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Abstract: The modelling capabilities of a nonlinear aeroelastic simulation toolbox regard-
ing its gust response prediction of a very flexible wing are exercised against the wind tunnel
experiment of the Delft-Pazy wing. Sectional force corrections are employed to capture low
Reynolds number effects and the static lift deficiency at high angles of attack due to the onset of
separation. With these corrections, both the steady and dynamic wing deformations match the
experimental results well. We further simulated the unsteady inflow to the Delft-Pazy wing that
is produced by the gust vanes in the wind tunnel simultaneously with the wing itself, instead of
using a frozen gust model. The results of this simulation indicate a considerable influence of
the wing’s presence on the gust velocity that was measured upstream of the wing in the wind
tunnel experiment. The structural response differs only slightly utilizing the two different gust
models, confirming the frozen gust model being a valid assumption for the moderately large
deflections of the Delft-Pazy wing. Possible geometrical nonlinear effects are assessed and are
found to become apparent for this wing because of the nonlinear aeroelastic equlibrium but not
the gust excitation itself.

1 INTRODUCTION

Future aircraft are expected to have much higher aspect ratio wings, resulting in higher flexi-
bility, and thus larger deformation. A question arises of which methods can sufficiently predict
the resulting aeroelastic and possible nonlinear dynamics while being computationally afford-
able. This has recently been addressed in the Large Deflection Working Group, part of the third
Aeroelastic Prediction Workshop, in the frame of flutter prediction studies [1]. The focus has
been on the Pazy wing, a very flexible benchmark model, designed and experimentally tested at
Technion [2,3]. The structural dynamic characteristics and aerodynamic features of these flexi-
ble structures can also change significantly in the event of strong gust-induced deformation [4].

Ref. [5] presents a slightly altered design of the Pazy wing, with the same dimensions but an
even higher flexibility, which was tested in a low-speed wind tunnel facility at TU Delft and
is henceforth referred to as Delft-Pazy wing. Their focus has been on characterizing periodic
gust responses experimentally using non-intrusive measurements of the flow field and the struc-
tural deformations, using a volumetric particle tracking velocimetry method. The periodic gust
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was generated in the wind tunnel with two oscillating gust vanes upstream of the wing. The
accurate experimental characterization of such a gust inflow is sometimes not trivial due to the
interaction of the gust with the highly-deformed experimental model that is being tested and
other experimental setup components that alter the inflow with respect to an undisturbed flow.
To characterize the gust that was realized in the wind tunnel experiment of the Delft-Pazy wing,
the inflow velocity variation has been analyzed at 0.75 chord lengths upstream of the wing in
Ref. [5]. In Ref. [6], a validation of a 3D free wake panel method has been obtained using these
experiments, the results of which gave rise to the suspicion of an erroneous measurement of the
gust velocity magnitude and a phase shift due to the influence of the unsteady wing motion on
the inflow velocity at the selected gust inflow measurement location.

We aim to investigate this hypothesis by modelling the gust itself, simulating the oscillating
gust vanes and their shed wakes representing the gust. This gust vane modelling has already
been modelled using the UVLM in Ref. [7], which also compared the resulting induced gust
velocities to 2D CFD simulations [8]. We now not only model the gust vanes but simultaneously
the Delft-Pazy wing. This novel approach also allows us to explore potential limitations of the
frozen gust assumption. Additionally, this serves to validate the nonlinear aeroelastic simulation
environment SHARPy regarding its gust response prediction. Lastly, it might be of interest for
potential future benchmark problems of the expected nonlinear effects becoming apparent for
different gust-induced deformation amplitudes and frequencies.

The paper is structured such that we introduce the numerical methods used for fully nonlinear
aeroelastic simulations and for the linearization and order-reduction process in section 2. Next,
the Delft-Pazy wing and the experimental setup are briefly introduced, followed by a description
of the computational implementation (section 3). In section 4, we evaluate the frozen gust
response prediction capabilities of the nonlinear aeroelastic solver by comparing it against the
experimental results. Subsequently, we discuss the results obtained modelling both the Delft-
Pazy wing and the gust vanes by evaluating the induced velocity field and the dynamic wing
deformation response in section 5. Last, we evaluate the effect on structural nonlinearities
present in section 6.

2 AEROELASTIC COMPUTATIONAL METHODS

The nonlinear aeroelastic simulations are performed with the open-source simulation environ-
ment SHARPy [9]. SHARPy couples a nonlinear, displacement-based, geometrically-exact
composite beam model (GEBM), capturing the structural dynamics, and unsteady vortex lattice
method (UVLM) for the aerodynamics. Both solvers and additional methods used in this work
are presented in this section.

2.1 Structural Dynamics Solver

The primary structure of the aircraft is represented by geometrically nonlinear composite beams
discretized in quadratic (3-node) finite elements [10, 11] and parametrized by nodal displace-
ments and rotations, denoted by η within a body-attached FoR B. These beams are modelled by
the GEBM which is a geometrically nonlinear formulation with nonlinear relationships for ve-
locity and displacement kinematics whilst maintaining linear constitutive relations. Moreover,
it accounts for follower forces by expressing them in a local structural frame of reference (FoR)
S. The different FoRs are illustrated in Fig. 1 with the S-frame moving and rotating with the
structure. The transformation from the B to the S-frame is obtained from the transformation
matrix RSB using Cartesian rotation vectors associated with each individual beam node.
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Figure 1: Illustration of the frames of reference as well as the structural and aerodynamic model of a rectangular
wing.

