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Abstract: Multivariate random loads may arise from either a stationary Gaussian process, like 

stochastic or continuous gust, or from a random process, such as buffet. Buffet phenomena are 

important when the separated air flow induces strong fluctuating pressures on aircraft components. 

These loads need careful assessment during aircraft design, especially for fighters flying at high 

angles of attack and in the transonic regime, as well as for general aviation and transport aircraft.  

This paper introduces an exact method for Aeroelastic design, specifically focusing on determining 

distributions of deterministic quasi-static nodal loads from integrated load cases obtained from the 

stochastic problem. Balanced and quasi-static load distributions are required by the stress office in 

order to size the affected structural components.  

The methodology outlined in this paper builds on the work by Aquilini & Parisse [1], which 

provides a comprehensive method for predicting n-dimensional combined loads in the presence of 

massively separated flows. The methodology in [1] obtains a finite number of design load cases, 

by discretizing the n-dimensional design ellipsoid of equal probability with a semiregular 

polyhedron, a transformed small rhombicuboctahedron.  

The present paper extends and concludes the work in [1] by determining distributions of 

deterministic nodal loads for each selected load case. The exactness of this method allows it to be 

applied to any load case that satisfies the equation of the multidimensional design load envelope. 

Thus, the load case selection is not confined to the vertices of the small rhombicuboctahedron but 

can utilize any discretisation of the ellipsoid. Moreover, this approach is versatile, applicable not 

only to buffeting but also to various stochastic problems, like continuous turbulence. To manage 

load case complexity, a reduction strategy is suggested, contributing to obtaining a reasonable and 

meaningful number of design load cases.  

The paper concludes with examples showcasing the successful application of this method in real-

world scenarios and its impact on the traditional Aeroelastic design. 

1 INTRODUCTION 

Fuselage strakes and wing leading-edge extensions are commonly used to improve the high-lift 

characteristics of fighters. They generate an unsteady flow field characterised by complex vortical 

patterns which affect loads and vibration of aircraft components downstream, leading to buffeting 
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(see [2]). For this reason, optimising fighter performances requires extensive analysis through 

simulations and testing also addressing buffeting aspects, which can otherwise cause premature 

structural failures ([3], [4]).  

Given the stochastic nature of the phenomenon, the analysis of buffet results leads to physical 

quantities in the form of random variables. Particularly important is the derivation of the load 

covariance matrix, required for generating load envelopes, which are used to demonstrate 

compliance against aircraft allowable loads (see [1]). Multivariate random loads also arise from 

stationary Gaussian processes, such as the stochastic or continuous gust, or as a consequence of 

the separated air flow inducing fluctuating pressures on aircraft components. An example is the 

buffeting of the horizontal tail plane due to local flow separations at the wing for general aviation 

and commercial transport aircraft ([5], [6]).  

Typically, the stress office requires distributions of balanced and quasi-static nodal loads in order 

to accurately size the aircraft structure. Unfortunately, the stochastic analysis leads to integrated 

loads and the corresponding deterministic nodal loads are not directly available. Equivalent 

deterministic load cases are historically employed to meet the requirements of the stress office, 

utilizing approximate procedures that entail iterative processes. This paper proposes an exact 

method for deriving deterministic quasi-static nodal loads directly from the stochastic analysis, 

eliminating the need for these approximations.  

The structure of the paper is as follows. Chapter 2 outlines the methodology employed, while 

Chapter 3 showcases the successful application of this method in two distinct scenarios. 

Furthermore, a reduction strategy is suggested for managing load case complexity and contributing 

to obtaining a reasonable and meaningful number of design load cases.  

2 THEORY 

2.1 Buffeting in modal space 

Let us consider the transfer function of the aeroelastic system described in modal space as (cf. [7]) 

𝐇(𝑗𝜔) = [−𝜔2�̃� + 𝑗𝜔�̃� + (1 + 𝑗𝑔)�̃� − 𝑞∞�̃�(𝑀𝑎, 𝑘)]
−1

 (1) 

where 𝜔 is the circular frequency, �̃� the generalized mass, �̃� the modal damping, 𝑔 the structural 

damping, �̃� the generalized stiffness, 𝑞∞ the dynamic pressure, �̃�(𝑀𝑎, 𝑘) the generalized 

aerodynamic forces. The latter are function of the Mach number 𝑀𝑎 and the reduced frequency 

𝑘 = 𝜔𝑐̅ (2𝑈∞)⁄ , where 𝑐̅ is the reference length and 𝑈∞ is the free stream velocity. 

