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The next generation of aerospace vehicles  
An explosion of innovation

Image sources: NASA & Boeing, Airbus, DLR (top); NASA, Leonardo, Archer (bottom) 1
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Aeroelastic behavior 

changes with amplitude

More than inertial, elastic, and 

aerodynamic forces
Limited design insights 

and guidelines

The next generation of aerospace vehicles 
An explosion of aeroelasticity challenges
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Static amplitude Dynamic amplitude

The equilibrium 

state matters

New phenomena 

come into play

Image sources: NASA & Boeing, Airbus, DLR, Leonardo, Archer (top); NASA, Airbus, TU Delft, and Hwang and Martins, AIAA Paper 2012-5605, 2012 (bottom right)



Limited design insights 

and guidelines

The next generation of aerospace vehicles 
An explosion of aeroelasticity challenges
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More than inertial, elastic, and 

aerodynamic forces

Image sources: NASA, Boeing, Airbus, DLR, Leonardo, Archer (top) 

Need for

Reliable aeroelastic predictions to understand new physical mechanisms

Design methodologies that leverage aeroelastic predictions to make parameter choices

Aeroelastic behavior 

changes with amplitude
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Aeroelastic prediction
When the aeroelastic behavior changes with amplitude

Structural 

deflection 

range

Aerodynamic flow regime

Low speed Subsonic Transonic Supersonic+

Large

Small

Statically 

large

How can we effectively model the physical phenomena of interest?

Metrics of interest

• Static structural response

• Modal characteristics

• Static aeroelastic response

• Flutter boundary 

• Limit-cycle oscillations

• Gust response

• Maneuver response

• Ride quality

• Handling qualities

• …



6

Aeroelastic prediction
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Aeroelastic prediction
Geometrically nonlinear wings in low-speed flow: modeling test case

High-order model

Detailed FEM + VLM or DLM

(42k structural DOFs + 648 aerodynamic panels)

Low-order model

Beam model + corrected strip theory

(60 structural DOFs + 15 aerodynamic strips)

Experimental model details: Avin et al., AIAA J., 2022; Image: Aeroelasticity Lab, Technion

Numerical models details: Riso and Cesnik, J. of Aircr., 2023 & J. Fluids and Struct., 2023; Data: https://github.com/UM-A2SRL/AePW3-LDWG.git 

https://github.com/UM-A2SRL/AePW3-LDWG.git
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Aeroelastic prediction
Geometrically nonlinear wings in low-speed flow: takeaways

Image: Aeroelasticity Lab, Technion

Full study: Riso and Cesnik, J. Aircr., 2023 & J. Fluids Struct., 2023; Data: https://github.com/UM-A2SRL/AePW3-LDWG.git 

Static structural response Modal characteristics Static aeroelastic response Flutter boundary

Less than 

1% error

Less than 

1% error

Beam model predicts global structural metrics with practically same accuracy as 3D FEM

Beam model + strip theory predicts global static aeroelastic metrics within 2% of higher-order models based on 3D steady aerodynamics

Flutter onset errors up to 8% reduce at larger deflection as geometrical nonlinearities take over

Geometrical nonlinearities alone miss subcritical behavior (in this case)

Less than 

2% error

1% to 

4% error

8% error

https://github.com/UM-A2SRL/AePW3-LDWG.git
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Aeroelastic prediction
Geometrically nonlinear wings in low-speed flow: takeaways

Image: Aeroelasticity Lab, Technion

Full study: Ritter et al., AIAA SciTech Forum, 2024; AePW3 details: https://nescacademy.nasa.gov/workshops/AePW3/public/ 

Modal characteristics Static aeroelastic response Flutter boundary

Synergistic experimental-computational, computational-computational, and experimental-experimental collaborations 

are essential to advancing aeroelastic prediction

20+ researchers, 10+ approaches

https://nescacademy.nasa.gov/workshops/AePW3/public/
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Aeroelastic prediction
When the aeroelastic behavior changes with amplitude
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large

Aeroelastic prediction
When the aeroelastic behavior changes with amplitude

How can we effectively model the physical phenomena of interest?
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Aeroelastic prediction
When the aeroelastic behavior changes with amplitude

Structural 

deflection 

range

Aerodynamic flow regime

Low speed Subsonic Transonic Supersonic+

Large

Small

Statically 

large

Metrics of interest

• Static structural response

• Modal characteristics

• Static aeroelastic response

• Flutter boundary 

• Limit-cycle oscillations

• Gust response

• Maneuver response

• Ride quality

• Handling qualities

• …

How can we effectively analyze the physical phenomena of interest?
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Aeroelastic prediction
When the aeroelastic behavior changes with amplitude
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range
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Linearized 

state-space 

models based 

on UVLM, 

panel, and 

VVPM 

methods
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Aeroelastic prediction
When the aeroelastic behavior changes with amplitude
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domain 

transfer-matrix 

methods
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Aeroelastic prediction
When the aeroelastic behavior changes with amplitude
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How to analyze the physical phenomena of interest?
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• …

How can we effectively analyze the physical phenomena of interest?

