotation about the hinge) with a RBF Gaussian 
kernel function 𝐺𝐺𝜌𝜌 of tunable characteristic radius 𝜌𝜌 is performed (Figure 4). This allows the 
smoothing of the deflection function over a distance fitting the control surface dimension.  

 
Figure 4 : Smoothing by convolution with a Gaussian kernel 
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A cartesian surface working grid (𝑥𝑥𝑗𝑗
(1)) is built where the theoretical motion 𝑢𝑢�𝑥𝑥𝑗𝑗

(1)� is computed 

and the smoothing over the surface aerodynamic grid (𝑥𝑥𝑖𝑖
(2)) is computed by the following 

convolution formula: 

𝑢𝑢�𝑥𝑥𝑖𝑖
(2)� =

∑  𝑢𝑢�𝑥𝑥𝑗𝑗
(1)�𝑗𝑗 𝐺𝐺𝜌𝜌(�𝑥𝑥𝑖𝑖

(2) − 𝑥𝑥𝑗𝑗
(1)�)

∑  𝐺𝐺𝜌𝜌(�𝑥𝑥𝑖𝑖
(2) − 𝑥𝑥𝑗𝑗

(1)�)𝑗𝑗

          (4.1. 1) 

where the Gaussian kernel is written: 

𝐺𝐺𝜌𝜌(𝑟𝑟) = 𝑒𝑒−�
𝐶𝐶
𝜌𝜌�

2

 

4.2 3D CFD mesh deformation 
Several mesh deformation techniques may be applied: 

• Elastic analogy (spring technique or continuous medium); 
• Transfinite interpolation (for structured grids); 
• Inverse Distance Weighting; 
• Quaternion propagations; 
• Radial Basis Functions based techniques (RBF). 

In this paper, the solver Quantum, which uses a quaternion-based propagation technique via 
Inverse Distance Weighting has been implemented for control surfaces deflected deformed mesh 
generation, due to its robustness. This code is parallelized, and optimized using FMM (Fast 
Multipole Method). For the smoother deformation corresponding to structural modal 
deformation, a classical RBF technique (available in scipy) is used. 

All the 3D mesh deformations are computed in a pre-processing step, and stored in the CGNS 
compliant CFD data base. Assuming linearity of the mesh deformation, they are linearly 
recombined on the fly during the time domain CFD simulations, from the values of the angular 
deflections of control surfaces and that of the generalized modal coordinates. 

5 MODULAR IMPLEMENTATION 
An overview of the modular framework implemented for elsA in the case of the close loop gust 
response is shown on Figure 5. An application in the case of the XRF1 model of the project 
MAJESTIC will be presented in the applicative section of this paper. The elsA solver is used as 
CFD solver, in externalized mode, which means that mesh and grid velocity updates may be 
provided at each time step from external modules. Figure 5 depicts the modular environment 
implemented in the case of the gust response of the flexible aircraft in closed loop, used for the 
Gust Load Alleviation (GLA) simulation presented in section 6. 
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Figure 5 : Modular coupling scheme for gust response in closed loop 

A gust perturbation model is available in elsA. Additional wind perturbations due to academic 
gust are implemented using additional grid velocities (Dequand [13]). In this paper, the (1-cos) 
certification gust model is used in the application section.  

The gust encounter induces a perturbation from the static trim equilibrium of the flexible aircraft. 
Aerodynamics loads are modified and generates a variation in global forces and moments and 
generalized forces. These loads are delivered to the modal structural dynamics and 6DoFs flight 
dynamics Python modules in charge of computing the new state of the aircraft, including 
generalized coordinates. These data are processed by a control law module able to define the 
control surface command. The state of the aircraft defines the rigid motion of the grid in the 
inertial frame, and mesh deformation is applied to take into account modal deformations and 
control surface actuation. The new mesh is then returned back to the elsA solver, for the next 
step of the coupled simulation. In this paper, a short time step has been implemented for the 
simulations, allowing for a single loop iteration of the coupling process (as already stated in §2.2 
a controlled convergence of the coupled process should implement a fixed-loop at this stage, but 
during the MAJESTIC project, the needed features were not yet available) 

6 APPLICATION TO THE XRF1 MODEL OF PROJECT MAJESTIC 

6.1 Presentation of the model 
The XRF1 model provided by Airbus in the frame of MAJESTIC is a research model of a two-
engine long range aircraft of 70 m span. Its aspect ratio is about 12. A finite-element mesh has 
been provided and CAD data allowed generating a suitable multiblock structured grid for elsA.  
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Figure 6 :MAJESTIC XRF1 AR12 Model. FE mesh (left), Aerodynamic surface grid (right) 

