Advances in Aeroelastic Prediction and Design Optimization for Next-Generation Aerospace Vehicles

Cristina Riso Daniel Guggenheim School of Aerospace Engineering Georgia Institute of Technology

20th International Forum on Aeroelasticity and Structural Dynamics The Hague, The Netherlands June 19, 2024

An explosion of innovation

Higher-aspect-ratio wings

Strut- and truss-braced wings

Lower- and zero-emission technologies

Distributed propulsion configurations

Commercial supersonic vehicles

High-speed vertical take-off landing vehicles

Urban air mobility operations

Planetary exploration rotorcraft

An explosion of aeroelasticity challenges

Image sources: NASA & Boeing, Airbus, DLR, Leonardo, Archer (top); NASA, Airbus, TU Delft, and Hwang and Martins, *AIAA Paper 2012-5605*, 2012 (bottom right)

An explosion of aeroelasticity challenges

Design methodologies that leverage aeroelastic predictions to make parameter choices

An explosion of aeroelasticity challenges

Image sources: NASA, Boeing, Airbus, DLR, Leonardo, Archer (top)

When the aeroelastic behavior changes with amplitude

When the aeroelastic behavior changes with amplitude

Geometrically nonlinear wings in low-speed flow: modeling test case

High-order model Detailed FEM + VLM or DLM (42k structural DOFs + 648 aerodynamic panels)

Low-order model Beam model + corrected strip theory (60 structural DOFs + 15 aerodynamic strips)

Geometrically nonlinear wings in low-speed flow: takeaways

Beam model predicts global structural metrics with practically same accuracy as 3D FEM

Beam model + strip theory predicts global static aeroelastic metrics within 2% of higher-order models based on 3D steady aerodynamics

Flutter onset errors up to 8% reduce at larger deflection as geometrical nonlinearities take over

Geometrical nonlinearities alone miss subcritical behavior (in this case)

Image: Aeroelasticity Lab, Technion Full study: Riso and Cesnik, *J. Aircr.,* 2023 & *J. Fluids Struct.*, 2023; Data: <https://github.com/UM-A2SRL/AePW3-LDWG.git>

Geometrically nonlinear wings in low-speed flow: takeaways

Exp. onse

Exp. offset

 $A - I$ onset

A-1 offset

B-1 onset

B-1 offse

D onset

D offset

E onset

E offset

G onset

G offset

H onset

H offset

I onset I offset

J onset

K onset K offset

L onset L offset M onset

N onset

N offset

Modal characteristics Static aeroelastic response Flutter boundary

degrees

40 42 44 46 48

First flutter instability (hump mode)

mode offset

 $\frac{1}{2}$ torsion + 2^{nd} OOP bending

52 54 56 58

airspeed, m/s

Synergistic experimental-computational, computational-computational, and experimental-experimental collaborations

are essential to advancing aeroelastic prediction

When the aeroelastic behavior changes with amplitude

When the aeroelastic behavior changes with amplitude

When the aeroelastic behavior changes with amplitude

How can we effectively model the physical phenomena of interest?

Aerodynamic flow regime

When the aeroelastic behavior changes with amplitude

Limit-cycle oscillation (LCO) prediction via bifurcation forecasting: approach

Formulation details: Lim and Epureanu, *Phys. Rev. E*, 2011 & Ghadami et al., *J. Comput. Nonlinear Dyn.,* 2016 (single parameter), Riso et al., *J. Fluids Struct.*, 2021 (multiple parameters) Local matrix pencil analysis details: Golla et al., *AIAA SciTech Forum*, 2024 & *AIAA J.*, 2024 (under review)

Limit-cycle oscillation (LCO) analysis via bifurcation forecasting: takeaways

Limit-cycle oscillation (LCO) analysis via bifurcation forecasting: takeaways

Amplitude-dependent damping extrapolation enables output-based LCO predictions considering multiple varying parameters

Limit-cycle oscillation (LCO) analysis via bifurcation forecasting: takeaways

Amplitude-dependent damping extrapolation enables output-based LCO predictions across a variety of systems

Predictions enhanced by leveraging knowledge of stability scenario from eigenvalue analyses

When the aeroelastic behavior changes with amplitude

How can we leverage aeroelastic predictions for design?

When the aeroelastic behavior changes with amplitude

How can we leverage aeroelastic predictions for design? **Metrics of interest** • Static structural response И Large • Modal characteristics Static aeroelastic response **Structural Geometrically** • Flutter boundary $\sum_{i=1}^{n}$ **deflection** nonlinear flutter Limit-cycle oscillations constraints **range Statically** • Gust response large • Maneuver response • Ride quality • Handling qualities \bigtriangledown Small • … Low speed Subsonic Transonic Supersonic+ **Aerodynamic flow regime**

Review paper: Jonsson et al., *Prog. Aerosp. Sci.*, 2019

Optimizer leverages knowledge of damping variation with equilibrium state to prevent flutter by reducing static deflections

When the aeroelastic behavior changes with amplitude

How can we leverage aeroelastic predictions for design?

