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Abstract: The aviation industry’s challenge to achieve net-zero carbon emissions by
2050 demands innovative approaches to aircraft design, particularly through the devel-
opment of lighter, more fuel-efficient aircraft structures. Aeroelastic optimization plays
a crucial role in this process by enabling exploration within a design space bounded by
numerous constraints, including structural strength and stability. Traditional aeroelastic
optimizations rely on linear buckling analyses which, while computationally efficient, tend
to over-constrain the design space due to their conservative nature. Such conservatism
places a glass ceiling on the sizing loads used within optimization studies, preventing the
exploitation of the full load-bearing capacity, especially as aircraft designs trend towards
more slender and compliant wing structures where nonlinear effects become significant.
This paper builds on previous research by integrating a nonlinear structural stability
constraint into the optimization of a wingbox structure under a distributed load. Three
optimization scenarios are considered to evaluate the influence of different load introduc-
tion methods: distributed non-follower forces, distributed follower forces, and non-follower
forces applied to a load reference axis. In addition, the formulation of the nonlinear struc-
tural stability constraint is revisited to allow its application in presence of follower forces.
Our findings, demonstrated on an idealized version of the Common Research Model wing-
box, confirm a substantial mass reduction using the nonlinear constraints compared to
the traditional linear ones, ranging between 8 and 9%. Not much difference is found be-
tween the structures optimized with distributed non-follower and follower forces, because
of their small deflections. Instead, a noticeable difference is found for the structure opti-
mized with non-follower forces applied to the load reference axis, which achieves a smaller
mass reduction. If on one hand these results suggest that employing the load reference
axis approach might lead to conservative results, on the other hand we show that such
approach leads to an inaccurate prediction of the structural deformation.
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1 INTRODUCTION
In 2021, the Air Transport Action Group established an ambitious target for global civil
aviation to reach net-zero carbon emissions by 2050 [1], aligning with the Paris Agree-
ment’s aim to keep global warming below 1.5 ◦C. This objective presents a significant
challenge for the aviation industry, necessitating innovative approaches to aircraft design.

The objective of net-zero aviation has given new impetus to the development of fuel-
efficient aircraft. As conceptually outlined by the Breguet Range equation, emission re-
ductions can be achieved through lighter aircraft, improved aerodynamics, and increased
engine efficiency [2]. Recent decades have seen significant advancements in aeroelastic
optimization tools for the design of lightweight structures, primarily driven by the devel-
opment and integration of composite materials, which are known for their high specific
strength and stiffness and extensive elastic tailoring capabilities.

In aeroelastic optimizations, static structural stability often emerges as a pivotal con-
straint [3–15]. Typically, linear buckling analyses are employed to impose this constraint,
which involve eigenvalue problems based on the linearization of the structural response
around the undeformed configuration. These analyses, while computationally efficient
and simple to implement, tend to over-constrain the design space, potentially leading
to over-designed structures. In fact, in advanced design stages, aerospace structures are
sized to bear loads beyond their linear buckling point [16].

In a recent work [17], we proposed the hypothesis that, in current aeroelastic optimiza-
tions, linear buckling evaluations place a glass ceiling on the sizing load that the wing
structure can carry, curtailing in this way the maximum load-carrying capacity. This
limitation is particularly relevant in the context of evolving wing designs driven by the
pursuit of sustainability, where the increasing slender and compliant nature of wings
makes nonlinear effects more significant. Accordingly, we argue that nonlinear evalua-
tions of structural stability could lead to more efficient design solutions.

In the same study, we demonstrated a novel nonlinear structural stability constraint for
the optimization of wingbox structures [17]. The approach was based on enforcing the
positive-definiteness of the tangent stiffness matrix by monitoring its smallest magnitude
eigenvalues for all the increments of the nonlinear analysis and by imposing their positivity.

This concept was proven through a structural optimization of an idealized model of the
Common Research Model (CRM) [18] wingbox, hereinafter referred to as the CRM-like
box beam, employing a concentrated tip load and a uniform wall thickness. The opti-
mization with nonlinear structural stability constraints achieved an 11.3% mass reduc-
tion compared to a baseline structure optimal in linear buckling terms. In a more recent
work [19], we increased the realism of the optimization scenario using a linearly varying
thickness over the length of the same model, showing a 29.6% mass reduction with respect
to the linearly optimized structure.

As a further step towards fully-coupled aeroelastic optimization on a realistic wing model,
this paper builds on our previous works applying the nonlinear structural stability con-
straint to a problem with distributed load over the top and bottom skin of the CRM-like
box beam, with the idea of loosely mimicking an aerodynamic load. However, real aero-
dynamic loads are generated by the pressure exerted by the flow field, meaning that they
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are in effect follower loads. This poses a challenge from a nonlinear structural stability
perspective, as follower loads are non-conservative, implying a non-symmetric tangent
stiffness matrix and a broken relationship with the total potential energy. Consequently,
it is no longer possible to assess structural stability by looking at the eigenvalues of the
non-symmetric tangent stiffness matrix.

At the same time, many aeroelastic frameworks employ simplified methods such as Vortex
Lattice Method (VLM) or Doublet Lattice Method (DLM) to calculate the aerodynamic
loads. These methods approximate the wing by representing it as a mean aerodynamic
surface and compute the net lifting pressure over this surface. The introduction of the
aerodynamic loads into the structure is typically achieved by condensing the load on a
load reference axis (LRA). When the structure is represented by a beam model the LRA
is coincident with the structural model itself [20], while in case of a shell model the LRA
is constructed artificially, for example adding fictitious nodes at the center of the rib
sections [3]. However, the validity of this type of approach for the assessment of nonlinear
structural stability is an open question.