In case the deterministic external forcing 𝐅𝑔 is acting on the system of transfer function 𝐇(𝑗𝜔), 

the modal amplitudes can be derived as 𝛏 =  𝐇(𝑗𝜔)𝚽⊺𝐅𝑔, where 𝚽 is the (real) modal matrix.  

If 𝐅𝑔 is a random vector with spectrum 𝐒𝑓𝑔
(𝑗𝜔), using the stochastic approach described in [1] and 

valid for wide-sense stationary stochastic processes (see [8], pp. 297-298), we obtain the spectrum 

of the modal amplitudes 𝐒𝜉(𝑗𝜔) as 

𝐒𝜉(𝑗𝜔) = 𝐇(𝑗𝜔)𝚽⊺𝐒𝑓𝑔
(𝑗𝜔)𝚽𝐇(𝑗𝜔)† (2) 

where 𝐇(𝑗𝜔)† is the conjugate transpose of 𝐇(𝑗𝜔). Indeed, if 𝐘 = 𝐀𝐗 and 𝐗 is a random vector 

whose spectrum is 𝐒𝑋(𝑗𝜔), its covariance is Cov(𝐗) and 𝐀 is a matrix, then 𝐒𝑌(𝑗𝜔)=𝐀𝐒𝑋(𝑗𝜔)𝐀⊺ 

and Cov(𝐘)=𝐀Cov(𝐗)𝐀⊺ (cf. [8], p. 329).  
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The covariance matrix of the modal amplitudes is the integral of the spectrum in Eq. (2) (cf. [8], 

pp. 327-328) 

Cov(𝛏) =
1

2𝜋
∫ 𝐒𝜉(𝑗𝜔)d𝜔

+∞

−∞

 
(3) 

The covariance of the physical displacements can be obtained in analogy to 𝐮 = 𝚽𝛏 as  

Cov(𝐮) = 𝚽Cov(𝛏)𝚽⊺ (4) 

and nodal loads can be recovered by employing the modal displacement method ([9], pp. 641-650) 

as 𝐘 = 𝐊𝐮, where 𝐊 is the stiffness matrix of the system, and their covariance is 

Cov(𝐘) = 𝐊Cov(𝐮)𝐊⊺ = 𝐊𝚽Cov(𝛏)𝚽⊺𝐊⊺ (5) 

Finally, the integrated loads are obtained by summing up the nodal loads at specific monitoring 

stations, by using a transformation matrix 𝐓 which rotates the nodal loads in the local coordinate 

system proper to each monitoring station and integrates them as 𝐘𝑀𝑆 = 𝐓𝐘. The covariance is 

Cov(𝐘𝑀𝑆) = 𝐓Cov(𝐘)𝐓⊺ = 𝐓𝐊𝚽Cov(𝛏)𝚽⊺𝐊⊺𝐓⊺ = 𝐆Cov(𝛏)𝐆⊺ (6) 

where 𝐆 = 𝐓𝐊𝚽.  

For Gaussian distributed combined loads, 𝐘𝑀𝑆 lies on an n-dimensional quadric surface of equation 

(𝐘𝑀𝑆 − (𝐘𝑀𝑆)0)⊺Cov(𝐘𝑀𝑆)−1(𝐘𝑀𝑆 − (𝐘𝑀𝑆)0) = 𝑄𝑛 (7) 

which represents an ellipsoid, since the covariance matrix is positive definite and therefore also its 

inverse is positive definite (see [1]). It is the locus of points with the same probability density and 

it is n-dimensional since it represents combinations of at most three forces and three moments at 

multiple monitoring stations. The ellipsoid is translated of the steady-state loads (𝐘𝑀𝑆)0, which 

are added linearly to the incremental loads 𝐘𝑀𝑆
′ . From now on, it is convenient to translate the 

coordinate system as 𝐘𝑀𝑆
′ = 𝐘𝑀𝑆 − (𝐘𝑀𝑆)0, in order to have the centre of the ellipsoid in the origin 

and write the new coordinates without primes.  