Finally, we apply Hamilton’s principle to obtain the beam dynamics whose nonlinear form is
[12]

M(η)η̈ +N gyr(η, η̇) +N stiff(η) = N ext(η, η̇) (1)

with the mass matrix M and gyroscopic, stiffness, and external generalised forces N . Both
the inertial and elastic forces are nonlinear in Eq. 1 which is solved iteratively with a Newton-
Raphson scheme, while an explicit, incrementally formulated Newmark-β scheme [13] is used
for the time integration.

2.2 Unsteady Aerodynamic Solver

The GEBM is strongly coupled at each time step with the UVLM as an aerodynamic solver,
which is based on potential flow and thin wing theory. The UVLM predicts unsteady aerody-
namic loads for three-dimensional low-speed and attached flow over thin lifting surfaces [14].
These surfaces are modelled as a lattice of quadrilateral panels whose corner points are aggre-
gated into a column matrix ζ(t). Each panel is associated with a bound vortex ring (index b)
with a circulation, denoted by Γb. Another grid of unbound vortex rings captures the wake
(index w), which is formed due to vortex shedding generated to satisfy the Kutta-Joukowski
condition at the trailing edge and the Kelvin theorem [15]. Several wake convection schemes
with different fidelities to capture the shape of the wake exist. While for steady aeroelastic
computations, the horseshoe wake is a sufficient approach, we need for unsteady computations
the convected (free) wake scheme or convected (prescribed) wake scheme in which the vortex
rings convect with the background flow information, which are more precisely the freestream
velocity and atmospheric disturbances.

Once the geometry is established and the singularity elements are positioned on both the lifting
surface and wake panels, the induced velocity field at an arbitrary point in space r can be
computed from

u(r, t) = Ab(r, ζ(t))Γb(t) +Aw(r, ζ(t))Γw(t) (2)

with the aerodynamic influence coefficient (AIC) matrices Ab and Aw. The AICs contain the
normal velocity component u(rij, t) · nj on a collocation point, located at the center of panel
j with its normal vector nj , induced by the vortex ring placed on panel i, where u(rij, t) is
calculated by Biot-Savart’s law. After enforcing the non-penetrating boundary condition on
each collocation point j, considering any external velocities (freestream velocity U∞ and gust
velocities wg), we obtain a linear set of equations AlΓl = −Bl. Here, Al is the AIC matrix,
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and the boundary conditions are given by (U∞ + U ext) · n. The right hand side. The bound
b and wake w vertices are combined using the subindex l, denoting the lifting surface. The
solution gives the circulation strengths Γb and Γw. For symmetric models, we can enforce
equal circulation of the symmetric surfaces 1 and 2 with Γl1 = Γl2 . Then the linear set of
equation is reduced to half its size, i.e. (Al11 +Al12)Γ11 = −Bl1 . The lattice grid coordinates
of the second surface and wake, ζb2 and ζw2

respectively, which are needed to compute Al12

and the free wake convection scheme can efficiently be deduced from its symmetric and known
counterpart, namely ζb1 and ζw1

.

2.2.1 Aerodynamic Force Computations and Correction

We compute the resulting aerodynamic forces from the circulation strengths Γl. Vortex rings
induce a quasi-stationary force that takes into account the suction effect of the leading edge
and can be calculated at each vortex segment centre using Joukowsky’s theorem. The unsteady
forces are obtained at the panel center of each vortex ring following Bernoulli’s principle and
incorporate the additional mass effect [16]. Both force contributions are then linearly interpo-
lated to the corners of the vortex rings ζ. These aerodynamic forces are then mapped onto the
structural grid by simply summing the aerodynamic forces of all chordwise nodes at the ith
spanwise structural node, which can be done because of the coincident structural and aerody-
namic grids in a spanwise direction. The moments are similarly calculated by summing the
moments acting on the i-th structural node generated by the corresponding aerodynamic forces
by considering the lever arm between vortex ring corners ζ and structural nodes ξ.

Finally, adjustment of the lift curve slopes, including thickness or Reynolds number effects, and
static lift efficiency at very high angles of attack near the onset of stall, is done with the sec-
tional force correction method presented and validated in Ref. [17]. This correction is applied
sequentially on the forces fB

i and moments mB
i of each structural node i by first, computing

the effective sectional angle of attack while considering complex dynamics and large deforma-
tions, and second, using 2D airfoil polar data to determine the forces and moments at this given
angle of attack. If only the lift curve slope is corrected, the resulting sectional forces and mo-
ments can also just be multiplied by a user-specified factor. This correction is applied within
the Fluid-Structure Interaction (FSI) loop before feeding the forces fB

i and moments mB
i to the

structural subsystem.

2.2.2 Wake Dynamics

The wake shedding at the trailing edge is determined by the conservation of circulation on ideal
fluids. This is described by Kelvin’s theorem, which states that the flow circulation around a
closed curve does not change with time. This is satisfied here by the detachment of the first wake
panel with an instantaneous circulation equal and opposite to that of the bound trailing edge
panel [18, Chapter 2.3]. The trailing panels then convect downstream with the flow following
Helmholtz’s laws of vorticity [18, Chapter 2.9]. This convection can be tracked for each point
of the wake grid x by

x(t) = x0 +

∫ t

0

u(x(s), s)ds, (3)

where x0 is the initial position and u is the flow velocity that includes the upstream undisturbed
U∞, the vortex-induced velocities, and atmospheric disturbances wg. This leads to an accurate
computation of the wake, the axial induction and the aerodynamic forces and is the previously
mentioned free wake model. However, the flow velocity can also be approximated by the refer-
ence velocity for efficiency reasons and is referred to as prescribed wake. This prescribed wake
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though cannot capture wake-roll up effects and interference effects between different wakes as
well wake and surfaces caused by the induced velocity of the vortex ring panels of those with
given circulation. In some cases, as we will later see, these might or might not be negligible.