The finite element model implements fuselage, wing, empennage including HTP and VTP and 
engine pods (Figure 6, left). Control surfaces at wing leading edge are modeled, as well as those 
of the empennage. The wing box is modelled using shell elements for spars, ribs and skins, using 
anisotropic MAT2 material properties. Mass properties are defined using CONM2 concentrated 
mass elements. The original CFD grid used for aerodynamic performance analyses is a 
multiblock structured one, of about 40 million cells for the half configuration. For the present 
flexible flight dynamics simulations, a coarser mesh has been derived and symmetrized to get a 
full (right+left) mesh of 12 million cells (Figure 6, right). Engines are not represented in the 
aerodynamic model (which could indeed introduce here a mis-estimation of trim conditions). 

6.2 elsA solver aerodynamic numerics 
The unsteady CFD simulations are run using the elsA solver in URANS formulation, using the 
Spalart-Allmaras turbulence model. The Jameson centered spatial scheme is implemented, with 
numerical dissipation parameters 𝜒𝜒2=0.5 and 𝜒𝜒4=0.016. The dual time stepping scheme is used 
for the dynamic resolution of the fluid equations, along with the backward Euler scheme for the 
pseudo-time loop interation at CFL 25. The physical time step is 1/500. s. 2500 iterations are 
computed, corresponding to a physical duration of the simulation of 5s. 

The simulations are run in parallel over 48 processors. The typical duration of the unsteady flight 
dynamics simulations is roughly 40000 s (~11 h wall clock) 

6.3 Structural model basis 
As discussed previously, the structural behavior of the model is assumed to stay linear. 
Therefore, deformations are projected on the free-free modal basis. For the simulations presented 
in the paper, we focus on the so-called F1GT mass configuration of the XRF1 model, which 
corresponds to a cruise case configuration. The normal mode analysis is performed using MSC 
NASTRAN as structural solver. 

 
Figure 7 : Free-free flexible modes #7, #8, #12, #19 of the F1GT mass configuration 
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The frequency of the first flexible mode (#7) is at about 1 Hz, whereas 11 flexible modes (up to 
#17) have a modal frequency under 3 Hz (Figure 7). In the following simulations, the free-free 
modal basis has been truncated to mode #19, implementing 13 flexible modes. 

6.4 Control surfaces deformation modes 
Mesh deformation modes are generated on the XRF1 configurations for a set of control surfaces: 
stabilizer, horizontal tail plane, rudder, and internal and external ailerons (Figure 8). 

 

Figure 8 : Control surfaces actuation deformation modes : stabilizer (left), rudder (center) ailerons (right) 

6.5 Static Trim 
The dynamic system procedure described in §3 for static trim resolution is applied in the case of 
the XRF1 model, for F1GT mass configuration at M=0.85. The physical time duration of the 
simulation is 2 seconds, whereas masses and damping values are tuned to get a characteristic 
frequency 𝑓𝑓𝑡𝑡𝑔𝑔𝑡𝑡=2 Hz and an aperiodic behavior of the dynamic system. Figure 9 presents an 
overview of the evolution of the body axes, aerodynamic field and structural deflection during 
the convergence of the trim simulation towards steady state. The simulation is restarted from a 
static simulation at jig shape (left image) and converges to the trimmed static equilibrium 
illustrated by the final deformation and pressure field of right image. 

 
Figure 9 : XRF1 Model F1GT trim at M=0.85: initial, intermediate, final states 

Aircraft angle of attack and stabilizer deflection angle in degree are displayed in Figure 10, left 
and global force and moment at center of gravity in the inertial axes in Figure 10, right. The 
flexible behavior is depicted in Figure 11. The left image presents the generalized coordinates 
history and the right image, the generalized forces. The time histories of all variables exhibit a 
good convergence towards steady state. A deflection of about 5° nose-down of the stabilizer is 
necessary to get a 2.2° angle of attack at trimmed conditions. Due to the symmetrical loads 
generated by the trim simulations for a (quasi-)symmetrical configuration, only symmetrical 
modes are triggered.  
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Figure 10 : XRF1 Model F1GT trim at M=0.85: trim variables and load offsets history 

      
Figure 11 : XRF1 Model F1GT trim at M=0.85: Generalized coordinates and forces (Note that force/moment 

labels have been removed for confidentiality reasons) 

  
Figure 12 : XRF1 Model F1GT trim at M=0.85: Location of structural grid nodes sensors (left) Vertical 

displacement convergence of right wing structural grid nodes, reduced by max wing tip LE displacement, 
wing tip LE in black (right) 
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The main contribution to wing deflection is associated with mode #7, corresponding to first 
symmetrical bending mode, the second one corresponds to mode#12 (second symmetrical 
bending mode). The computed overall vertical displacement at wing tip leading edge is about 4.5 
m in this case (Figure 12, right). 

