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Abstract: Dynamic analysis of nonlinear aeroservoelastic systems has been a subject of con-
cern for decades. A modified frequency–time domain method is competent in analyzing non-
linear aeroelastic systems, with the capability of addressing various nonlinearities and initial
conditions. An extension of this method is presented to allow nonlinear responses of closed-
loop systems with freeplay and actuator nonlinearities. Aeroservoelastic systems can be recon-
structed by extracting nonlinear elements as pseudo forces in the nonlinear feedback loops in
the time domain, whereas the original feedback loops are also introduced via the convolution
integral. Hence, nonlinear responses with various nonlinearities and initial conditions can be
obtained by the proposed method. Numerical results are provided for a three-degree-of-freedom
airfoil section with freeplay and actuator nonlinearities, which is augmented to an aeroservoe-
lastic system. Compared with the Runge–Kutta algorithm, the feasibility and accuracy of the
proposed method can be validated. As an alternative to time-marching approaches, the modified
frequency–time domain method initiates a novel process to address various nonlinearities and
initial conditions in nonlinear aeroservoelastic systems.

1 INTRODUCTION

Dynamic analysis plays a pivotal role in aeroservoelasticity [1], exhibiting the intricate inter-
actions between aerodynamics, structural dynamics, and control systems. However, nonlinear-
ities [2] pose further challenges to analyze in aeroservoelastic (ASE) systems. Herein, nonlin-
earities, constituting aerodynamic, structural, and control ones, have significant impacts on the
stability and dynamic responses.

One of the most ubiquitous nonlinearities, structural freeplay [3, 4], has been investigated from
aeroelastic to ASE systems for decades. Tang and Dowell [5] explored the effect of control
surface freeplay in a typical aeroelastic airfoil section, thereby allowing nonlinear responses
with gust excitation. Furthermore, a three-degree-of-freedom (DOF) aeroelastic system with
freeplay was analyzed by Candon et al. [6, 7], with higher-order spectra techniques and the
Hilbert-Huang transform to unveil features of systems with both aerodynamic and structural
nonlinearities. Wang et al. [8] proposed a dual quasi-harmonic balance method to investigate
three-domain limit cycles in a three-dimensional wing-aileron model with freeplay. For nonlin-
ear ASE systems, Gold and Karpel [9] reconstructed nonlinear models via the fictitious mass
approach to observe nonlinear responses with freeplay, regarded as structural nonlinearities of
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actuators, to conduct stability analysis and maneuver simulations. Furthermore, this modeling
method was extended to a three-dimensional multiple-actuated-wing case by Huang et al. [10]
to indicate the effect of freeplay in nonlinear ASE systems. Based on component mode synthe-
sis techniques, Tian et al. [11] analyzed a three-dimensional supersonic aircraft with freeplay
and presented a hybrid adaptive feedback control algorithm for gust load alleviation.

Numerous methods have been developed to analyze nonlinear systems in different calculation
domains, i.e., the frequency and time domains. The frequency-domain approaches, as semi-
analytical methods, are proficient at addressing various nonlinearities; however, the accuracy
of classical ones is unsatisfactory [12]. Contrastingly, the time-marching approaches, namely
numerical methods, are competent in complex nonlinear systems. However, these methods are
tedious and computationally intensive [3], notably when the time step is a significant factor in
the accuracy of nonlinear responses. Owing to the preceding drawbacks, the frequency–time
domain methods were proposed, for instance, the hybrid frequency–time domain approach [13]
and alternating frequency/time domain method [14]. Herein, these methods address nonlinear-
ities in the time domain and merge features in both the frequency and time domain. Based
on these characteristics, Karpel et al. [15, 16] proposed the increased-order modeling (IOM)
approach to circumvent rational function approximation techniques that compromise accu-
racy. Thereafter, Karpel and his colleagues extended the IOM approach to various applica-
tions [17,18], indicating its merits. Furthermore, Owing to the significant impact of initial con-
ditions, Wang et al. [19] modified the IOM approach to exhibit nonlinear transient responses
in two-dimensional aeroelastic systems. The modification extended the IOM approach to allow
transient nonlinear responses and highlighted the capability of handling various nonlinearities.
However, many challenges remain for the application of this modified method in ASE systems.