In this paper we address the above-mentioned challenges and questions by redefining the
nonlinear structural stability constraint to include cases with follower loads and by inves-
tigating the influence of different load introduction methods on the optimization of the
CRM-like box beam under nonlinear structural stability constraints. We consider three
different load introduction methods: distributed non-follower forces, distributed follower
forces, and non-follower forces applied to the LRA. For each method we perform a first
optimization with linear buckling constraints and a second optimization with nonlinear
structural stability constraints, starting from the linearly optimized structure.

The remainder of the paper is structured as follows: Sec. 2 provides the theoretical back-
ground on the nonlinear structural stability constraint, including the case of follower loads.
Section 3 presents the numerical model and the definition of the optimization problems.
Finally, Sec. 4 addresses the investigation on the influence of the load introduction method
on both the initial structure and on the optimization results.

The results herein can be reproduced through an open-source Jupyter notebook available
in a GitHub repository1, where additional resources on this research are also available.

2 NONLINEAR STRUCTURAL STABILITY CONSTRAINT
2.1 Conservative loads
To calculate equilibrium points and assess their stability in the geometrically nonlinear
analysis of structures under conservative loads, it is necessary to consider the total po-
tential energy, Π, which is given by the difference between the internal strain energy, U ,
and the external work done [21], W , i.e.

Π = U −W. (1)

In general, the total potential energy is a function of the state parameters, u, correspond-
ing to the structural degrees of freedom, and other parameters such as the applied loads,
p, whence Π = Π(u,p).

1https://github.com/fmamitrotta/nonlinear-structural-stability-notebooks, accessed April 2024.
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Equilibrium is found at points where the potential energy has a stationary value, or in
other words where its first derivative with respect to the states is zero, such that

∂Π

∂u
= 0. (2)

The stability of the equilibrium points depends on the second derivative of the potential
energy with respect to the state parameters. This means that we need to consider the
Hessian of the potential energy, which corresponds to the tangent stiffness matrix, so

∂2Π

∂u2
= HΠ = KT . (3)

The tangent stiffness matrix represents the local, point-wise tangent to the load-displacement
manifold and changes at every equilibrium point found during the nonlinear analysis. The
stability of an equilibrium point is thus established as

KT (u)


positive definite ⇒ stable equilibrium;

singular ⇒ neutral equilibrium;
indefinite or negative definite ⇒ unstable equilibrium.

(4)

In the context of an aircraft wing, it is desirable that the structure is always loaded along
a stable equilibrium path. Traversing unstable equilibria may indeed cause sudden snap-
throughs, which, be it local or global, may cause structural damage. For this reason,
the nonlinear structural stability constraint employed here consists in constraining the
tangent stiffness matrix to be positive definite for all converged increments of the nonlinear
analysis, or in other words, for all the calculated equilibrium points.

The definiteness of a matrix can be evaluated by considering its eigenvalues. Consequently,
we can recast Eq. (4) as

KT (u)


all eigenvalues > 0 ⇒ stable equilibrium;

at least one eigenvalue = 0 ⇒ neutral equilibrium;
at least one eigenvalue < 0 ⇒ unstable equilibrium2.

(5)

Equation (5) means that we can evaluate the nonlinear structural stability of the struc-
ture by monitoring the eigenvalues, λ, of the tangent stiffness matrix for each converged
increment of the nonlinear analysis. However, the size of the tangent stiffness matrix of
typical Finite Element (FE) models employed in aeroelastic optimizations makes the com-
putation of all eigenvalues impractical. For this reason, only the Nλ smallest magnitude
eigenvalues are monitored, and they are constrained to remain positive.

2In the case of at least one zero and one negative eigenvalue occurring simultaneously, the equilibrium
is neutral along the principal stiffness directions associated with the zero eigenvalues and unstable along
the principal stiffness directions associated with the negative eigenvalues. Consequently, the structure is
considered unstable overall.
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2.2 Non-conservative loads
For non-conservative loads, such as those induced by aerodynamic forces in flight, the
external work done on the structure cannot be described by a potential energy function,
since it is no longer path-independent. This deviation from conservative principles leads
to two major ramifications: the tangent stiffness matrix KT is non-symmetric, and a total
potential energy of the system does not exist, meaning that there is no direct relationship
between stability and tangent stiffness matrix. Consequently, Eq.(5) cannot be applied
to infer stability and enforce the nonlinear structural stability constraint.

The mixed perturbation stability criterion [22] offers a solution to this issue by allowing
stability analysis through the symmetric part of the tangent stiffness matrix, denoted as
KTs and obtained as

KTs =
KT +K⊺

T

2
. (6)

This criterion defines the structural system to be statically stable if the linear system

δp = KT δx (7)

is non-singular for all mixed perturbation (δp1, . . . , δpk, δxk+1, . . . , δxn), where δpi are
the infinitesimal perturbations of the loads and δxi are the incremental displacements
resulting from the new equilibrium of the system.

For Eq. (7) to be non-singular for all mixed perturbation, the expression

δx⊺δp > 0 (8)

must hold. By substituting Eq. (7) into Eq. (8), we obtain the quadratic form

δx⊺KT δx > 0. (9)

The above condition means that if the quadratic form of the tangent stiffness matrix at
a given equilibrium point is positive definite, then the equilibrium is stable.