2.2 Deterministic nodal load distributions 

By following given design guidelines, we can discretize the ellipsoid described by Eq. (7), select 

a specific number of design load cases 𝐘𝑀𝑆 and derive the corresponding nodal load distributions 

for stress analysis.  

If the matrix 𝐆 is invertible, both the modal amplitudes 𝛏 and the integrated loads 𝐘𝑀𝑆 satisfy the 

same quadratic form 𝑄𝑛 

𝛏⊺Cov(𝛏)−1𝛏 = 𝐘𝑀𝑆
⊺ Cov(𝐘𝑀𝑆)−1𝐘𝑀𝑆 = 𝑄𝑛 (8) 

Eq. (8) holds because the inverse of Eq. (6) is Cov(𝐘𝑀𝑆)−1 = (𝐆⊺)−1Cov(𝛏)−1𝐆−1 and given that 

𝐘𝑀𝑆 = 𝐆𝛏 ⇒ 𝐘𝑀𝑆
⊺ = 𝛏⊺𝐆⊺, we obtain 𝐘𝑀𝑆

⊺ Cov(𝐘𝑀𝑆)−1𝐘𝑀𝑆 = 𝐘𝑀𝑆
⊺ (𝐆⊺)−1Cov(𝛏)−1𝐆−1𝐘𝑀𝑆 =

(𝐆𝛏)⊺(𝐆⊺)−1Cov(𝛏)−1𝐆−1(𝐆𝛏) = 𝛏⊺Cov(𝛏)−1𝛏. Therefore, the modal amplitudes are 𝛏 =
𝐆−1𝐘𝑀𝑆. Furthermore, there exists an alternative representation for 𝛏 given by 

𝛏 = Cov(𝛏)𝐆⊺Cov(𝐘𝑀𝑆)−1𝐘𝑀𝑆 =  Cov(𝛏)𝐆⊺(𝐆Cov(𝛏)𝐆⊺)−1𝐘𝑀𝑆 (9) 

Eq. (9) is obtained by substituting 𝐘𝑀𝑆
⊺ = 𝛏⊺𝐆⊺ into Eq. (8) and performing some manipulations. 
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In general, 𝐆 ∈ 𝓡𝑛×ℎ and 𝐘𝑀𝑆 ∈ 𝓡𝑛. Let 𝐆+ denote the Moore-Penrose pseudoinverse of 𝐆 and 𝐈 
the identity matrix. If 𝐆𝐆+𝐘𝑀𝑆 = 𝐘𝑀𝑆, then any vector in the form of 𝛏 = 𝐆+𝐘𝑀𝑆 + (𝐈 − 𝐆+𝐆)𝐲 

is a solution of 𝐘𝑀𝑆 = 𝐆𝛏, where 𝐲 ∈ 𝓡ℎ is an arbitrary vector (cf. [10]). If the rank(𝐆) = ℎ, the 

solution 𝛏 = 𝐆+𝐘𝑀𝑆 is unique, because (𝐈 − 𝐆+𝐆) = 𝟎. Similar to the case where 𝐆 is invertible, 

this solution satisfies Eq. (8) and Eq. (9) is still verified. If the rank(𝐆) = 𝑛 < ℎ, then 𝐘𝑀𝑆 = 𝐆𝛏 

is indeterminate with ∞ℎ−𝑛 solutions, depending on the choice of 𝐲. In this latter case, the special 

solution 𝛏 = 𝐆+𝐘𝑀𝑆 obtained for 𝐲 = 𝟎 is the one with minimum Euclidean norm but may not 

satisfy the quadratic form 𝑄𝑛. However, there always exists an arbitrary vector 𝐲 that yields a 

specific solution 𝛏 which satisfies the ellipsoid equation and this solution is still given by Eq. (9)1.  

This solution ensures that the statistical correlation between modes is preserved, maintaining their 

physical meaning. Importantly, the solution obtained through this method is both unique and exact. 