Based on the aforementioned research, an attempt is made to extend the modified frequency–time
domain method to investigate nonlinearities in ASE systems. The aeroelastic parts of closed-
loop systems can be separated into the main linear block and nonlinear feedback loops; fur-
thermore, actuators are also partitioned in a commensurate manner. Additionally, the original
feedback loops can be reconstructed, similar to the nonlinear feedback loops. Owing to the ca-
pability of addressing various nonlinearities and initial conditions, the modified frequency–time
domain method can be applied to explore nonlinear systems with both freeplay and actuator
nonlinearities. Therefore, nonlinear responses can be obtained by the proposed method. A
three-DOF airfoil typical section with control surface freeplay and actuator nonlinearities is
utilized to validate the feasibility and accuracy of the proposed method, compared with the
Runge–Kutta algorithm.

2 THE MODIFIED FREQUENCY–TIME DOMAIN METHOD

A modified frequency–time domain method [19] was presented to deal with various nonlinear-
ities and initial conditions in nonlinear systems, based on the IOM approach [17, 18].

The equation of nonlinear systems can be expressed as

Mẍ(t) +Cẋ(t) +Kx(t) = f(t) + u(t) (1)

where x, ẋ and ẍ are nonlinear responses and their time derivatives. M, C and K are mass,
damping, and stiffness coefficient matrices, respectively. f(t) are external forces and u(t) are
pseudo forces representing nonlinear elements.
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Considering initial conditions, the equation is rearranged as

M¨̄x(t) +C˙̄x(t) +Kx̄(t) = f(t) + ũ(t) (2)

where ũ(t) are the extension of pseudo forces constituting nonlinear elements and initial con-
ditions, expressed as

ũ(t) = u(t)−K(x0 + ẋ0t)−Cẋ0 (3)

where x0, ẋ0 are initial displacements and velocities.

Based on the frequency–time domain method, nonlinear systems are divided into main linear
blocks and nonlinear elements, shown in Figure 1.
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Figure 1: The detailed flow chart of the modified IOM method [19].

Herein, the main linear blocks are calculated in the frequency domain, eliminating ũ(t) in Eq.2.
The equations can be presented as

x̄L(iω) =[−ω2M+ iωC+K]−1F(iω)

H(iω) =[−ω2M+ iωC+K]−1 (4)

where x̄L(iω) and H(iω) are frequency responses induced by external forces and impulse, re-
spectively. F(iω) = F (f(t)) are the frequency-domain counterparts of external forces. F
and F−1 are the respective symbols of fast Fourier transform (FFT) and inverse fast Fourier
transform (IFFT).

Thereafter, the frequency responses can be transformed into the time domain, expressed as

x̄L(t) =F−1(x̄L(iω))

x̄LU(t) =F−1(H(iω))
(5)

where x̄L(t) and x̄LU(t) are the corresponding linear responses.

Based on the aforementioned linear responses, the convolution integral, shown in Figure 2, is
represented as

x(t) = xL(t) +

∫ tNL

0

xLU(t− τ)ũ(τ)dτ (6)
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where ũ can also be nonlinear functions of responses, which are constructed by pseudo forces
of nonlinear elements and initial conditions in Eq.(3), expressed as

ũ = FNL(x, ẋ, ẍ) (7)

where FNL is the expression of the nonlinear functions.
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Figure 2: The modified expression of convolution integral [19].

Herein, ũ can be transformed into the frequency domain, as Ũ(iω) = F (ũ(t)), to compute the
frequency-domain counterparts of nonlinear time responses.