The positive definiteness of the quadratic form δx⊺KT δx can be assessed by looking at
the quadratic form of the symmetric part of the tangent stiffness matrix, as for all δx ∈ R

δx⊺KT δx = δx⊺KTsδx. (10)

In practical terms, this means that for the case of non-conservative loads, Eq. (5) becomes
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KTs (u)


all eigenvalues > 0 ⇒ stable equilibrium;

at least one eigenvalue = 0 ⇒ neutral equilibrium;
at least one eigenvalue < 0 ⇒ unstable equilibrium.

(11)

In other words, to enforce the nonlinear structural stability constraint in presence of non-
conservative loads, we must symmetrize the tangent stiffness matrix at every equilibrium
point, calculate the Nλ smallest magnitude eigenvalues and constrain these to remain
positive.

2.3 Nonlinear solver
The way in which a structure’s equilibrium manifold is traced depends on the method
employed to solve the nonlinear governing equilibrium equation. Herein, we focus on
static analyses and we require the nonlinear solver to be able to follow both stable and
unstable paths to provide a robust approach for the evaluation of the nonlinear stability
constraint function.

In the more general case of non-conservative loads, the nonlinear equilibrium equations
of a structure can be expressed as a force balance between internal and external forces

R (u, µ) = f (u)− p (u, µ) = f (u)− µp̂ (u) = 0 (12)

where R is a residual, u is the displacement vector, µ a scalar loading parameter, f
the vector of internal forces, which is only dependent on u, and p the vector of non-
conservative external forces, depending both on µ and u. The external forces can be
expressed in terms of a force vector p̂, purely dependent on the displacements, multiplied
by the loading parameter µ, independent of the displacements, as in nonlinear problems
the external loads are usually applied in increments. In the case of purely conservative
loads, the force vectors p and p̂ are independent of the displacements.

The aeroelastic optimization frameworks that feature nonlinear structural analysis, typ-
ically employ load control methods to solve Eq. (12) [12, 15]. With this approach, a
load value is imposed at every consecutive increment of the nonlinear analysis and held
constant during Newton-Raphson iterations until convergence is achieved. Upon conver-
gence, the analysis moves on to the next load increment. This method has issues with load
limit point bifurcations, because it cannot follow the unstable segment of the equilibrium
path beyond the limit point, where the applied load decreases. In fact, the solver might
jump to the next available equilibrium point for the new increment above the limit point,
or it might not achieve convergence at all [23]. In both cases load controlled increments
cannot find unstable equilibrium points, making them unsuitable for an aeroelastic op-
timization framework that aims to evaluate structural stability with nonlinear methods.
Similar problems are faced by displacement-controlled solutions, but at displacement limit
points.

Considering the above requirements, the chosen strategy for the solution of Eq. (12)
is path-following with arc-length control. In this approach, the solution path is traced
with an incremental-iterative method that imposes a simultaneous variation of load and
displacement variables for the solution of the linearized equilibrium equations. The ith
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equilibrium point is searched at an arc-length distance ∆si from the last known equilib-
rium, ∆si being calculated via a norm of the increment (∆ui,∆µi). The iterations are
constrained to lie on the surface created by the arc, and they eventually converge at the
intersection of the arc and the equilibrium path. In this way, arc-length methods can
successfully calculate the equilibrium path of a structure also in presence of instabilities
like limit point bifurcations [23]. Consequently, the arc-length method is chosen for the
evaluation of the nonlinear structural stability constraint employed in this paper, as it
can successfully follow stable as well unstable segments of an equilibrium path.

When linearizing Eq. (12) to find a solution at the j-th iteration of the i-th increment,
the tangent stiffness matrix appears in the form of

Ki
T,j−1δu

i
j = δµi

jp̂−Ri
j−1, (13)

where δui
j and δµi

j respectively represent the differential displacements and scalar loading
parameter between the current iteration, j, and the last iteration, j − 1.

Equation (13) is coupled with the equation that constrains the iterations to lie on the
surface created by the above-mentioned arc to find δui

j and δµi
j, requiring the inversion

or the factorization of Ki
T,j−1. In presence of non-conservative loads, this matrix is non-

symmetric, which makes this operation more computationally expensive. However, it is
not strictly necessary to use the non-symmetric stiffness matrix during the iterations to
achieve convergence [24]. Since we need to symmetrize the tangent stiffness matrix at
every equilibrium point to assess the structural stability, in the analyses of Sec. 4 we use
the symmetrized matrix also during the incremental-iterative procedure of the arc-length
method with the aim of easing the computational burden.

3 DEFINITION OF THE STRUCTURAL MODEL AND OF THE OPTIMIZATION
PROBLEMS

In this section, we define the numerical model of the CRM-like box beam, the different load
introduction methods used for the optimizations discussed in Sec. 4 and the optimization
problems with linear buckling and nonlinear structural stability constraints.

3.1 The CRM-like box beam model
The CRM-like box beam is a straight box beam idealization of the CRM wingbox based
on the data provided in [25]. It was developed for a previous study [17], where its sizing is
reported, to obtain a relatively simple representation of a typical wingbox structure used
in aeroelastic optimizations. To investigate the nonlinear structural stability response, the
model was developed to retain only the essential features that influence such response,
that is to say ribs and skin stiffeners. Specifically, the CRM-like box beam is reinforced by
19 equally spaced ribs and 2 equally spaced stiffeners on each skin. The model’s geometry
and dimensions are depicted in Fig. 1, while the cross-sectional and material properties
of the model are summarized in Table 1.

The numerical model is implemented in MSC Nastran, where all geometrical parts are
discretized using CQUAD4 (thin shell) elements. Fixed boundary conditions are enforced
at the root section by means of a SPC1 card.
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Figure 1: Geometry and dimensions of the CRM-like box beam model.