The distributions of balanced quasi-static nodal loads relative to the selected load cases 𝐘𝑀𝑆 are 

finally obtained as 

𝐘 = 𝐊𝚽𝛏 = 𝐊𝚽Cov(𝛏)𝐆⊺(𝐆Cov(𝛏)𝐆⊺)−1𝐘𝑀𝑆 (10) 

Eq. (10) generally applies to any load case 𝐘𝑀𝑆 = (𝐘𝑀𝑆)0 + 𝐘𝑀𝑆
′  comprehensive of the mean or 

steady-state components (𝐘𝑀𝑆)0 and of the incremental loads 𝐘𝑀𝑆
′ . This implies that it is possible 

to recover distributions of balanced quasi-static nodal loads from any point on the translated n-

dimensional design load envelope. Because of the linearity of the formulation, the steady-state 

components (𝐘𝑀𝑆)0 can be also treated as an additional load case. Once the steady nodal loads are 

obtained through Eq. (10), they can be added to all dynamic nodal load distributions separately.  

In conclusion, Eqs. (9) and (10) can be generally applied to recover the modal amplitudes 𝛏 and 

the nodal loads 𝐘 from the load cases 𝐘𝑀𝑆. The only requirement is that Cov(𝛏) is positive definite. 

3 APPLICATIONS 

The proposed methodology is applicable to various stochastic problems, including continuous 

turbulence, where the right-hand side of the equation is a stationary Gaussian random input, that 

is the Von Kármán spectrum of the turbulence (see [11]). Also in this case, the analysis yields a 

certain number of load cases 𝐘𝑀𝑆, which satisfy Eq. (8) and can be directly used in Eq. (10) for 

obtaining balanced nodal load distributions. 

It is evident that the down-selection of the load cases from Eq. (8) is a fundamental step for a good 

design. The methodology in [1] derives important points on the ellipsoid, like the points of 

tangency with the circumscribing n-orthotope, which are the maximum loads. It also obtains a 

finite number of design load cases, by discretizing the n-dimensional design ellipsoid of equal 

probability with a semiregular polyhedron, a transformed small rhombicuboctahedron. Eq. (10) 

can be employed both for the maxima of the ellipsoid and for the vertices of the small 

rhombicuboctahedron, in order to recover the relative distributions of nodal loads.  

Different strategies can be used in order to select the most suitable load cases for the specific 

application and reduce the load cases to a minimum number relevant for design. For instance:  

 
1 Notably, the matrix 𝐆+𝐆 is a projector, because its eigenvalues are either 0 or 1. Consequently, (𝐈 − 𝐆+𝐆) also acts 

as a projector and the equation (𝐈 − 𝐆+𝐆)𝐲 = 𝛏 − 𝐆+𝐘𝑀𝑆 projects all vectors 𝐲 ∈ 𝓡ℎ in the space that contains 𝛏 and 

𝐆+𝐘𝑀𝑆. Therefore, by selecting 𝐲 = 𝛏 and considering Eq. (9), we obtain (𝐈 − 𝐆+𝐆)𝛏 = 𝛏 −
𝐆+(𝐆Cov(𝛏)𝐆⊺)(𝐆Cov(𝛏)𝐆⊺)−1𝐘𝑀𝑆 = 𝛏 − 𝐆+𝐘𝑀𝑆, thus verifying the original problem. 
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1. The maximum loads of the ellipsoid or its vertices are typically sufficient for the 

preliminary design, obtaining 2𝑛 design load cases (or 4𝑛 if we consider both the maxima 

and the vertices of the ellipsoid).  

Generally, it is useful to express Eq. (7) in function of its maxima and minima ±𝑈𝜎𝛔𝑌𝑀𝑆
, 

where 𝑈𝜎 is a scalar factor (whose value depends on the specific application in order to 

have adequate coverage of all possible values of the Gaussian process) and 𝛔𝑌𝑀𝑆
 is the 

diagonal matrix of the standard deviations of 𝐘𝑀𝑆. Considering the correlation function 