Linearized 

frequency 
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methods
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Aeroelastic prediction
When the aeroelastic behavior changes with amplitude
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Bifurcation 

forecasting 

methods
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• Static structural response
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• …

How can we effectively analyze the physical phenomena of interest?
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Aeroelastic prediction
Limit-cycle oscillation (LCO) prediction via bifurcation forecasting: approach

Formulation details: Lim and Epureanu, Phys. Rev. E, 2011 & Ghadami et al., J. Comput. Nonlinear Dyn., 2016 (single parameter), Riso et al., J. Fluids Struct., 2021 (multiple parameters)

Local matrix pencil analysis details: Golla et al., AIAA SciTech Forum, 2024 & AIAA J., 2024 (under review)
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Aeroelastic prediction
Limit-cycle oscillation (LCO) analysis via bifurcation forecasting: takeaways

Full study: Riso*, Ghadami*, et al., AIAA J., 2020 (* = equal contribution)

𝑉 = 158 m/s 

(𝑉𝐹 ≈ 160 m/s)

Fitting

Extrapolation

Damping calculation

Fitting and extrapolation at each amplitude

Simulations 

here

𝑉 = 159 m/s 

(𝑉𝐹 ≈ 160 m/s)

Amplitude-dependent damping extrapolation enables 

output-based LCO predictions using as few as two pre-flutter transient responses
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Aeroelastic prediction
Limit-cycle oscillation (LCO) analysis via bifurcation forecasting: takeaways

Full study: Riso et al., J. Fluids Struct., 2021

𝑉 = 158 m/s 

(𝑉𝐹 ≈ 160 m/s)

𝑉 = 159 m/s 

(𝑉𝐹 ≈ 160 m/s)

Simulations for 

single-parameter 

prediction

Additional 

simulation

Amplitude-dependent damping extrapolation enables 

output-based LCO predictions considering multiple varying parameters
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Aeroelastic prediction
Limit-cycle oscillation (LCO) analysis via bifurcation forecasting: takeaways

Full panel study: de Dominicis and Riso, AIAA SciTech Forum, 2024 & AIAA J., 2024 (accepted, to appear)

Full propeller whirl study: Gali et al., J. Fluids Struct., 2023 & Riso, 6th Decennial VFS Aeromechanics Specialists Conference, 2024

Amplitude-dependent damping extrapolation enables output-based LCO predictions across a variety of systems

Predictions enhanced by leveraging knowledge of stability scenario from eigenvalue analyses

Simulations 

here
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Design optimization
When the aeroelastic behavior changes with amplitude

Structural 

deflection 

range

Aerodynamic flow regime

Low speed Subsonic Transonic Supersonic+

Large

Small

Statically 

large

Metrics of interest

• Static structural response

• Modal characteristics

• Static aeroelastic response

• Flutter boundary 

• Limit-cycle oscillations

• Gust response

• Maneuver response

• Ride quality

• Handling qualities

• …

How can we leverage aeroelastic predictions for design?
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When the aeroelastic behavior changes with amplitude
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• Gust response

• Maneuver response
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• …

How can we leverage aeroelastic predictions for design?

Geometrically 

nonlinear flutter 

constraints

Review paper: Jonsson et al., Prog. Aerosp. Sci., 2019
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order 
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Beam model

For local eigenvalue analyses

3D FEM

For detailed stress analysis 

KS aggregate of damping values 
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25

Design optimization
Geometrically nonlinear flutter constraint: approach and takeaways

Full study: Jonsson et al., AIAA J., 2023 & Gray et al., AIAA J., 2023; Left images: Gray et al., IFASD, 2022 

Optimizer leverages knowledge of damping variation with equilibrium state to prevent flutter by reducing static deflections

KS aggregates of local 

stresses
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Design optimization
When the aeroelastic behavior changes with amplitude
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• Static aeroelastic response
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• Limit-cycle oscillations

• Gust response
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• …

How can we leverage aeroelastic predictions for design?