Table 1: CRM-like box beam cross-sectional and material properties. Material properties from [26]. The
same thickness is used for all structural parts: skin, spars, ribs and stiffeners.

Parameter Value
Wall thickness 7.7 mm
Density 2780 kg/m3

Young’s modulus 73.1 · 109 Pa
Poisson’s ratio 0.3
Yield strength 420 · 106 Pa

3.2 Load introduction methods
To study the influence of different load introduction methods on the nonlinear structural
stability analysis and optimization of the CRM-like box beam, we consider three different
cases: distributed non-follower forces, distributed follower forces, and non-follower forces
applied to a LRA. In the first two cases, we use an elliptical load distribution over both
the top and bottom skin of the CRM-like box beam, with the aim of loosely mimicking
the aerodynamic load applied to a wing. In the last case, we use the Matching-based
Extrapolation of Loads and Displacements (MELD) transfer scheme [27]3 to define the
load on the LRA.

For the application of distributed non-follower forces, the load is introduced in the Nastran
model using FORCE cards at every node on the top and bottom skin, which define non-
follower nodal forces. Figure 2(a) illustrates this load introduction approach.

In the case of distributed follower forces, the load is introduced via PLOAD2 cards defined
on every quadrilateral element of the top and bottom skin. Each PLOAD2 card specifies
a pressure load, which is transformed by Nastran into four equal follower-forces at the
nodes of the element. This method results in a load distribution very similar to that of
the non-follower forces, with minor deviations at the skin edges.

For the application of non-follower forces to the LRA, we construct a virtual axis by
placing new nodes at the center of each rib and by connecting each of these nodes to the
nodes at the edges of the corresponding rib using RBE3 elements. These elements create
multipoint constraints that distribute the load from the central node to the connected
nodes and calculate the displacement of the former as a weighted average of the displace-

3MELD is available as part of the FUNtoFEM coupling framework, publicly accessible at https:
//github.com/smdogroup/funtofem (accessed May 2024).
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ments of the latter. The MELD scheme is used to transfer the distributed non-follower
forces on the skin to the nodes of the LRA in a way that enforces energy conservation.

Typically, MELD defines the load and displacement transfer between an aerodynamic
and a structural mesh by linking each aerodynamic surface node to a set of nearest
structural nodes and determining an optimal rigid rotation and translation through a
weighted least-squares problem. In our case, we use the mesh of the CRM-like box beam
as a pseudo-aerodynamic mesh, and the nodes of the LRA as a pseudo-structural mesh.
To provide MELD with the pseudo-structural displacements needed to set up the load
transfer scheme, we perform a linear analysis using the distributed non-follower forces,
and we find the displacements of the nodes on the LRA. Successively, we transfer the load
from the mesh of the CRM-like box beam to the nodes of the LRA and we apply it using
FORCE cards, as shown in Fig. 2(b).

(a) Distributed non-follower forces. Vectors are
sub-sampled for the sake of clarity.

Y

X

Z

(b) Non-follower forces applied to LRA.

Figure 2: Static load applied to CRM-like box beam.

A mesh convergence study was conducted on the model loaded with distributed non-
follower forces to determine an appropriate mesh size that balances computational effi-
ciency with accuracy. The final converged mesh consists of approximately 3.3·104 elements
and results in a linear buckling load of about 3.0 · 104 N. The critical buckling mode for
this configuration is depicted in Fig. 3, which also highlights the node experiencing the
largest displacement. The displacement along the z-axis at this node is used to monitor
the local out-of-plane displacements over the root region in the nonlinear analyses.

Further details on the mesh convergence study are reported in the Appendix.

3.3 Optimization problems
For each load introduction method we perform two subsequent mass-minimization opti-
mizations: one with linear buckling constraints and the other with nonlinear structural
stability constraints. We use the same design load for all optimizations, choosing it to
be equal to the linear buckling load obtained for the initial structure under distributed
non-follower forces.
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Analogously to our last work [19], we allow only the wall thickness to change during the
optimization, imposing a linear variation along length of the CRM-like box beam, which
is defined by two design variables: the thickness at the root, troot, and the thickness at the
tip, ttip. As shown in Fig. 4, the structure is divided into design segments with uniform
thickness, corresponding to either ribs or box beam sections including spars, skin and
stiffeners. The thickness of each segment is obtained by means of a linear interpolation
between troot and ttip and by evaluating the thickness value at the center of each design
segment.

The first optimization of the CRM-like box beam employs linear buckling constraints and
serves to define a baseline structure for the optimization with nonlinear structural stability
constraints. The objective is to minimize the mass of the initial CRM-like box beam
while ensuring that the linear buckling load is larger than the design load and that the
deformations remain elastic. All computations are performed using MSC Nastran’s linear
buckling solution sequence, SOL 105. The first constraint is implemented by computing
the 20 smallest positive buckling load factors, representing the ratio between the buckling
load and the applied load, BLF = PSOL 105/Pdesign, and by imposing that they are all
larger than 1. The second constraint is implemented by enforcing that the von Mises

Figure 3: Critical buckling mode of the initial structure under distributed non-follower forces.

Figure 4: Design segments.
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stress of each element is smaller than the yield strength of the material.

In summary, the optimization problem with linear buckling constraints is defined as

minimize m

by varying tmin ≤ [troot, ttip] ≤ tmax

subject to gBLF, i = 1− BLFi < 0 i = 1, . . . , NBLF

gσ, j = σj − σmax < 0 j = 1, . . . , Ne

(14)

where tmin and tmax are the thickness bounds, which are set between 1 and 20mm, BLFi

is the i-th buckling load factor, with NBLF = 20, σj is the von Mises stress of the j-th
element, evaluated at both the top and bottom plane of the element, and σmax is the yield
strength of the material.