Cor(𝐘𝑀𝑆) = 𝛔𝑌𝑀𝑆

−1 Cov(𝐘𝑀𝑆)𝛔𝑌𝑀𝑆

−1  and 𝛔 = 𝑈𝜎𝛔𝑌𝑀𝑆
√det(Cor(𝐘𝑀𝑆)), the equation of the 

ellipsoid inscribed in the cuboid defined by the planes 𝐘𝑀𝑆 = ±𝑈𝜎𝛔𝑌𝑀𝑆
 and centre in the 

origin is 𝐘𝑀𝑆
⊺ 𝐂𝐘𝑀𝑆 = 1, with 𝐂 =  det(Cor(𝐘𝑀𝑆))(𝛔−1Cor(𝐘𝑀𝑆)−1𝛔−1). If the 

eigenvalues and eigenvectors of 𝐂 are 𝛌𝑛 and 𝚿 respectively, then the coordinates of the 

vertices of the ellipse are 𝐘𝑀𝑆𝑖
= 𝚿𝑖 √𝜆𝑖⁄  and the coordinates of its maxima are 𝐘𝑀𝑆𝑖

=

𝑈𝜎𝛔𝑌𝑀𝑆
𝛒𝑖, where 𝛒𝑖 is the i-th column of the correlation matrix Cor(𝐘𝑀𝑆). By the half turn 

𝐘𝑀𝑆
′ = −𝐘𝑀𝑆 we obtain the symmetric coordinates with respect to the origin. 

2. If more conservativism is required, it is possible to use the vertices of the transformed small 

rhombicuboctahedron, obtaining 𝑛 ⋅ 2𝑛 design load cases (see [1]). The coordinates of its 

vertices are 𝐘𝑀𝑆 = 𝚿√𝛌𝑛𝐰, where 𝛌𝑛 and 𝚿 are the eigenvalues and eigenvectors of 𝐂 

and 𝐰 are all distinct permutations of 𝐰 ≔ (1 + √2)
−1

[±1, ±1, … , ±(1 + √2) ] (see [1]). 

It is then possible to reduce the overall number of design load cases by evaluating their 

correlation and, among the ones which have high correlation (i.e. above a selected 

threshold), retain only the load case with the highest norm. Indeed, highly correlated load 

cases generate very similar load distributions.  

3. The reduction of the number of load cases is necessary especially when complex unsteady 

patterns need to be captured through a large number of monitoring stations. In this case a 

principal component analysis can be employed, extracting main loading components at 

aircraft or component level (see [12]).  

The following paragraphs showcase the calculation of nodal loads for two different applications. 

The first is the buffeting of main landing gear doors of a commercial transport aircraft during the 

deployment and the retraction of the landing gears at approach and after take-off. The second 

application is related to the buffeting of the wing and the horizontal tail plane of an aeroelastic 

wind tunnel model of a generic fighter aircraft designed with the scope of validating numerical 

models and simulation results. 

3.1 Main landing gear doors of a commercial transport aircraft 

The turbulent flow created by the nose landing gear of a commercial transport aircraft during the 

approach and after take-off propagates further downstream and may induce unsteady aerodynamic 

loads on the main landing gear doors (Figure 1).  

In the frame of the European Project AFLoNext, a dynamic model of an isolated main landing gear 

door of an Airbus A320 has been updated and validated with the results of a Ground Vibration 

Test and by using the Operational Modal Analysis based on existing flight test measurements (see 

[14]). CFD analyses using DES-type and other hybrid RANS-LES methods have been also 

performed for selected flight conditions and for different positions of the main and nose landing 

gears (see [15] and [16]).  
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The unsteady pressures sampled on the main landing gear doors surfaces have been finally 

employed in the aeroelastic analysis based on the one-way CFD-CSM coupling described in [1]. 

This led to the full characterisation of the dynamic behaviour of the doors under buffet loading 

and enabled the design, the manufacturing and flight testing of passive means for the reduction of 

vibration and loads of the doors during landing gear operations (see [14] and [17]).  

The door under investigation is shown in Figure 2. It is connected to the keel beam with two hinges 

and one actuator (red triangles in Figure 2). Objective of this chapter is to derive distributions of 

deterministic nodal loads 𝐘 which lead to the maximum reaction forces 𝐘𝑀𝑆 = (𝐘𝑀𝑆)0 + 𝐘𝑀𝑆
′ , sum 

of the steady state and dynamic components.  

 

  

Figure 1: Airbus A320-212 with main landing gear doors 

open. Nose and main landing gears are in transit [13]. 