In an Arbitrary Lagrangian-Eulerian description, beneficial for moving FoRs, this wake sur-
face is described by two curvilinear coordinates ν and ζ along the spanwise and streamwise
directions. Convection of circulation only occurs along the ζ coordinate for each value of the
streakline ν according to

Γt+1
ζ − Γt

ζ

∆t
+ ur

Γt
ζ − Γt

ζ−1

∆ζ
= 0, (4)

using a first-order upwind discretization. In this equation, ∆ζ is the vortex size in the stream-
wise direction, and ur is the relative flow-solid velocity. Panel methods commonly use a
Courant– Friedrichs–Lewy number CFL := ur∆t/∆ζ of one [18]. This simplifies the wake
convection to a movement of values from one discretization element to the following, i.e.
Γt+1
ζ = Γt

ζ−1. When the wake vortex rings convect, a gap between the trailing edge and the
first wake node is generated. This gap is filled with a new segment parallel to the streamwise
direction and the relative solid-fluid velocity, ensuring the Kutta-Joukowski condition at the
trailing edge and the Kelvin theorem [15].

The formulation of the UVLM in the discrete-time domain inherently connects time integration
with wake shedding. Specifically, the chordwise size of each newly shed wake vortex ring row
correlates directly with the time step, establishing a connection between spatial and temporal
discretization with the fixed timestep ∆t = c

M ·U∞
. One outcome of this is that a finer discretiza-

tion with M panels in the chord direction requires a smaller time step. This results in more
panels in the chord direction for the same physical length of the wake. Furthermore, with a
fixed time step but different-sized lifting surfaces, as is the case in this work with the simultane-
ous simulation of the gust vanes and the Delft-Pazy wing, it is important to adjust the chordwise
discretization of these surfaces so that the condition CFL = 1 is satisfied for all surfaces.

2.3 Linearization Process

We continue with the description of the linearization of the nonlinear aeroelastic system. This
linearization is performed individually for the UVLM and GEBM and around the nonlinear
aeroelastic equilibrium of the system denoted by the subscript (·)0, which is computed with
the previously presented nonlinear solver. At this equilibrium, both structural velocities and
accelerations are zero, i.e. η̈0 and η̇0. In addition, the external forces must be in balance with
the stiffness and gyroscopic forces, i.e. N gyr(η, η̇) + N stiff (η) = N ext(η, η̇) from which
we can derive the tangential damping and stiffness matrices, denoted by C and K respectively.
With these conditions for the equilibrium state, we can perturbate the GEBM model from Eq. 1
assuming small amplitudes, resulting in the perturbation equations [19]

M(η0)∆η̈ + C(η0, η̇0)∆η̇ +K(η0, η̇0)∆η = ∆N ext(∆η,∆η̇) . (5)

Here, ∆(·) denotes small perturbations around the reference and the state variables consist of
the flexible DoF deviations ∆ηi for each node i, and their gradient ∆η̇i.

We further reduce the linear structural system by projecting it onto the modal coordinates of
the deformed system and truncating it to a suitable number of modes nq that capture the most
important dynamics. More precisely, this modal projection, expressed as ∆η = Φ∆q and
∆η̇ = Φ∆q̇, is obtained by calculating Φ from the solution of the eigenvalue problem by
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inserting Eq. (5) into the above equations. The modal displacement field q and the resulting
modal velocities q̇ then describe the structural dynamics.

Subsequently, we analytically linearize the UVLM with the assumption of constant AICs and
a frozen wake shape while including steady load effects. This yields a discrete, linear time-
invariant (DLTI) system in state-space, as demonstrated by Maraniello and Palacios [20]. The
gust inputs which map three-dimensional velocity vectors to each vortex-ring panel, leading to
a high number of inputs, have been reduced to a single gust input wg as described in Ref. [12].
This input characterizes the vertical velocity at the foremost leading edge and maps it with the
states xwg across the lattice grid points ζ. This mapping is based one a linear interpolation
approach while considering a convection of this gust velocity downstream with the freestream
velocity (as does any disturbance in the UVLM).

The final augmented DLTI-UVLM is written as

xa(k + 1) = Aaxa(k) +Baua(k) (6)

ya(k) = Caxa(k) +Daua(k) , (7)

with the states xa(k) =
[
∆xwg , ∆Γb, ∆Γw, h∆Γ̇b, ∆Γb(k − 1)

]
and the output is composed

of the dimensionless forces, including steady and unsteady components, at these vertices, and
is written as ya(k) = ∆F (k). The inputs are ua(k) =

[
∆ζ, ∆ζ̇, ∆wg

]
. The integers k and

h are the current discrete time step and its size. To improve readability, we omit specifying the
discrete time step of an aeroelastic parameter if referring to the current time step. We capture
the added mass effects with the time-derivative Γ̇, computed with second-order accuracy (thus
∆Γb(k − 1) as a state).

To couple the aerodynamic and structural dynamic systems, the aerodynamic force output ∆F
stemming from the DLTI-UVLM system in the B-frame is projected onto the structural DoF
in the S-frame. These transformed forces can then be input directly into the GEBM system as
forces and moments using linear mapping [19]. The GEBM system then yields the resulting grid
geometries and velocities based on the subsequent node displacements and velocities, which
then serve as inputs to the DLTI UVLM system.

The resulting linearized coupled aeroelastic system

xae(k + 1) = Aaexae(k) +Baeuae(k)

yae(k) = Caexae(k) +Daeuae(k) , (8)

has now the input uae(k) = ∆wg, and the following states and outputs for the linear full-order
model (FOM) system:

xae(k) =
[
∆xwg , ∆Γb, ∆Γw, h∆Γ̇b, ∆Γb(k − 1), ∆q, ∆q̇

]
yae(k) = [∆N ,∆η, ∆η̇] .