Instead of imposing the constraints separately on each buckling load factor and on each
element, they are aggregated using Kreisselmeier–Steinhauser (KS) functions [28], such
that

KSBLF = max
i

(gBLF, i) +
1

ρ
ln

(
NBLF∑
i=1

exp
(
ρ
(
gBLF, i −max

i
(gBLF, i)

)))
(15)

KSσ = max
j

(gσ, j) +
1

ρ
ln

(
Ne∑
j=1

exp
(
ρ
(
gσ, j −max

k
(gσ, j)

)))
(16)

where ρ is the aggregation factor determining how close the KS function is to the maximum
function, which is set to 100. This aggregation technique returns a single value for each
constraint, representing an envelope of all the calculated quantities.

The structure obtained from the optimization with linear buckling constraints is used as
starting point for the optimization with the nonlinear structural stability constraint. The
latter is implemented by imposing that the 20 smallest magnitude eigenvalues of the tan-
gent stiffness matrix, or of its symmetric part, are positive for all converged increments
along the traced equilibrium path. The constraint on von Mises stresses is not changed,
but this time nonlinear stresses are considered. A new constraint is added to this op-
timization, enforcing the applied load at the end of the nonlinear analysis, Pend, to be
equal to the design load, thus avoiding misleading the optimizer if the analysis does not
converge to the prescribed load.

In summary, the optimization problem with nonlinear structural stability constraints is
defined as
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minimize m

by varying tmin ≤ [troot, ttip] ≤ tmax

subject to gλ, ij = −λij < 0 i = 1, . . . , Ni, j = 1, . . . , Nλ

gσ, k = σk − σmax < 0 k = 1, . . . , Ne

gP = 0.99− Pend

Pdesign

< 0

(17)

where λij is the j-th tangent stiffness matrix eigenvalue at the i-th converged increment,
Ni is the number of converged increments and Nλ = 20. The constraint on the applied
load at the end of the nonlinear analysis is implemented as an inequality, where the
difference with respect to the prescribed load must be smaller than 1%.

The eigenvalues of the tangent stiffness matrix are also aggregated using a KS function,
instead of imposing the constraints on each individual eigenvalue, such that

KSλ = max
i,j

(gλ, ij) +
1

ρ
ln

(
Ni∑
i=1

Nλ∑
j=1

exp

(
ρ

(
gλ, ij −max

i,j
(gλ, ij)

)))
. (18)

All computations are performed using MSC Nastran’s nonlinear analysis solution se-
quence, SOL 106. To monitor the 20 smallest magnitude eigenvalues of the tangent
stiffness matrix we use a suitable DMAP invoked by the Nastran input file4.

The arc-length method is set up through the NLPARM and the NLPCI cards, whose
settings are reported in Table 2. These settings are chosen with the aim of maximizing the
computational efficiency of SOL 106’s arc-length solver. The strategy employed consists
in starting the nonlinear analysis using a relatively large arc-length increment size and
then allowing the increment size to reduce in presence of nonlinearities and to increase
again where the equilibrium path is mostly linear. In fact, for small applied loads the
equilibrium path can be reliably followed with coarse resolution, while a fine resolution
is only needed in presence of nonlinearities. The reader is referred to the MSC Nastran
Quick Reference Guide for a detailed explanation on the meaning of the parameters.

Despite being a single-discipline problem, both optimizations are set up in the Open-
MDAO framework [29] in view of a future extension to a coupled aeroelastic analysis.
Among the optimization algorithms available within the OpenMDAO architecture, the
gradient-free COBYLA algorithm is chosen. The pyNastran library5 is used to interface
the Nastran model with the OpenMDAO framework.

4DMAP stands for Direct Matrix Abstraction Program and is a high-level language with its own
compiler and grammatical rules that allows the user to modify MSC Nastran’s standard solution sequences
to perform custom operations. The computation employs a Lanczos algorithm to find the eigenvalues for
each converged increment.

5https://github.com/SteveDoyle2/pyNastran, accessed April 2024.
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Table 2: Non-default parameters of the NLPARM and NLPCI Nastran cards employed for the nonlinear
analyses during the optimization of the CRM-like box beam.

NLPARM field Value NLPCI field Value
KMETHOD ITER TYPE CRIS
KSTEP −1 MINALR 10−5

MAXITER 3 DESITER 4
CONV PU MXINC 300
EPSU 10−5

EPSP 10−6

MAXBIS 20

4 INFLUENCE OF LOAD INTRODUCTION METHOD
4.1 Nonlinear structural stability response of initial structure
To assess the influence of the different load introduction methods, we first analyze their
impact on the nonlinear analysis of the initial structure of the CRM-like box beam, which
employs a uniform wall thickness throughout. To investigate the nonlinear response of
the structure, we apply a load of magnitude twice as big as the design load, P/Pdesign = 2.
This preliminary evaluation helps establish a baseline understanding of how the structure
behaves under the different load introduction methods without the influence of optimiza-
tion modifications.

Figure 5 presents a comparative analysis of the linear buckling loads for the initial CRM-
like box beam obtained from the different load introduction methods, each normalized
against the design load. The linear buckling load obtained when using distributed follower
forces is marginally lower, by 0.2%, compared to that using distributed non-follower forces.
This minor difference is likely due to slight alterations in load distribution at the skin edges
inherent to the transformation of the pressure load over the element into follower forces,
as discussed in Section 3.2.