3 THE MODIFICATION FOR NONLINEAR AEROSERVOELASTIC SYSTEMS

Owing to the capability of addressing various nonlinearities and initial conditions, the modified
frequency–time domain method can be extended to the application for nonlinear ASE systems,
as shown in Figure 3. For instance, two types of nonlinearities, freeplay and actuator nonlinear-
ities, are presented, which are ubiquitous in ASE systems.
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Figure 3: Sketch of nonlinear Aeroservoelastic systems.

The equation in Eq.(1) reflects the characteristics of nonlinear aeroelastic systems; moreover,
the deflection of control surfaces β is part of the state variables q thereof. Furthermore, actua-
tors and control systems are augmented, thereby extending aeroelastic systems to ASE ones.

For simplicity, control systems are represented as gain Kc to examine nonlinearities. Herein,
freeplay is introduced in aeroelastic systems per se, whereas actuator nonlinearities are consid-
ered in the process of construction, regarded as the saturation of deflection and rate. Therefore,
nonlinear actuators in the ASE systems are represented as

βc(t) = TNL(βi) (8)
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where βi, βc are the respective inputs and outputs of nonlinear actuators. TNL is the expression
of the corresponding nonlinear functions.

Notably, nonlinear actuators can be partitioned into linear and nonlinear parts, resembling the
aeroelastic systems. The nonlinear parts can be introduced in the time domain, whereas the
linear ones can be presented as the transfer functions T(s) in the frequency domain, given as

βo = T(s)βi (9)

where βo are the outputs of linear parts.

Owing to the characteristics of the frequency–time domain method, the impacts of two distinct
nonlinearities can be observed from nonlinear responses in conjunction. However, the modifi-
cation should be conducted to introduce two types of nonlinearities in nonlinear ASE systems.
The details of applying the proposed method are represented in this section.

3.1 Freeplay

Owing to closed-loop systems, the inputs to original aeroelastic systems are the actual angles
of control surfaces βa, constituting the deflections of springs hinged with the control surfaces
βs and the outputs of actuators βc, expressed as

βa = βs + βc (10)

Freeplay exists when hinge moments of control surfaces change sign [9, 10], differing from the
aeroelastic systems. Thereafter, responses of βs reflect freeplay of springs, shown in Figure 4,
thereby obtaining nonlinear responses.
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 Figure 1 . Schematic of the aeroelastic typical section with control surface .

describing function approach falls short of this goal for two primary reasons :  (i)
depending on the type of nonlinearity being considered , a significant amount of
analytical work may be required to develop the form of the describing function prior to
actually building the numerical model ;  and (ii) this technique requires the assumption
that system motion will be harmonic , thus disallowing any non-periodic and transient
 solutions . As a result of the harmonic assumption , periodic limit cycle behavior is the
only type of nonlinear solution that can be predicted . It should be noted that
higher-order harmonic terms can be retained in the harmonic balance model , allowing
for periodic responses other than simple harmonic motion .

The theoretical model which has been developed here is based on the state-space
model proposed by Edwards  et al . (1979) for the three degree-of-freedom aeroelastic
typical section shown in Figure 1 . Since the freeplay nonlinearity produces a piecewise
linear change in the structural stif fness of the control surface , as shown in Figure 2 , the
overall system can be represented as a nonlinear combination of three linear systems .
The response can be determined via numerical integration , updating the equations of
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Figure 4: Freeplay nonlinearity [20].

Hence, when one of control surfaces βs is induced by freeplay, the corresponding hinge moment
Mβ can be expressed as

Mβ =


Kδ(βs + δ0) βs < −δ0

0 −δ0 ≤ βs ≤ δ0

Kδ(βs − δ0) βs > δ0

(11)

where δ0 is the angular size of freeplay.
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3.2 Actuator nonlinearities

Based on actual mechanical systems of actuators, the deflection and rate of control surfaces
driven by actuators are restricted, presented as{

|βo| ≤ xlim

|β̇o| ≤ vlim

(12)

where xlim and vlim are the maximum deflection and rate of control surfaces corresponding to
nonlinear actuators, respectively.