Here, ∆N denotes the structural forces and moments.

6



IFASD-2024-28

3 DELFT-PAZY WING DESIGN, EXPERIMENTS AND COMPUTATIONAL MODEL
3.1 Delft-Pazy Wing Design and Ground Vibration Test
The Delft-Pazy wing design is mostly identical to the Pazy wing that is described in detail in
Ref. [2]. This unswept and untapered wing has a chord length of c = 100 mm and a span
width of s = 550 mm. The main difference between the original Pazy wing and the Delft-Pazy
wing is a reduced thickness of the inner spar plate made from aluminium, which is 1.5 mm for
the Delft-Pazy wing instead of 2.25 mm. This modification has been implemented to produce
comparably large deformations to those observed on the Pazy wing at the Technion in a low-
speed wind tunnel facility at TU Delft. Furthermore, the outer surface of the Delft-Pazy wing is
covered with non-reflective black paint to facilitate optical flow field measurements in the wind
tunnel. On this coating, a pattern of white circular reflective markers is applied for tracking the
structural motion of the wing, as shown in Fig. 2.

Figure 2: Sketch of the Delft-Pazy wing. Dimensions are in mm.

To characterize the structural behavior of the Delft-Pazy wing, a ground vibration test (GVT)
was performed prior to the wind tunnel experiment. The GVT is performed using a modal
hammer and a laser scanning vibrometer. More details about the wing design and the GVT
are provided in Ref. [5]. The GVT results provide the first five experimental mode shapes and
frequencies included in the later discussed Tab. 2.

3.2 Wind Tunnel Experiment
The wind tunnel experiment was performed at the Open Jet Facility (OJF) at TU Delft. The
OJF is a closed-loop, open test section wind tunnel with an octagonal outlet spanning 2.85 m
by 2.85 m, which was operated at a freestream velocity of 18.3 m/s. A photograph of the wind
tunnel setup with an indication of the relevant components is shown in Fig. 3.

Upstream of the wing, at a distance of approximately 1.5 m from the Delft-Pazy wing that is
placed at the center of the test section, are the two vertical gust vanes which are operated in a
continuous sinusoidal pitching motion during the tests. The Delft-Pazy wing itself is mounted
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Figure 3: Photo of the wind tunnel setup in the OJF, looking upstream. 1: Delft-Pazy wing, 2: gust generator
vanes, 3: six-component balance, 4: 3x high speed cameras, 5: 3x LED illumination units.

vertically on a six-component balance. On the right side in the photo in Fig. 3 is the optical
measurement setup. The main objective of the wind tunnel experiment was the development of
an aeroelastic characterization approach that describes the unsteady loads acting on the wing
based on non-intrusive measurements with this optical setup, as described in detail in Ref. [5].
For the purpose of this study, the focus is placed on the structural response of the wing to
the periodic gust excitation, therefore the measurement of both of these is described in the
following.

The structural response of the wing is measured experimentally by tracking the markers on the
surface with the same optical measurement system that is conventionally only used for flow
field measurements in an integrated measurement approach [21]. Due to limitations of the
measurement volume size of this system, several measurements of the structural response in
terms of the marker displacements at different locations of the wing were combined into one
data set and subsequently analyzed in a phase-averaged approach. In this approach, a sinusoidal
fit was performed for the periodic displacement per marker and afterwards, the wing shape
was reconstructed to best fit these measurements based on a polynomial fit of the spanwise
central axis of the wing. Torsional deformations were analyzed and considered small enough
in the experiments to be neglected for the considered test cases. The wing deformation is thus
described solely in terms of the out-of-plane bending and can therefore be summarized in terms
of a mean tip deflection w, a dynamic tip deflection amplitude ŵ, and a phase lag Φ of the
dynamic wing motion with respect to the incoming gust (see Tab. 1).

Table 1: Overview of the dynamic wind tunnel test conditions and wing deflection results.

test angle static tip gust tip deflection phase shift measured gust
case of attack deflection frequency amplitude to incoming gust amplitude

α w/s fg ŵ/s Φ Ag

1 5 deg 8.5% 5.7 Hz 1.8% −171 deg 0.81 m/s
2 10 deg 15.9% 3.2 Hz 8.2% +99 deg 0.65 m/s

The phase and amplitude of the incoming gust are determined experimentally based on the
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phase-averaged flow field measurements in the wind tunnel. This is achieved by analyzing the
variation in the transversal velocity component upstream of the wing at x = −0.75c, see Fig. 4.
This location has been selected because it is near the upstream edge of the measurement volume,
where flow field information is available. Measurements further upstream would be desirable
to further reduce the effect of the presence of the wing on the gust velocity measurement but
could not be realized in the experimental campaign. At the selected location, the transversal
velocity component exhibits a nearly ideal sinusoidal behavior, which permits the quantification
of the phase and angle and gust amplitude as given in Tab. 1. More details about the flow field
measurements and data processing can be found in Ref. [5].

Figure 4: Measurement of the flow field at mid-span during the upstroke of the wing motion in test case 2. The
upstream location where the gust velocity is extracted is indicated with the dashed line. The origin of the
coordinate system is at the leading edge of the undeformed wing.

3.3 Computational Model Implementation
An implementation of the Delft-Pazy model is implemented into SHARPy, where the aerody-
namic lifting surfaces are modeled using a flat plate of vortex panels, while the primary structure
is depicted by a one-dimensional beam. The main sectional structural stiffness and mass proper-
ties along the wing are shown in Fig 5 and are derived from the work of Riso et al [22]. Similar
methodologies have been employed previously to construct the equivalent beam model for the
Technion Pazy using the Enhanced FEM2Stick (EF2S) framework, as described in Ref. [23].
This EF2S framework assumes infinite shear stiffness and that is employed in this work as well.