Figure 2: Main landing gear door FEM. Red triangles are the 

forward and rear hinges and the actuator fitting. The red line 

is the actuator. 

 

Three monitoring stations are introduced in order to take into account the reaction forces 𝐹𝑥, 𝐹𝑦 

and 𝐹𝑧 for the forward hinge, 𝐹𝑦 and 𝐹𝑧 for the rear hinge and the force 𝐹 along the actuator. 

The covariance matrix of the reaction forces Cov(𝐘𝑀𝑆) can be derived from the covariance matrix 

of the modal amplitudes Cov(𝛏) according to Eq. (6) and the ellipsoid of equal probability density 

is six-dimensional according to Eq. (8). The projections of the ellipsoid are shown in black in 

Figure 3. The red lines represent the planar projections of the circumscribing small 

rhombicuboctahedron, while the blue dots represent the maximum reaction forces. The ellipses are 

translated of the static loading components. 

If we select the maximum reaction forces from Eq. (8) (represented by the blue dots of Figure 3), 

𝐘𝑀𝑆 includes 12 dynamic and one steady-state design load cases. Quasi-static nodal loads relative 

to the 13 selected load cases are derived from Eq. (10). The three force components of the load 

distributions are shown for each specific design load case from Figure 4 to Figure 6. They are 

normalised by the maximum force component in each specific load case, and load cases that are 

symmetric about the origin are omitted. 

 

Actuator 

Forward Hinge 

Rear Hinge 
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Figure 3: Projections of the 6-dimensional ellipsoid (black) with the circumscribing small rhombicuboctahedron (red) and 

maximum reaction forces (blue). 
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Figure 4: Nodal load distributions for the steady state load case. 
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Figure 5: Nodal load distributions for the load cases 1, 2 and 3. 
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Figure 6: Nodal load distributions for the load cases 4, 5 and 6. 
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Figure 7: Difference of the structural deformations in the three axes obtained using the mean of the aerodynamic forces and the 

nodal loads of the steady state load case from Eq. (10). 

Given the exactness of the methodology, the nodal loads are perfectly balanced with the reaction 

forces (i.e. the sum of the forces and the sum of the moments relative to a common point are zero). 

Moreover, the integrals of the nodal forces over the three defined monitoring stations (i.e. 𝐘𝑀𝑆 =
𝐓𝐘) are equal to the initial reaction forces. Qualitatively, nodes with greater mass and those that 

are constrained experience larger nodal forces. This aligns with our expectations. 

The nodal forces and moments obtained can be directly applied in stress analyses to size the fittings 

for the primary structure. Figure 7 depicts the difference between the structural deformations 

obtained in the three axes using two methods. The first method applies the mean of the 

aerodynamic forces directly to the FEM. The second method utilizes nodal loads obtained by 

applying Eq. (10) to the steady reaction forces at the hinges and actuator fitting. The observed 

relative difference is local and results from the modal approach inherent to this methodology, 

generally remaining below 5%. 

3.2 Aeroelastic wind tunnel model of a generic fighter aircraft 

The results of buffeting simulations and the methods developed for the fluid-structure coupling 

require validation with measurements in a wind tunnel. For this purpose, an aeroelastic wind tunnel 

model has been developed for experimental tail buffeting analysis by Katzenmeier et al. [18]. It is 

designed as a half-model configuration and consists of a rigid fuselage in aluminium with flexible 

wing and horizontal tail plane manufactured from 3D-printed polylactide (PLA) with 100% fill 

density (see Figure 8). The FEM of the wind tunnel model is shown in Figure 9. 

 

Figure 8: Aeroelastic wind tunnel model on the turn table of the Wind Tunnel at the Technical University of Munich. 
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Figure 9: FEM of the aeroelastic wind tunnel model. 

The model generates a highly unsteady flow field, characterised by two interacting vortices which 

burst over the wing and lead to vibration and loads on the wing and on the horizontal tail plane. 

The flow field has been computed using an Improved Delayed Detached Eddy Simulation 

turbulence approach with Spalart-Allmaras statistical modelling in the RANS zones (see [19]). 