6.6 Maneuver: prescribed rudder actuation 
A number of unsteady flexible flight dynamics simulations have been performed in the F1GT 
mass case at M=0.85 in open loop. Actuations of control surfaces have been simulated, coupled 
with the resolution of the flexible flight dynamics equations. The effect of the deflection of 
rudder, HTP control surface, and internal and external ailerons in symmetrical or single-side 
actuation has been computed, in order to generate an aerodynamic model of the flexible aircraft. 
We present here the case of the actuation of the rudder during 2 s, following a S-shaped function 
in time, with an amplitude of 7°. 

 

 

Figure 13 : XRF1 Model F1GT: S-shaped rudder of 7° amplitude actuation: pressure field and motion of 
the aircraft during maneuver (0.5 s between two views) 

The simulation duration is 5 seconds of 
physical time. In Figure 13, we show an 
rear view of the effect of the actuation of 
the rudder on the trajectory of the aircraft 
and on the pressure load at 6 instants of the 
simulation. The S-shaped actuation function 
used is shown in Figure 14, left. 

 
Figure 14 : S-shaped and step actuation functions 

As expected, the actuation of the rudder to the right generates first the occurrence of a positive 
yaw moment 𝑀𝑀𝑧𝑧 during one second (Figure 16, right), which induces a yaw motion to the right 
(Figure 15, left). Then, the roll moment 𝑀𝑀𝑥𝑥 comes back to a positive value, inducing a roll 
motion of the aircraft (up to 5°, Figure 15, center), while the yaw moment becomes negative, 
getting the aircraft to come back by the end of the simulation to near zero roll and yaw angles.  
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Figure 15 : XRF1 Model F1GT: S-shaped rudder of 7° amplitude actuation: Flight dynamics data during 
maneuver: CG acceleration in inertial axes (left), Euler angles (center), rotation rates (right). 

However, the simulation duration is not sufficient to reach the steady state after maneuver, as 
shown by the final evolution of Euler angles and rotation rate in Figure 15. The lateral 
acceleration of the center of gravity is first negative and then reaches a positive value of 0.8 m/s2 
after 1.5 s. A maximum vertical acceleration of 0.4 m/s2 is obtained after 3s (Figure 15, left). The 
contribution of flexibility to vertical acceleration is clearly visible in this figure, leading to a 
certain waviness of the curve, related to modal frequencies. 

      
Figure 16 : XRF1 Model F1GT: S-shaped rudder of 7° amplitude actuation: Aerodynamic loads in body 
axes: Transverse forces (left), moments wrt to CG (right). (Note that force/moment labels have been removed 

for confidentiality reasons) 

 
Figure 17 : XRF1 Model F1GT: S-shaped rudder of 7° amplitude actuation: modal coordinates histories 
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Figure 17 depicts the evolution of modal coordinates during the simulation. Contrary to the 
symmetrical trim case (Figure 11), the whole modal basis is activated, due to the non 
symmetrical loads generated by the maneuver. The most solicited modes are anti-symmetric 
(mode#8 and mode #9), but mode#7 (symmetrical first bending) is also triggered at low 
frequency. As indicated before, all the modes embedded in the simulation basis have a low 
frequency under 3 Hz, which leads to the unsteady wavy response of the structure. 

6.7 Gust response: open loop and closed loop. GLA 
The aim of this section is to show the ability of CFD to simulate gust load alleviation using 
specifically designed control laws.  