Also the linear buckling load obtained from the non-follower forces applied to the LRA
is slightly smaller than that resulting from the distributed non-follower forces, with a
percentage difference of 0.4%.

Figure 5: Linear buckling loads of initial structure resulting from the different load introduction methods.

Figure 6 presents a comparison of the root bending moments resulting from the integration
of the applied loads along the undeformed CRM-like box beam. The distributed follower
forces result in a 0.2% larger root bending moment compared to the distributed non-
follower forces. This finding explains the slightly lower linear buckling load discussed
earlier, as it suggests that the root region of the top skin is marginally more heavily
loaded.

Conversely, the non-follower forces applied to the LRA result in an almost identical root
bending moment compared to the distributed non-follower forces. This outcome does not
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correlate with the previously observed smaller linear buckling load. Such a discrepancy
suggests that the LRA approach provides a conservative assessment of the linear buckling
load, as for the same root bending moment the linear analysis predicts the structure to
buckle earlier than that subjected to distributed forces.

Figure 6: Root bending moments resulting from the different load introduction methods.

Figure 7 depicts the load-displacement response of the CRM-like box beam for the different
load introduction methods, focusing on the tip displacement and the displacement at the
node of the root region shown in Fig. 3. These displacements are nondimensionalized by
the length and the width of the CRM-like box beam, respectively.

The diagram of the root displacement reveals that, for all methods, there is a marked
increase in displacement relative to the initial response as the nondimensional applied
load P/Pdesign approaches and surpasses 1. Notably, despite the significant displacement
increases, the structure does not exhibit any neutral equilibrium points indicative of buck-
ling, thus maintaining stability across all analyzed equilibrium points.

This behavior typifies a broken supercritical pitchfork, where the mechanical asymmetry
induced by bending loads leads to a single natural stable equilibrium path instead of
the three post-buckling paths typically seen at a bifurcation point. The structural re-
sponse obtained with distributed non-follower and follower forces closely align. However,
the curve corresponding to non-follower forces applied to the LRA displays an almost
symmetrical response, revealing the inaccuracy of this approach for nonlinear predictions.

Regarding the tip displacement, the curve of the LRA-applied forces displays a less steep
slope, indicating a globally more compliant structural response compared to that obtained
with distributed forces.

Figure 7: Load-displacement diagrams of initial structure.

All three scenarios exhibit loss of stability at a load limit point, occurring well beyond
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the linear buckling load determined for each case. Figure 8 provides a comparison of
the limit point loads for the CRM-like box beam. The limit point load obtained from
distributed follower forces shows a negligible reduction of 0.1% compared to that obtained
from distributed non-follower forces. This small difference aligns with the previous finding
of the marginally smaller linear buckling load and larger root bending moment.

Instead, the limit point load obtained using non-follower forces applied to the LRA is
significantly higher, at 4.3% above that of the distributed non-follower forces. This re-
sult contradicts the previous finding of the linear buckling analysis, where the LRA-load
resulted in a lower critical load with respect to the distributed forces. Instead, the non-
linear analysis predicts a higher critical load when the LRA load introduction method is
employed, thus providing non-conservative results compared to the distributed forces.

Figure 8: Limit point loads resulting from the different load introduction methods.

Figure 9 illustrates the deformation of the CRM-like box beam under distributed non-
follower forces and non-follower forces applied to the LRA at the respective limit point
load. This comparison highlights a distinct phase shift in the buckling-like deformation
of the top skin between the two load introduction methods.

With the distributed non-follower forces, the deformation manifests a negative rotation
about the x-axis at the center of the root of the first rib-stiffener bay. Conversely, for the
non-follower forces applied to the LRA, there is a positive rotation at the same location.
This phase shift reflects the significant differences observed for the root displacement
response in Fig. 7.

(a) Distributed non-follower forces. (b) Non-follower forces applied to LRA.

Figure 9: Deformation at limit point load. Elements are colored by their average rotation about the
x-axis.

In summary, these findings highlight that despite the LRA approach can result in a
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conservative estimation of the critical load when using linear analyses, this might not be
true when using nonlinear analyses. In addition, the use of the LRA approach can result
in inaccurate nonlinear structural deformations.

Finally, the equilibrium paths obtained with the different load introduction methods in-
dicate that the structure would experience snap-through when loaded past the load limit
point. Figure 10 shows the deformations before and after the snap-through event for the
case of the distributed non-follower forces. It is possible to observe a change of the defor-
mation within the first rib bay: before the snap the deformation of each rib-stiffener bay is
characterized by a single half-wave, while after the snap the deformation is characterized
by two half-waves.

(a) Before snap-through. (b) After snap-through.

Figure 10: Deformation over the CRM-like box beam root across the snap-through behavior resulting
from the analysis with distributed non-follower forces. Displacements are amplified by a
factor 50 for visualization purposes. Elements are colored by their average rotation about the
x-axis.

4.2 Optimization with distributed non-follower forces
The linear buckling optimization of the model employing distributed non-follower forces
results in a 42.2% reduction in mass relative to the initial structure. Under the linear
buckling constraint, the optimization pushes the tip thickness to its lower bound, while
the root thickness increases compared to the initial design. The subsequent optimization
with the nonlinear structural stability constraint leads to a further reduction of 9.3% in
mass. Here, while the tip thickness remains at the lower bound, the root thickness is
reduced to 7.1 mm, as illustrated in Fig. 11.

Figure 11: Thicknesses resulting from the optimizations with distributed non-follower forces.