Owing to the complexity of nonlinear actuators, the linear outputs βo can be rearranged into the
actual outputs βc by the saturation of deflection and rate. Furthermore, the actual deflections
βa can be computed, combining βc with βs.

3.3 The modification of the frequency–time domain method

Owing to the capability of addressing various nonlinearities, the frequency–time domain method
can be extended to the application for nonlinear ASE systems. The introduction of isolated lin-
ear components [16] in the convolution integral is applied to reconstruct the original feedback
loops.

Based on Section 2, nonlinear actuators are partitioned into linear and nonlinear parts, the linear
of which in Eq.(9) are transformed into the time domain by IFFT, given as

t̄ =F−1(T(iω))

˙̄t =F−1(iωT(iω))
(13)

where t̄, ˙̄t are time impulse response functions and their derivatives of actuators.

Owing to the augmentation of actuators and control systems, the extra convolution integral of
βo should be computed, represented as

βo =

∫ tNL

0

t̄(t− τ)βi(τ)dτ (14)

where tNL is the ending time for convolution integral.

For nonlinear ASE systems, the functions of nonlinear forces are rearranged as

ũ = FNL(x, ẋ, ẍ,βo) (15)

In the aforementioned section, the reconstruction of nonlinear ASE systems is conducted to
introduce various nonlinearities in the time domain, thereby computing nonlinear responses.

4 NUMERICAL RESULTS

Based on the modification for nonlinear ASE systems, a three-DOF aeroelastic typical section
with control surface freeplay [20] is presented, shown in Figure 5, to validate the feasibility and
accuracy.

The dynamic equation of the aeroelastic case is represented as

M̄ẍ+ C̄ẋ+ K̄x = Ḡ (16)
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Figure 5: Three-DOF aeroelastic typical section [20].

where x = [α βa h/b xa]
T are state-space variables. Herein, α and βa are the respective

angles of pitch and flap deflection. h is the plunge displacement, and xa is the augmented state.
b is the semi-chord of wing. Ḡ are the pseudo forces induced by freeplay. M̄, C̄ and K̄ are the
respective mass, damping and stiffness coefficient matrices, given as

M̄ =

[
M 0
0 1

]
C̄ =

[
C −(c1c2 + c3c4)

ρU2

m
R

−S2 (c2 + c4)
U
b

]
K̄ =

[
K −c2c4(c1 + c3)

ρU3

mb
R

−U
b
S1 c2c4

U2

b2

] (17)

where m is the mass of wing and flap, and ρ is the sir density. U is the freestream velocity, and
c1 = 0.165, c2 = 0.0455, c3 = 0.335, c4 = 0.3 are the constants related to unsteady aerodynamics
[21, 22]. M, C, K are the matrices involving structural and aerodynamic components. The
details of these matrices and parameters are presented as Case C in [19].

Augmented with an actuator and a control system, a nonlinear ASE system can be constructed in
Figure 6. The actual flap deflection βa consists of the output of the actuator βc and the rotation of
the spring-hinged with the flap βs, which resembles Eq.(10). To validate the proposed method,
both linear and nonlinear parts of actuators are introduced in this two-dimensional case. The
linear part can be presented in the frequency domain, whose transfer function is expressed as

T (s) =
1

as+ 1
=

βo

βi

(18)

where a = 0.0318 is the constant. Owing to the single control surface in this case, the corre-
sponding variables are simplified from vectors to scalars.

Furthermore, actuator nonlinearities, the saturation of deflection and rate, are introduced in the
time domain by restricting the linear output βo in Eq.(14) to the output βc suitable for actual
nonlinear actuators. The limitations of maximum deflection and rate can be represented as
Eq.(12).

Thereafter, the feedback of pitch rate α̇ is adopted as the control system to construct the closed-
loop system, whose gain is represented as Kc = 0.05. Hence, the input to the linear part of the
actuator is expressed as

βi = Kcα̇ + βcom (19)
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Figure 6: The three-DOF nonlinear ASE system.

where βcom is the input of a command to the actuator.