6.7.1 Aeroelastic model identification 
The first step for the design of the control law is to generate an aerodynamic model of the 
flexible aircraft. This has been done in the case of the F1GT mass configuration of the XRF1 
model at M=0.85. Several flexible flight dynamics simulations have been run in open loop: 

• AILINR : Response to a 7° amplitude deflection step (Figure 14, right) of internal right 
aileron, 

• AILOUTR : Response to a 7° amplitude deflection step of external right aileron, 
• AILOUTRL : Response to a 7° amplitude deflection step of both external aileron 
• HTP : Response to a 5° amplitude deflection step of the HTP control surface 
• VTP : Response to a 7° amplitude deflection step of the rudder 
• GUST: Response to (1-cos) certification gust, of wavelength 100m, vertical gust speed 5 

m/s. 
A complete set of numerical data is extracted from each simulation, including: 

• position, velocity and acceleration of the center of gravity (CG); 
• body axes (Euler angles) and rotation rates; 
• angle of attack and side slip; 
• global aerodynamic force and moment wrt to CG in body and inertial axes; 
• right wing only aerodynamic force and moment wrt to CG in body axes; 
• physical displacement in body axes of selected structural nodes (Figure 12, left); 
• generalized modal forces and coordinates. 

 

This data set is used to generate a reduced-order model of the aircraft to feed the control 
synthesis problem for gust load alleviation which is described in the next section. 

From a control perspective, the gust load alleviation problem is a disturbance rejection problem 
aimed at decreasing the maximum bending moment when subject to some disturbance gust using 
some sensors and actuators. Indeed, reducing the bending moment is a key player for reducing 
the wing box mass.  

Following the notations of the standard control form (Zhou [14]), the bending moment is called a 
performance output, denoted 𝑧𝑧, and the gust is called an exogeneous input, denoted 𝑤𝑤. Control 
input and measurement output are denoted 𝑢𝑢 and 𝑦𝑦, respectively. Choice of actuators and sensors 
is crucial in control, yet this is a task which is complex to perform in a systematic way and it is 
therefore often done manually based on physical considerations. Here, the whole set of data 
presented above has not yet been fully exploited and sensors/actuators have been arbitrarily 
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chosen as follows: 𝑦𝑦 gathers the pitch rate and vertical acceleration at CG while 𝑢𝑢 is a symmetric 
command of the external ailerons. 

With these notations, the identification step is aimed at finding a linear model under the form: 

�
�̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑤𝑤𝑤𝑤 +  𝐵𝐵𝑢𝑢𝑢𝑢
𝑧𝑧 = 𝐶𝐶𝑧𝑧𝑥𝑥 + 𝐷𝐷𝑧𝑧𝑤𝑤𝑤𝑤 +  𝐷𝐷𝑧𝑧𝑢𝑢𝑢𝑢
= 𝐶𝐶𝑦𝑦𝑥𝑥 + 𝐷𝐷𝑦𝑦𝑤𝑤 𝑤𝑤 +  𝐷𝐷𝑦𝑦𝑢𝑢𝑢𝑢

          (6.7. 1) 

where 𝑥𝑥 is the internal state of the model (which does not necessarily have an explicit physical 
interpretation). 

The identification process is in three steps here: first, an initial large model is obtained directly 
from the time-domain data with a black-box method called matrix pencil method (Yingbo [15]). 
This initial model can be unstable and this issue is alleviated by projection onto a stable Hoo 
subspace (see Glover [16]). The resulting large stable model is finally reduced using the 
Loewner frequency-domain interpolation approach (Mayo [17]). The resulting model is denoted 
𝐻𝐻𝐶𝐶 and its response (plotted in red) is compared to the initial time-domain data in Figure 18. 
Note the mismatch in the first (sizing) peak of the wing root bending moment. This could 
certainly be reduced further and may lead to better control performances. 

 
Figure 18 : Open loop identification: gust response (left), response to aileron step deflection (right) – Input 
signal (1st row), Bending moment (2nd row, moment labels removed for confidentiality reasons), pitch rate (3rd row), 

CG vertical acceleration (4th row) 

6.7.2 Law control design 
Based on the reduced model 𝐻𝐻𝐶𝐶 of the flexible aircraft, a linear control law described by its state-
space formulation: 

�𝑥𝑥�̇�𝑐 = 𝐴𝐴𝑐𝑐𝑥𝑥𝑐𝑐 + 𝐵𝐵𝑐𝑐𝑦𝑦
𝑢𝑢 = 𝐶𝐶𝑐𝑐𝑥𝑥𝑐𝑐

          (6.7. 2) 
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is synthesized following the process detailed in (dos Reis [18]). 

In addition to its performance objective to decrease the wing root bending moment, the control 
law must also comply with a set of constraints that would be found on a real aircraft. In 
particular, the law must stabilize the closed-loop, be stable, be structured (i.e. of low dimension 
𝐷𝐷𝑐𝑐=0 here) and leave untouched low frequencies (to preserve handling qualities) and high 
frequencies (for robustness). These constraints are important to consider in order to avoid 
exhibiting unrealistic performance. In practice, the problem is solved using the structured Hoo 
synthesis framework (Apkarian [19]) available in MATLAB with routines hinfstruct or systune. 
The state-space matrices 𝐴𝐴𝑐𝑐, 𝐵𝐵𝑐𝑐, 𝐶𝐶𝑐𝑐 are then extracted and integrated in a Python module 
dedicated to the resolution of the dynamic system 6.7.2. 