The modal frequencies of SHARPy’s Delft-Pazy model under unloaded conditions are com-
pared with the frequencies obtained from the GVT as well as the FEM Nastran model used
in the EF2S to create the beam model. The results are shown in Tab. 2. Between the FEM
model and SHARPy we observe an excellent agreement, where the maximum relative error is
just above one percent for the first five modes. The second torsional mode which, however, has
a very high frequency and is less crucial for the aeroelastic dynamics, differs by 6.14%. The
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Figure 5: Sectional structural stiffness and mass distribution of the beam model.

Table 2: Comparison of the modal frequencies.

mode description fGVT fFEM fSHARPy ϵ(fGVT, fFEM) ϵ(fFEM, fSHARPy)
1 OOP1 3.21 Hz 3.43 Hz 3.45 Hz 6.83% 0.58%
2 OOP2 22.47 Hz 22.81 Hz 23.12 Hz 1.51% 1.36%
3 T1 29.49 Hz 31.29 Hz 31.26 Hz 6.10% −0.10%
4 OOP3 64.99 Hz 65.85 Hz 66.54 Hz 1.32% 1.05%
5 IP1 n.a. 106.29 Hz 107.40 Hz n.a. 1.04%
6 T2 119.70 Hz 118.25Hz 125.50 Hz −1.21% 6.13%

frequencies of the actual Delft-Pazy wing measured in the GVT differ slightly from the FEM
model (and thus SHARPy) with the relative deviation defined as ϵ(f1, f2) = (f2 − f1)/f2 being
in reasonable ranges for GVT measurements [5]. Note that the in-plane bending mode could
not be captured with the selected GVT setup but have been important in the nonlinear flutter
solutions of Goizueta et al [24].

4 GUST-INDUCED WING DEFORMATION PREDICTION

The capabilities of the nonlinear aeroelastic solver are excercised in this section to compute the
steady and gust-induced dynamic deformations of the Delft-Pazy with the experimental results
serving as a reference. The cantilever wing is simulated with a symmetry condition applied at
the root. The beam is discretized into 30 elements, resulting in 61 spanwise vortex ring panels
on the lifting surface. In chordwise direction, 8 vortex ring panels are employed. For the steady
results, horseshoe vertices model the wake. For the dynamic computations, a wake length of
20c is chosen and the prescribed gust convection model is used as the deformation difference to
the results using a free wake model are negligibly small (< 0.2%). This discretization shows
good convergence criteria for both the structural dynamics and aerodynamics.

4.1 Steady Results

We start with computing the steady deformation of the Delft-Pazy wing under the given wind
tunnel freestream conditions with a Reynolds number of Re = 122, 000. The lift curve of the
NACA0018 airfoil for this Reynolds number is obtained with XFOIL and shown in Fig. 6. At
lower angles of attack α between −1.5 deg and 2.3 deg, this lift curve has a slope of 1.25 · 2π.
At α = 2.3 deg the lift curve features a small kink and continues with a higher slope. From
α = 5.4 deg onwards, flow separation becomes increasingly important.

These conditions must be incorporated in the nonlinear aeroelastic simulation to expect realistic
prediction of the aerodynamic forces. This can be achieved with either a constant correction of
the lift curve slope clα by a factor of 1.25 for lower angles of attack or the described sectional
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Figure 6: Lift curve of the NACA0018 airfoil computed with XFOIL for Re = 122, 000.

force correction, using this lift curve as an input. The resulting wing deformations are illustrated
in Fig. 7 and compared with the experimental deformations for the investigated angles of attack
of α = 5 deg and α = 10 deg.
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α = 5 deg SHARPy
α = 10 deg SHARPy + clα Correction
Experiments SHARPy + Polar Correction

Figure 7: Steady wing deformation prediction of the Delft-Pazy wing.

Without the force correction, the wing deformation is underestimated in the nonlinear aeroelas-
tic simulation for both angles of attack. The tip deformation in that case deviates by −14.19%
and −11.40% for α = 5 deg and α = 10 deg, respectively. The clα correction results in an
almost matching deformation prediction for α = 5 deg but the polar corrections result in an
overestimation. Both resulting in reduced wing tip displacement errors of 0.96% and 13.05%.
These different performances likely stem from deviations of the sectional lift curve obtained
from XFoil and the actual experimental one which is not available. For α = 10 deg, the polar
correction reduces the error in wingtip displacement to −1.38%.

4.2 Dynamic Results

We continue with presenting the dynamic gust response prediction of the Delft-Pazy wing for
the two conditions summarized in Table 1. The same force corrections as in the steady com-
putations are used for each case. The measured gust input from the experiments is used as a
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frozen gust input to the nonlinear aeroelastic solver in the form of a time series. The solver then
maps the gust velocities to the vortex ring collocation points and wake lattice grid points for
the aerodynamic solution. The gust response is then run for several timesteps until the wing de-
formation excitation converges to a uniform oscillation. One period of these converged results
and the experimental deformation measurements are shown in Fig. 8 for both cases at spanwise
positions of y/s = 0.9. The displayed gust velocity corresponds to the gust velocity at the
quarter chord of the wing.

wgz Experiments [5] SHARPy + clα Correction SHARPy + Polar Correction
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Figure 8: Increments of the dynamic vertical wing deflection from the mean value at y/s = 0.9.