Herein, freeplay and actuator nonlinearities are individually introduced into the ASE system,
thereby allowing nonlinear responses by the modified frequency–time domain method. Further-
more, responses induced by two types of nonlinearities can be obtained. The given conditions
are freestream velocity U = 10.08 m s−1 and air density ρ = 1.225 kg m−3.

4.1 Freeplay

The nonlinear ASE system is constructed to simulate nonlinear responses induced by freeplay
δ0 = 1.15 deg, eliminating actuator nonlinearities. Responses with initial conditions of h/b =
0.04 and zero are computed by the proposed method, shown in Figure 7. It is recognized that the
results of the proposed method are in good agreement with those of the Runge-Kutta algorithm,
which validates the feasibility and accuracy of the former. Results of various sampling fre-
quencies indicate that the modification for ASE systems intensifies the sensitivity to sampling
frequency, the lower of which leads to less accuracy.
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Figure 7: Responses with freeplay and initial conditions h/b = 0.04

4.2 Actuator nonlinearities

Closed-loop systems exhibit nonlinear responses due to the additional nonlinearities induced by
actuators and control systems. The most ubiquitous components are the saturation of deflection
and rate, which are introduced into the nonlinear feedback loops to validate the feasibility and
accuracy of the proposed method. Two Signals are designated as the commands in Figure 8,
indicating the saturation of deflection xlim = 60 deg and that of rate vlim = 50 deg/s. Responses
with saturation of actuator deflection are shown in Figure 9, induced by the command in Figure
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8 (a). The proposed method produces consistent results with the Runge-Kutta algorithm, which
demonstrates the feasibility and accuracy of the former. Furthermore, the signal of command in
Figure 8 (b) is induced to explore the rate saturation. Correspondingly, responses in Figure 10
reveal the feasibility and accuracy of the proposed method.
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Figure 8: Signals of command for deflection limitation.
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Figure 9: Responses with command and saturation of deflection

4.3 Two types of nonlinearities
In the aforementioned simulations, the effects of both freeplay and actuator nonlinearities can
individually be introduced by the modified frequency–time domain method. Herein, two types
of nonlinearities are jointly presented in the ASE system.

Nonlinear responses with initial conditions h/b = 0.1 in Figure11 demonstrate the feasibility
and accuracy of the proposed method, compared with the Runge–Kutta algorithm. However,
the slight discrepancy is exhibited, as time progresses. Furthermore, the results induced by
command indicate the feasibility and accuracy of the proposed method, without discrepancy of
responses with initial conditions.

The preceding observation reveal that the modified frequency–time domain method is profi-
cient at addressing both freeplay and actuator nonlinearities in conjunction, thereby obtaining
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Figure 10: Responses with command and saturation of rate

nonlinear responses induced by either command or initial conditions.
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Figure 11: Responses with double nonlinearities and initial conditions h/b = 0.1

5 CONCLUSION

In this study, the modified frequency–time domain method is extended for nonlinear ASE sys-
tems to address various nonlinearities and initial conditions. Nonlinear ASE systems are re-
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constructed by extracting nonlinear elements as pseudo forces to nonlinear feedback loops,
whereas the original ones are also introduced in the time domain. Thereafter, the effects of
both freeplay and actuator nonlinearities are embedded in nonlinear ASE systems, allowing
nonlinear responses. Numerical results of a three-DOF typical airfoil section are conducted
to explore the modified frequency–time domain method. Herein, different nonlinearities are
individually or jointly introduced in closed-loop systems. The comparison with Runge–Kutta
algorithm demonstrate the feasibility and accuracy of the proposed method, as an alternative to
time-marching approaches. The modified frequency–time domain method proposes a novel for-
mulation to address various nonlinearities and initial conditions, providing insights for stability
analysis and dynamic response simulations of complex nonlinear systems.
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