6.7.3 GLA 
In this section, 3 simulations are compared in order to analyze the impact of flexibility during 
gust and to validate the Gust Load Alleviation (GLA) induced by the designed control law: 

• Open-loop gust response of the rigid aircraft 
• Open-loop gust response of the flexible aircraft 
• Closed-loop gust response of the flexible aircraft with controlled ailerons (Figure 23). 

The closed-loop simulation environment is the one plotted in Figure 5. Figure 19 presents a 
comparison of the 3 simulations in terms of pitch rate, vertical CG acceleration and right wing 
bending moment. The first indication is that flexibility reduces peaks values for all three 
variables. In particular, a 20% reduction is observed on the bending moment (Figure 19, right 
plot, Figure 21). Moreover, the control induces a reduction of 10% of the bending moment offset 
to steady trimmed values, compared to open-loop flexible results.  

  
Figure 19 : Comparison of gust response: pitch rate (left), vertical CG acceleration (center), right wing 

bending moment reduced by static trim value (right). Rigid case in black, open-loop flexible in blue, 
closed-loop flexible in red 

 
Figure 20 : GLA figures for CG vertical acceleration 
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Figure 21 : GLA figures for right wing bending moment 

In terms of vertical CG acceleration alleviation, a minor 4% reduction is obtained in the flexible 
case with control in the first negative peak, but 30% reduction at positive second peak after 1.5 s 
(Figure 19, center, Figure 20). 

  
Figure 22 : Reduced vertical displacement of right wing structural grid nodes, without control (left), with 

control (right), wing tip LE in black 

Figure 22 shows a comparison of the vertical deformation of the wing leading edge at 4 stations 
in span, in the flexible open-loop and closed-loop cases. The black curves correspond to the wing 
tip leading edge node (9700026). The values are reduced by the static trim vertical displacement 
at this node. The peak-to-peak deflection is clearly reduced in the controlled case, but the 
maximum deflection of the wing doesn’t seem to be reduced. However, further oscillations seem 
to be damped more rapidly. 

 

 
Figure 23 : XRF1 controlled gust response : oveview of wing deformation and aileron deflection during 

gust encounter (0.5 s between two views) 
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7 CONCLUSIONS 
Due to environmental constraints, next generation long range aircrafts are bound to have larger 
aspect ratio wings, a more flexible structure and they will face more complex aeroelastic issues. 
In this paper we have presented a methodology to solve flight dynamics problems of flexible 
aircraft using CFD. This methodology is based on the use of a modular framework implementing 
the elsA CFD solver in externalized mode, coupled with external Python modules in charge of 
solving the flight dynamics behavior of the aircraft along with the structural dynamics equations. 
Mesh deformations tools are implemented to take into account modal deformation of the 
structure and control surfaces actuation. Selected open loop applications have been shown in the 
case of the Airbus XRF1 model implemented in the French DGAC funded project MAJESTIC. 
Trim simulations of the flexible aircraft have been presented in static, and an example of 
maneuver due to rudder actuation has been detailed. A full CFD flight dynamics data base has 
been collected to analyze the response to the actuation of the aircraft control surfaces. The 
capability of this methodology to address closed-loop problems in implementing control laws has 
been shown and applied to the case of the application to Gust Load Alleviation CFD simulations.  

However, some assumptions used in this paper should have to be released in future works. In 
particular, non-linear large displacements have to be modelled, which could require either the 
coupling with a non-linear structural solver at least in static, or the generation and use of reduced 
order models of the non-linear structure. In this case, the assumption of constant inertia matrix 
should also have to be reconsidered. A proper validation of these methods is planned in the next 
future in the frame of the DGAC funded ALFA project, by the exploitation of flight tests of the 
XWing Airbus demonstrator. Another topic of interest will be the integration of a flutter control 
law, and the related closed loop simulations using CFD. Eventually, the robustness of the 
approach will be increased by the integration of the developed Python tools in the MIMAS 
aeroelastic toolbox currently developed at ONERA. This will pave the way for a larger use of the 
methodology by enabling the capability of coupling it with the next generation CFD solvers 
CODA and Sonics. 
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