The one-way coupling analysis follows the approach as described in [1] using a Proper Orthogonal 

Decomposition in order to reduce the size of the buffet excitation and therefore the computational 

efforts ([18], [20]). The analysis produces the covariance matrix of the modal amplitudes Cov(𝛏), 

which can be used to compute the covariance matrix of the integrated loads Cov(𝐘𝑀𝑆) through Eq. 

(6) and to draw the ellipsoid through Eq. (8). Given the selected design load cases, we recover the 

relative balanced quasi-static distributions of nodal loads from Eq. (10). 

Three monitoring stations have been selected for sizing the wind tunnel model: the attachment of 

the HTP (red circles in Figure 10), the outboard wing and the outboard HTP (marked in red in 

Figure 10), defined at 50% of the respective chords. For all monitoring stations the shear 𝐹𝑧, the 

bending 𝑀𝑥 and the torsion 𝑀𝑦 are used for the selection of the load cases and therefore Eq. (8) is 

a nine-dimensional ellipsoid (Figure 11). The successful application of the methodology is shown 

by selecting the 9 ⋅ 29 = 4608 vertices of the small rhombicuboctahedron as design load cases. 

   

Figure 10: Three monitoring stations are selected. The horizontal tail plane attachment (red circles), the outer wing and the outer 

horizontal tail plane sections (marked in red). Shear, bending and torsion are considered. 

Wing Attachment 

HTP Attachment 
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Figure 11: Projections of the 9-dimensional ellipsoid (black) with the circumscribing small rhombicuboctahedron (red) and the 

selected load cases (blue). 

 

We analysed the ten load cases with the highest norm among those exceeding a correlation 

coefficient of 0.9 (represented by the blue dots in Figure 11). Load cases inducing significant outer 

wing torsion were excluded due to their high correlation with other high-norm cases. Figure 12 

presents the relative nodal load distributions obtained using Eq. (10). These distributions are 

normalised by the maximum load within each specific load case, and load cases that are symmetric 

about the origin are omitted. 

Consistently with the application described in Chapter 3.1, the nodal load distributions exhibit 

perfect balance. This means the sum of forces and the sum of moments relative to a chosen 

reference point both equal zero. Additionally, the integrals of the nodal forces over the three 

designated monitoring stations (i.e. 𝐘𝑀𝑆 = 𝐓𝐘) match the initial integrated loads. 
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Figure 12: Nodal load distributions for the selected load cases. 

 



IFASD-2024-47 

 14 

4 CONCLUSIONS 

This paper introduces an exact method for recovering distributions of deterministic quasi-static 

nodal loads specifically for stochastic aeroelastic applications. These loads are crucial to accurately 

size structural components affected by buffet and other unsteady aerodynamic phenomena. 

The methodology builds upon the results presented in [1], where a comprehensive approach for 

predicting n-dimensional combined loads in the presence of massively separated flow is derived. 

This work extends the previous method by enabling the determination of deterministic nodal load 

distributions from each design load case.  

The key aspects of this method are its exactness and versatility. The method is applicable to any 

load case which satisfies the equation of the multidimensional design load envelope. This always 

ensures accurate results against the traditional approaches which rely on approximate procedures 

in order to generate equivalent deterministic load cases. Moreover, the approach is not limited to 

buffeting phenomena but can be applied to various stochastic problems, including continuous 

turbulence.  

A load case reduction strategy is suggested to manage load case complexity by selecting 

reasonable and meaningful design load cases, depending on the specific problem.  

The paper concludes by showcasing successful applications of this method in two real-world 

scenarios. First the method is used to derive distributions of deterministic nodal loads for sizing 

the fittings of landing gear doors of a commercial transport aircraft subjected to buffeting during 

landing gear operations. In the second application, the method is employed to obtain nodal loads 

for sizing an aeroelastic wind tunnel model used for experimental tail buffeting analysis. These 

applications demonstrate the effectiveness of the proposed method in determining accurate nodal 

loads which can be directly used for stress analysis and proper structural design in aeroelastic 

problems. 
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NOMENCLATURE 

AFLoNext Active Flow- Loads & Noise control on 

Next generation wing 

 HTP horizontal tail plane 

CFD computational fluid dynamics  LES large eddy simulation 

CSM computational structural mechanics  PLA polylactide 

DES detached eddy simulation  RANS Reynolds averaged Navier Stokes 

FEM finite element model    
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