Limit-cycle 

oscillation 

constraints

Geometrically 

nonlinear flutter 

constraints

Review paper: Jonsson et al., Prog. Aerosp. Sci., 2019
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Design optimization
Limit-cycle oscillation (LCO) constraints: approach and takeaways

Full study: Riso et al., AIAA J., 2023 & Golla et al., AIAA SciTech Forum, 2024

Optimizer leverages knowledge of damping variation with dynamic amplitude to prevent LCOs without computing bifurcation diagrams

Flutter constraint

LCO constraint

Design 

optimization Design 

solution

Eigenvalue 

analyses

Damping at 

equilibrium

Time-domain 

analyses

Damping at 

dynamic amplitudes

No LCO 

constraint

LCO 

constraint

Maximum speed 

to be LCO free

KS aggregate of damping values 

at each equilibrium state

KS aggregate of damping values 

at each amplitude from equilibrium
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Design optimization
When the aeroelastic behavior changes with amplitude
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Design optimization
When the aeroelastic behavior changes with amplitude
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Design optimization
When the aeroelastic behavior changes with amplitude
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Design optimization
When the aeroelastic behavior changes with amplitude
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range

Aerodynamic flow regime

Low speed Subsonic Transonic Supersonic+

Large
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flutter and 
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Static amplitude Dynamic amplitude

The equilibrium 

state matters

New phenomena 

come into play

Image sources: NASA, Boeing, Airbus, DLR, Leonardo, Archer (top); NASA, Airbus, TU Delft, and Hwang and Martins, AIAA Paper 2012-5605, 2012 (bottom right)
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Structural 

deflection 

range

Aerodynamic flow regime

Low speed Subsonic Transonic Supersonic+

How do we effectively model physical phenomena where multiple nonlinearities interact?

Large

Small

Statically 

large

Wings in 

transonic flow

Metrics of interest

• Static structural response

• Modal characteristics

• Static aeroelastic response

• Flutter boundary 

• Limit-cycle oscillations

• Gust response

• Maneuver response

• Ride quality

• Handling qualities

• …

The next generation of aerospace vehicles 
An explosion of aeroelasticity challenges

Geometrically 

nonlinear 

wings in 

low-speed 

flow

Wing-(prop)rotor 

systems in low-speed 

to subsonic flow



How do we keep basic research and practical design efforts connected?

34

The next generation of aerospace vehicles 
An explosion of aeroelasticity challenges

What we want to fundamentally understand What we want to design, build, and fly

Canonical shared test cases of increasing complexity for prediction and design optimization

Success metrics – what do “accurate” and “efficient” mean and for which use case?

Best practices and worst practices too

Reproducible results

Image sources: AePW3 (top left), NASA, Boeing, and Airbus (top right)



What we teach 
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The next generation of aerospace vehicles 
An explosion of aeroelasticity challenges

Unsteady boundary conditions

Post-pandemic 

teaching and learning

AI 

invasion 

What we want to fundamentally understand What we want to design, build, and fly

Constraints

Limited time

Limited courses (if any)

Mostly graduate-level courses

Image sources: AePW3 (top left), NASA, Boeing, and Airbus (top right); Albano and Rodden, AIAA J., 1969; Hassig, J. Aircr., 1971 (bottom middle); Harvard, OpenAI (bottom left) 

How do we integrate foundations and latest developments in aeroelasticity education?

Intentional workforce development for research and production
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Static amplitude Dynamic amplitude

The equilibrium 

state matters

New phenomena 

come into play

Image sources: NASA, Boeing, Airbus, DLR, Leonardo, Archer (top); NASA, Airbus, TU Delft, and Hwang and Martins, AIAA Paper 2012-5605, 2012 (bottom right)

opportunities



Aeroelastic behavior 

changes with amplitude

More than inertial, elastic, and 

aerodynamic forces
Limited design insights 

and guidelines

The next generation of aerospace vehicles 
An explosion of aeroelasticity challenges

37Image sources: NASA, Boeing, Airbus, DLR, Leonardo, Archer (top); NASA, Airbus, TU Delft, and Hwang and Martins, AIAA Paper 2012-5605, 2012 (bottom right)

A new dimension

for aeroelastic tailoring

opportunities



Aeroelastic behavior 

changes with amplitude

More than inertial, elastic, and 

aerodynamic forces
Limited design insights 

and guidelines

The next generation of aerospace vehicles 
An explosion of aeroelasticity challenges

38Image sources: NASA, Boeing, Airbus, DLR, Leonardo, Archer (top); NASA, Airbus, TU Delft, and Hwang and Martins, AIAA Paper 2012-5605, 2012 (bottom right)

A new dimension

for aeroelastic tailoring

Mutual benefits between 

traditionally disjoint disciplines

opportunities



Aeroelastic behavior 

changes with amplitude

More than inertial, elastic, and 

aerodynamic forces
Limited design insights 

and guidelines

The next generation of aerospace vehicles 
An explosion of aeroelasticity challenges

39Image sources: NASA, Boeing, Airbus, DLR, Leonardo, Archer (top)

A new dimension

for aeroelastic tailoring

Mutual benefits between 

traditionally disjoint disciplines

Aeroelasticity can play a key role 

in shaping new designs

opportunities
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