For case 1, the experimental mean deflection is z/s = 0.085 and the amplitude ∆z/s = 0.018.
Without any sectional force correction applied, both mean and amplitude are significantly un-
derestimated by the nonlinear aeroelastic solver, as expected from the observations made in
the previous sections. The polar correction results in a mean error of only −1.85% but the
amplitude deviates by almost 10%. The clα correction, shown in Fig. 8(a), leads to a small
overestimation of the mean and amplitude value by 5.73% and 1.48%, respectively.

For case 2, a mean deflection of z/s = 0.159 has been measured for the Delft-Pazy wing. The
amplitude is ∆z/s = 0.082 and higher than in the first case due to a gust frequency being
closer to the modal frequency corresponding with the first wing root bending moment. The
computational results are significantly improved with the polar corrections regarding the mean
and amplitude, namely from −14.09% to −2.38% and −23.50% to 1.80%.

The sectional force corrections applied improve the dynamic results significantly as well while
different trends have been observed from the steady results. We would like to emphasize here
that the sectional force corrections are quasi-steady corrections while with reduced frequencies
of k = 0.55 and k = 0.98 for case 1 and 2 respectively, unsteady aerodynamic characteristics
are expected, even more dominant in case 1. These discrepancies may affect the deviations ob-
served from the dynamic prediction and unsteady data might be necessary to improve unsteady
computations at low Reynolds number with potential flow methods. Another reason, apart from
the fidelity applied, can be faulty measurement of the gust input which will be examined further
in the following section.

The experiments in Ref. [5] have also concluded a phase shift Φ between the gust, indicated by
the blue curve in Fig. 8, arriving at the wing and the observed deformations. Reason being for
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these phase shifts is the response of the harmonically forced dynamic system to the different
gust frequencies. The differences between the computationally and experimentally observed
phase shifts are ∆Φ = −21.5 deg for case 1 and ∆Φ = −32.1 deg for case 2. The phase shift
is with less than 0.2% barely affected by the polar and clα corrections for case 1. The polar
corrections applied on the aerodynamic predictions for case 2 increase the magnitude of the
phase shift difference only by 1.11%.

5 GUST VANE MODELLING
Instead of using the measured gust as a frozen gust field input, the wake modelling featured by
the UVLM enables us to model the gust generated by the gust vanes with the free wake model.
To do so, we model the gust vanes, as illustrated in Fig. 9, as lifting surfaces and deflect them by
pre-defined inputs δ(t), matching the experimental operation conditions, namely maximum gust
vane deflections of ±5 deg at frequencies of 5.7Hz and 3.2Hz, for case 1 and 2, respectively.
The shed vortex ring panels from these vanes convect downstream and induce velocities on the
wing, equivalent to the gust input. The difference to the previously defined gust input is that
the singularities distributed on the Delft-Pazy wing and its wake interact with the gust through
these induced velocities and their effect on the wake convection as expressed in Eq. (3). The
methods employed do not capture the dissipation of the wake from the gust vanes, whose impact
is assessed here.

Figure 9: 2D illustration of the gust vane modelling simultaneously with the Delft-Pazy.

These interferences between gust and wing/aircraft are neglected using the frozen turbulence
model, or Taylor’s hypothesis, which is valid when the velocity of the aircraft flying through
it is much larger than the rate of change of turbulent velocities [25]. In this section, we intend
to explore the effect of the frozen turbulence assumption on the gust prediction. In addition,
we investigate the local influence of the present wing on the gust as this might have caused
erroneous gust measurements in the experiment.

The size of chordwise panels of the lattice grid of the gust vanes is matched to the discretisation
of the wing to ensure CFL = 1 for the wake shedding at all surfaces. If the vanes are too
coarsely discretized, resulting in a CFL number greater than one, the wake convection has
been shown to not reflect the actual physical behaviors accurately. The gust vanes’ half-wing
span is designed to be ten times larger than that of the Delft-Pazy, preserving two-dimensional
flow conditions near the center. The spanwise discretization utilizes 40 vortex ring panels to
achieve a stable and converged velocity field. To avoid numerical instabilities caused by the
interaction between the wakes of the two structures, the length of the wake behind the vanes is
set to 50c, significantly longer than the Delft-Pazy’s wake length of 20c.

5.1 Local Influence of Present Wing on Gust Measurements
We start with simulating the gust vanes without the Delft-Pazy wing and compute the induced
velocities using Eq.(2) upstream of the wing position, more precisely at x/c = −0.75, matching
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the experimental gust measurement point. The resulting converged induced velocity oscillations
at this location are higher with 1.0m/s than measured in the experiments (0.81m/s) for case 1
and 0.78m/s instead of 0.65m/s for case 2. This observed overprediction aligns with the com-
parison of the induced-gust velocities obtained from a gust vane simulation using the UVLM [7]
with the CFD simulations obtained in Ref. [8].

The likely reason for these discrepancies is the absence of dissipation modeling in the poten-
tial flow model, which may be compounded by wind tunnel effects. The gust vanes are still
useful for exploring interference effects, particularly focusing on gust measurements obtained
within the Delft-Pazy experiments. To further investigate this interference, we simulate the gust
vanes simultaneously with the current Delft-Pazy model. After achieving a convergent dynamic
response, the induced velocities at the position of the gust measurements (x/c = −0.75) are
extracted. We can decompose the contribution of the individual sources to the induced velocity
and thus identify the individual influence of the shed vortices of the gust vanes and the wing
vortices on the overall velocity field.