Figure 12 shows the load-displacement diagrams of the initial structure compared to the
linearly and the nonlinearly optimized structures. The root displacement responses of
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the initial and the linearly optimized structures overlap almost entirely, indicating, as
expected, that linear optimization does not introduce a different local behavior. On the
other hand, the nonlinearly optimized structure shows a load-displacement curve where
local nonlinearities are more developed. This response is analogous to the one shown
in Fig. 7, only shifted towards a lower applied load. This suggests that the nonlinear
optimization effectively exploits the full structure’s nonlinear stability capacity, aligning
the load limit point with the design load.

The tip displacement diagram shows a reduced slope of the load-displacement curve
through the linear buckling optimization and a further diminished slope under the non-
linear structural stability constraint. Notably, the glass ceiling of linear buckling for the
nonlinearly optimized structure is found at P/Pdesign = 0.72, with a visible nonlinearity
in the tip displacement response as the applied load exceeds this point. This change is
attributed to buckling-like deformation patterns emerging across the root region of the
top skin.

Figure 12: Load-displacement diagrams resulting from the optimizations with distributed non-follower
forces.

Figure 13 compares the deformation at the design load of the linearly and nonlinearly op-
timized structures. It can be observed that the nonlinearly optimized structure exhibits a
pronounced buckling-like deformation over the top skin, absent in the linearly optimized
version. This deformation signifies a more efficient material use that taps into the nonlin-
ear stability capacity of the structure, thereby allowing the further mass reduction from
the linearly optimized structure. As far as the rotations observed towards the tip region
of the top skin in both cases, these are not associated to a buckling-like deformation,
rather they are a direct consequence of the distributed non-follower forces pulling up the
parts of the skin not supported by ribs.

4.3 Optimization with distributed follower forces
The optimization studies carried out on the model employing distributed follower forces
achieve results very similar to those observed with distributed non-follower forces, as
can be observed from the optimized thickness distributions shown in Fig. 14. In this
case the optimization under linear buckling constraints results in a mass reduction of
42.1% compared to the initial design. Subsequent optimization with nonlinear structural
stability constraints enables an additional mass reduction of 9.3%.
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The load-displacement behavior and the deformation at the design load are totally anal-
ogous to those achieved with non-follower forces, as it can be observed in Fig. 15 and 16,
respectively.

4.4 Optimization with non-follower forces applied to load reference axis
The linear buckling optimization of the model employing non-follower forces applied to
the LRA leads to a mass reduction of 39.3% compared to the initial design. This mass

(a) Linearly optimized structure. (b) Nonlinearly optimized structure.

Figure 13: Deformations at design load resulting from the optimizations with distributed non-follower
forces. Elements are colored by their average rotation about the x-axis.

Figure 14: Thicknesses resulting from the optimizations with distributed follower forces.

Figure 15: Load-displacement diagrams resulting from the optimizations with distributed follower forces.
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reduction is smaller with respect to that obtained in the previous cases, and it aligns
with the conservative linear buckling prediction found in Sec. 4.1. Successively, the op-
timization with the nonlinear structural stability constraint achieves an additional mass
reduction of 8.3%. Figure 17 illustrates the resulting thickness distribution, where the
root thickness maintain the same trend observed in the previous optimization studies,
that is to say an increase under the linear buckling constraint and a decrease under the
nonlinear structural stability constraint. However, in this case the tip thickness does not
reach the lower bound after the first optimization, and it only does so after the second
optimization.

The load-displacement diagrams, as shown in Fig. 18, reflect a similar structural response
as seen in the previous cases but with a notable difference: the root displacements are
mirrored to positive values. This variation is consistent with the loading characteristics
introduced by the LRA method in the initial structure, as indicated in Fig. 7. In this
case, the glass ceiling of linear buckling for the nonlinearly optimized structure is placed
at PSOL 105/Pdesign = 0.44.

The deformations at the design load, depicted in Fig. 19, show results similar to the previ-
ous optimization cases. The nonlinearly optimized structure again exhibits a buckling-like
deformation pattern on the top skin, although with a smaller rotation of the elements
closer to the root. This deformation pattern is absent in the linearly optimized structure.
Notably, the deformations induced by pulling on the unsupported parts of the skin are

(a) Linearly optimized structure. (b) Nonlinearly optimized structure.

Figure 16: Deformations at design load resulting from the optimizations with distributed follower forces.
Elements are colored by their average rotation about the x-axis.

Figure 17: Thicknesses resulting from the optimizations with non-follower forces applied to LRA.
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not present in this case due to the application of the loads via the LRA.

Finally, when comparing the buckling-like deformation patterns of the nonlinearly opti-
mized structure from this scenario with those from previous cases, the same phase shift
observed in Fig. 9 for the initial design is evident.

4.5 Comparative discussion
Figure 20 shows the final mass resulting from each optimization. The results reveal very
close mass reductions for optimizations using distributed non-follower and follower forces.
Specifically, the optimization with distributed non-follower forces leads to an overall 47.6%
reduction in mass from the initial design, while the optimization with distributed follower
forces achieves a slightly smaller reduction of 47.5%. This outcome might be justified
by the root bending moment resulting from the follower forces being slightly larger, as
indicated in Fig. 6.

Figure 18: Load-displacement diagrams resulting from the optimizations with non-follower forces applied
to LRA.

(a) Linearly optimized structure. (b) Nonlinearly optimized structure.

Figure 19: Deformations at design load resulting from the optimizations with non-follower forces applied
to LRA. Elements are colored by their average rotation about the x-axis.
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Nonetheless, the difference between the distributed non-follower and follower forces opti-
mizations is too small to draw any definitive conclusion. These results should be further
validated through analogous optimization studies on cases where the structure exhibits a
larger deflection, as the effects of follower forces are expected to be more pronounced.