Limit-cycle oscillation (LCO) constraints: approach and takeaways

Optimizer leverages knowledge of damping variation with dynamic amplitude to prevent LCOs without computing bifurcation diagrams

When the aeroelastic behavior changes with amplitude

How can we leverage aeroelastic predictions for design?

When the aeroelastic behavior changes with amplitude

How can we leverage aeroelastic predictions for design?

Small

Statically large

 $\sum_{i=1}^{n}$

N

Structural deflection

range

When the aeroelastic behavior changes with amplitude

How can we leverage aeroelastic predictions for design? **Metrics of interest** • Static structural response И Large

- Modal characteristics
- Static aeroelastic response
- Flutter boundary
- Limit-cycle oscillations
- Gust response
- Maneuver response
- Ride quality
- Handling qualities
- \bullet

Low speed Subsonic Transonic Supersonic+

CFD-based flutter and gust constraints

When the aeroelastic behavior changes with amplitude

How can we leverage aeroelastic predictions for design?

An explosion of aeroelasticity challenges

An explosion of aeroelasticity challenges

How do we effectively model physical phenomena where multiple nonlinearities interact?

Aerodynamic flow regime

An explosion of aeroelasticity challenges

How do we keep basic research and practical design efforts connected?

What we want to fundamentally understand What we want to design, build, and fly

Canonical shared test cases of increasing complexity for prediction and design optimization

Success metrics – what do "accurate" and "efficient" mean and for which use case?

Best practices and worst practices too

Reproducible results

An explosion of aeroelasticity challenges

How do we integrate foundations and latest developments in aeroelasticity education?

What we want to fundamentally understand What we want to design, build, and fly Intentional workforce development for research and production**Constraints What we teach Unsteady boundary conditions** Limited time SOLID LINES - p-METHOD $Q(1) - p - k - METHOD$ Limited courses (if any) $-|u|$ INF OF Mostly graduate-level courses **DOUBLETS** 200 300 400 $V - KFAS$ Post-pandemic AI COLLOCATION ROIN

Image sources: AePW3 (top left), NASA, Boeing, and Airbus (top right); Albano and Rodden, *AIAA J.*, 1969; Hassig, *J. Aircr.*, 1971 (bottom middle); Harvard, OpenAI (bottom left)

invasion

teaching and learning

Reference list

References

- Avin et al., *AIAA Journal*, 2022. DOI:<https://doi.org/10.2514/1.J060621>
- Riso and Cesnik, *Journal of Aircraft*, 2023. DOI: <https://doi.org/10.2514/1.C036869>
- Riso and Cesnik, *Journal of Fluids and Structures*, 2023.<https://doi.org/10.1016/j.jfluidstructs.2023.103897>
- Ritter et al., *AIAA SciTech Forum*, 2024. DOI: <https://doi.org/10.2514/6.2024-0419>

Additional resources

- Pazy wing models and results.<https://github.com/UM-A2SRL/AePW3-LDWG.git>
- Third Aeroelastic Prediction Workshop. <https://nescacademy.nasa.gov/workshops/AePW3/public/>
- Workshop on High Aspect Ratio Wing Technologies.<https://cassyni.com/s/ar20plus/seminars>

LCO prediction

References

- Lim and Epureanu, *Physical Reviews E*, 2011. DOI:<https://doi.org/10.1103/PhysRevE.83.016203>
- Ghadami and Epureanu, *Journal of Computational and Nonlinear Dynamics*, 2016. DOI: <https://doi.org/10.1115/1.4033920>
- Riso, Ghadami, Cesnik, and Epureanu, *AIAA Journal*, 2020. DOI:<https://doi.org/10.2514/1.J059024>
- Riso, Cesnik, and Epureanu, *Journal of Fluids and Structures*, 2021. DOI: <https://doi.org/10.1016/j.jfluidstructs.2020.103201>
- Gali, Goehmann, and Riso, *Journal of Fluids and Structures*, 2023. DOI: <https://doi.org/10.1016/j.jfluidstructs.2023.103986>
- Riso, *6 th Decennial VFS Aeromechanics Specialists' Conference*, 2024 (available on Research Gate)
- de Dominicis and Riso, *AIAA SciTech Forum, 2024.* DOI: <https://doi.org/10.2514/6.2024-0190>
- de Dominicis and Riso, *AIAA Journal*, 2024 (to appear, available on Research Gate)

Geometrically nonlinear flutter and LCO constraints

References

- Jonsson, Riso, Lupp, Martins, Cesnik, and Epureanu, *Progress in Aerospace Sciences*, 2019. DOI: <https://doi.org/10.1016/j.paerosci.2019.04.001>
- Jonsson, Riso, Bahia Monteiro, Gray, Martins, and Cesnik, *AIAA Journal*, 2023. DOI: <https://doi.org/10.2514/1.J061575>
- Gray, Riso, Jonsson, Martins, and Cesnik, *AIAA Journal*, 2023. DOI: <https://doi.org/10.2514/1.J062127>
- Riso, Cesnik, and Epureanu, *AIAA Journal*, 2023. DOI: <https://doi.org/10.2514/1.J062012>
- Golla, Kennedy, and Riso, *AIAA SciTech Forum*, 2024. DOI: <https://doi.org/10.2514/6.2024-2413>