The resulting amplitude of the induced velocity oscillations are presented in Fig. 10 for both
cases, once considering only the vortices of the gust vanes and their wakes, and second with all
vortex ring panels considered. Hence, the difference between the blue and orange curves stems
from the local influence of the wing itself. The leading edge of the wing is at x/c = 0 and
upstream of the wing we can observe an exponential increase in the induced-velocity amplitude
because of the decreasing distance to the vortex ring panels. At the gust measurement point,
the interference effect for both cases is still significant, indicating an overprediction of the gust
amplitude by 29.34% for case 1 and 24.1% for case 2. For case 1, the local wing influence
becomes negligible from x/c < −2.7 with a difference less than 0.1%. For case 2, we reach
this difference further upstream at x/c = 3.5, indicating a frequency dependency.
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Figure 10: Streamwise variation in the amplitude of induced velocity oscillations at z = 0 upstream the airfoil.

In addition to the local influence of the wing, we now address the vertical stratification in the
induced gust velocities because of the local distance to the gust vane wakes. This vertical
stratification is neglected in the commonly used one-dimensional gust input. Fig. 11 shows the
deviations in the induced gust amplitude at x/c = −0.75 along the vertical axis z, which is here
normalized by the distance between the vanes, denoted by dv.
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As expected the induced velocities are higher close to the convecting gust vane wakes. If we
compare the simulation of only the gust vanes with the combined Delft-Pazy and gust vane one,
we see the effect of the wing deflecting the gust vane wakes which introduces an asymmetric
vertical stratification. More precisely, the deformed wing towards the positive vertical direc-
tion causes especially the upper wake to be deflected upwards, thus causing smaller induced
velocities than without these interference effects. Also, the stratification depends on the gust
frequency with much higher deviations occurring for case 1 than case 2.
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0.5

Ag/Ag,z=0%

z/
d
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case 1 gust vanes + Delft-Pazy
case 2 gust vanes only

Figure 11: Vertical stratification of the relative gust velocity amplitude at x/c = −0.75.

We further observe oscillations in the streamwise induced velocity by the gust vanes which
grow closer to the wing. However, the amplitude is less than 0.5% of the freestream velocity
since this induced velocity aligns with the flow velocity, the contribution to the effective gust
angle is expected to be negligible.

5.2 Gust Modelling Effect on Deformation Prediction
After analyzing the effect of the gust vane modelling on the velocity field, we investigate next
the influence of the computed structural deformations. Therefore, we extract the measured
induced velocities by the gust vanes’ wakes and use these velocities as a frozen gust input.

The resulting deformations of the converged oscillations are shown in Fig. 12. For both cases,
the deformations obtained with the gust vane modelling and the frozen gust input match well.
For case 2, these deviations are significantly lower with an error smaller than 0.05% for both
mean and amplitude. The effect on the phase shift is also negligible. For case 1, deviations
in the mean deformation are only 0.42% but the amplitude deviates by −4.47% and the phase
becomes more affected. More notable differences are likely observed in case 1 for the different
gust modelling methods because of the more dominant unsteady aerodynamic effects because
of the prevailing higher gust frequency.

5.3 Note on Computational Cost
The simulations are run on a high-performance computer using an AMD EPYC™ 7742 with
a clock rate of 2.25 GHz, 50 GB memory, running 8 cores in parallel. The simulation time
mostly depends on the timesteps necessary to achieve converged oscillations. For frozen gust
inputs, this is achieved for case 1 after 3500 timesteps while case 2 requires 4500 timesteps

15



IFASD-2024-28

wgz Gust Vane Modelling Frozen Gust

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

t/T1

gu
st

ve
lo

ci
ty

,m
/s

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

∆
z/
s,
%

(a) Case 1.
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Figure 12: Dynamic vertical wing deflection at y/s = 0.9 for different gust models.

because of the higher deformations. This results in a CPU time of 221.69 and 286.30 h or
elapsed time of 25.0 h and 32.1 h for case 1 and 2, respectively. For the gust vane simulation,
the computational cost per timestep is much higher since we simulate two additional surfaces
and more importantly, two more and much longer wakes. However, since the induced velocities
converge quickly, i.e. less than 1000 timesteps, the computational time is comparable to the
dynamic frozen gust simulations. The combined simulation of gust vanes and Delft-Pazy are
clearly the most expensive computationally, taking around 7.5 times more than the frozen gust
simulations.

6 ASSESSMENT OF NONLINEARITIES

This section analyses the extent of geometrical nonlinearities becoming apparent in the gust
response studies for the Delft-Pazy wing. As a first test, the nonlinear aeroelastic simulations
from Section 4 (including the force corrections) of the two experimental test cases are computed
with the gust amplitude scaled by 1% and 10%. The resulting converged tip displacement
amplitude for both cases scale by the same numbers which indicates linear results.

To investigate this further, and to go beyond the frequencies considered in the experiments, we
linearize the Delft-Pazy first around its nonlinear aeroelastic equilibriums at α0 = 5 deg and
α0 = 10 deg. Second, we linearize around the undeformed equilibriums, i.e. α0 = 0, to obtain
a fully linear model. The simulations in this section consider a horizontally mounted wing and
no gravity since the linearization and the gust assembler are only functional for this setup. Also,
the force correction methods have only been implemented into the nonlinear aeroelastic solver
and are thus not used here. Note that especially due to the missing polar corrections, the tip
displacement amplitude is higher for these conditions than before.

The first step is to check the linearity of all three models by comparing their response to a small
amplitude gust for which 1% of the experimental gust velocities are used with the frequencies
of 5.7,Hz and 3.2Hz with the nonlinear aeroelastic results. Each linear FOM is compared to
the nonlinear results obtained from the same angle of attack it is linearized around. Starting
with a frequency 5.7,Hz, we obtain an excellent match between nonlinear and linear results
regarding the resulting tip displacement amplitudes of the converged oscillations with errors of
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less than 0.5% for the fully linear FOM and the linear FOM, linearized around its equilibrium
at α0 = 5 deg. Their transient response following the gust onset is captured perfectly as well.
For the FOM, linearized around α0 = 10 deg, the converged amplitudes deviate slightly with
1.20%. For a frequency of 3.2,Hz, we observe for the FOM, linearized around α0 = 10 deg,
constant offset in the gust amplitudes by 7.77%. An amplitude deviation of 1.57% and −2.72%
result for the fully linear FOM and the FOM, linearized around α0 = 5 deg.
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α0 = 0 deg: Linear FOM Nonlinear FOM
α0 = 5 deg: Linear FOM Nonlinear FOM
α0 = 10 deg: Linear FOM Nonlinear FOM

Figure 13: Wingtip displacement amplitude over various gust frequencies.