The optimizations with non-follower forces applied to the LRA result in smaller mass re-
ductions compared to the other two load introduction methods. This outcome is expected
for the optimization with linear buckling constraints, given the conservative prediction of
the linear buckling load when employing the LRA approach, but it is unexpected for the
optimization with nonlinear structural stability constraints, as in the initial structure the
limit point load obtained with the LRA approach was higher compared to those obtained
with the other approaches. Evidently, this comparison changes as the thickness assumes a
linear variation from root to tip. Despite the fact that the final mass obtained employing
the LRA approach is larger with respect to the other methods, and thus conservative,
these findings suggest that when assessing the nonlinear structural stability of a wingbox
structure, the LRA approach should be avoided to obtain reliable deformation results.

Figure 20: Masses resulting from the different optimizations.

5 CONCLUSION
This paper reinforced the advantages of integrating nonlinear structural stability con-
straints within optimization frameworks for wingbox structures, demonstrating the ap-
proach with a distributed load and a linearly varying thickness from root to tip. Three
distinct load introduction methods were considered to study their influence on the nonlin-
ear response and on the optimization results: distributed non-follower forces, distributed
follower forces, and non-follower forces applied to a load reference axis.

The nonlinear structural stability constraint, already used in previous works, was revised
to accommodate the presence of follower forces. This revision involved the assessment of
the positive definiteness of the quadratic form of the tangent stiffness matrix by examining
the eigenvalues of the symmetrized matrix.

The analyses and optimization studies were performed on an idealized version of the Com-
mon Research Model wingbox, also used in previous works. The nonlinear analyses of
the initial structure revealed that the use of non-follower forces applied to the load ref-
erence axis resulted in non-conservative estimates of structural stability, which suggested
that such methods may overpredict the nonlinear structural stability capacity, leading to
potentially unsafe designs.

The optimization results highlighted the benefits of the nonlinear structural stability ap-
proach, showing mass reduction ranging between 8 and 9% with respect to the linearly
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optimized structure in all considered cases. Only a small difference was observed be-
tween the optimizations with distributed non-follower and follower forces, with the latter
providing a marginally smaller overall mass reduction with respect to the initial design.
This finding should be validated by studying cases displaying a larger deflection of the
wingbox, where the effect of the follower forces is expected to be more prominent.

Contrary to what is observed for the initial structure, the optimization with non-follower
forces applied to the load reference axis resulted in smaller mass reduction compared to
the other methods, suggesting that when a linear thickness variation is considered the
load reference axis approach provides conservative results.

Future research will continue to expand on these findings, exploring more realistic op-
timization scenarios, including the presence of curved skin, more complex loading con-
ditions, and by integrating an aerodynamic solver to simulate a truly aeroelastic case.
This ongoing work aims to advance the structural stability approach of aeroelastic op-
timization frameworks and push the boundaries of what is achievable in the design of
next-generation aerospace structures.

APPENDIX
A mesh convergence study is performed by running the MSC Nastran linear buckling
solution sequence, SOL 105, on the model with distributed non-follower forces applying
a load P = 1N. Increasing mesh resolutions are considered and the predicted linear
buckling load, PSOL 105, is monitored. The results of the mesh convergence study are
shown in Fig. 21. The mesh is defined to be converged when the difference of the linear
buckling load with respect to the one obtained with the finest mesh is below 1%.

Figure 21: Mesh convergence study of the CRM-like box beam model under distributed non-follower
forces.

Since the mesh convergence study is executed with the use of linear buckling analyses,
the convergence of the mesh is verified in the nonlinear regime. To do this, two nonlinear
analyses are performed, one using the original mesh resulting from the convergence study
and another one using a refined mesh generated by choosing a target element length equal
to half the element length used for the original mesh. The applied load is set to twice the
linear buckling load obtained for the original mesh to capture the nonlinear region of the
structural response.

The results of these analyses are shown in Fig. 22 in terms of a 3D load-displacement
diagram combining the local displacement at the root, the tip displacement, and the
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applied load. The local displacement at the root is evaluated for both models at the node
where each linear buckling analysis predicts the maximum displacement for the critical
buckling mode. For the model employing the original mesh, this node is shown in Fig. 3,
and its position is analogous for the model employing the refined mesh.

It can be observed that the two analyses predict the same behavior up to the unstable part
of the equilibrium path, where the results start diverging. In particular, the model with
the refined mesh appears to show a higher-order unstable response. Nonetheless, there is
a good agreement between the limit point loads, with that of the model employing the
original mesh being only 0.7% higher than the limit point load of the model employing the
refined mesh. This result suggests that the original mesh is detailed enough to capture
the part of the nonlinear response of the CRM-like box beam that is of interest for the
optimization studies.

Figure 22: Load-displacement diagrams obtained with the original and the refined mesh of the CRM-like
box beam.

The histories of the optimizations performed for this paper are shown in Figs. from 23
to 28. Since the COBYLA algorithm does not always end the optimization on a design
point satisfying all the constraints, the results shown in this paper are always related to
the last feasible design point.
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Figure 23: Linear buckling optimization history for the model employing distributed non-follower forces.

Figure 24: Nonlinear structural stability optimization history for the model employing distributed non-
follower forces.
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Figure 25: Linear buckling optimization history for the model employing distributed follower forces.

Figure 26: Nonlinear structural stability optimization history for the model employing distributed fol-
lower forces.
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Figure 27: Linear buckling optimization history for the model employing non-follower forces applied to
the LRA.

Figure 28: Nonlinear structural stability optimization history for the model employing non-follower forces
applied to the LRA.
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