Next, we compute the expected oscillated wingtip displacement amplitudes for the different
gust amplitudes for frequencies in the range from fg = 1Hz to fg = 5.8Hz using the linear
FOMs. The amplitudes are normalized by the gust amplitude and are displayed in Fig. 13. The
peak in the wingtip displacement amplitude is attributed to the first (OOP) bending mode. The
frequency of this modes varies for the different linear FOMs as the modal frequencies shift
with wing deformation. Moreover, the peak amplitude reduces with the linear FOM, which is
linearized for increasing angles of attack, due to geometrical stiffening at higher deformations.
Although the three linear FOMs converge to similar wingtip displacement amplitudes at higher
frequencies, a noticeable difference between the FOMs is evident at frequencies lower than the
first modal frequency. While for frequencies higher than this frequency, all FOMs converge to
the same wingtip displacement from around fg = 4Hz, an offset between the FOMs can be
observed for decreasing frequencies.

We continue with examining the extent of geometrically nonlinear effects becoming apparent
for different frequencies as there is clearly a dependency observable. Therefore, we compute
with the nonlinear FOM the resulting wingtip displacement amplitudes for different combina-
tions of gust frequencies fg and amplitudes Ag. The results obtained with a gust amplitude of
0.65m/s are marked in Fig. 13. If we excite the Delft-Pazy wing with a sinusoidal gust in the
undeformed state, the wingtip deformation amplitude obtained with the nonlinear FOM match
the linear results for the frequencies of 3.2Hz and 5.7Hz with less than a deviation of 1%.
However, a fully linear FOM is not sufficient in predicting the results of the moderately large
steady deflections of the Delft-Pazy model.

For the linear FOMs obtained from their nonlinear aeroelastic equilibrium, we observe that
close to the resonance peak the nonlinear predictions match the linear predictions well with less
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Figure 14: Deviations ϵ of the wingtip displacement amplitudes obtained with the linear and nonlinear FOM.

than one percent of deviation. But farther away, both towards lower and higher frequencies, the
deviations increase as illustrated in Fig. 14. More precisely, the amplitudes at lower frequencies
are underpredicted by the linear FOMs and overpredicted for higher frequencies. However,
the error observed is much smaller for the FOM, linearized around the less deformed wing
at α0 = 5 deg. In addition, the difference in the nonlinear results for α0 = 5 deg and α0 =
10 deg indicate the presence of nonlinearities, however, rather linked to the nonlinear aeroelastic
equlibrium than the gust excitation.

The question arises if these deviations can be explained with nonlinearities, especially since
we have seen during the verification study of the linear FOMs, that notable deviations occur
even with small gust amplitudes. Hence, we computed the wingtip displacement amplitudes
of the nonlinear FOM for gust in this lower frequency range and interestingly, the relative
error remains constant for lower gust amplitudes. This rather indicates an error within the
linearization process for highly deformed wing shapes.

7 CONCLUDING REMARKS
This work has investigated the modelling capabilities of the nonlinear aeroelastic simulation
toolbox SHARPy for the dynamic gust response of the very flexible Delft-Pazy. This wing has
been experimentally tested at TU Delft with present unsteady aerodynamic flow and moderately
large structural deformation. A numerical model was implemented into SHARPy.

First, we have computed for this model the steady and dynamic gust-induced deformation and
compared the instantaneous structural deformations with the experimental results. For the
steady case, excellent agreement was achieved by applying sectional force corrections to ac-
count for the present low Reynolds number and separation onset effects which are both not
captured in potential flow models. Different corrections are needed for each angle of attack.
For the dynamic case, the prediction of the deformation amplitudes also matches well with the
experiments. However, more notable (but still small) deviations can be observed in the mean of
the structural oscillations, especially for the first case with more dominant unsteady flow effects
with an error 5.73%. These deviations can be explained by the quasi-steady force corrections
methods applied on an unsteady problem but also stem from an inaccurate gust velocity input.

This frozen gust velocity input stems from PIV measurements done in the experiments at
x/c = −0.75. These measurements have been obtained with the mounted wing whose presence
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affected these measurements. This local influence of the wing on the gust measurement was
investigated in this work by simulating the gust vanes simultaneously with the Delft-Pazy wing.
The obtained results indicate an overprediction of the gust measurements obtained a the gust
measurement point, while the influence of the wing becomes negligible at around 3.5 chord
upstream of the wing. Since modelling the gust vanes with potential flow methods overpredicts
the gust velocity in general, a clear quantification of this error cannot be given. We further
used this gust vane modelling to explore possible limitations of the frozen gust model. While
for the second case, the deviations in the structural response are negligible, we observed slight
deviations for the first case for which unsteady aerodynamic effects are more dominant because
of the higher gust frequency.

Lastly, this work investigated the extend of geometric nonlinearities present in the dynamic gust
responses. For this nonlinear aeroelastic simulations are obtained for different gust frequencies
and amplitudes. These results indicate that nonlinear effects become present but only stem from
the nonlinear aeroelastic equilibrium and not the gust excitation even when targeting specifically
the excitation of the first out-of-plane bending mode.
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