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Abstract: During design and analysis phases of aircraft flutter boundaries are computed using 

analysis tools such as the p-k iterations or eigenvalue analysis. Also, for the purpose of certification 

flight flutter test (FFT) is conducted to predict the onset of flutter experimentally. However, from 

the practical perspective aeroelastic vibrations with finite amplitudes known as the Limit Cycle 

Oscillation (LCO) are more critical because they reveal the true nonlinear nature of the fluid-

structure interaction. Previously, based on the concept of the Dynamic Eigen Decomposition 

(DED) and a frequency domain stability theorem, a new flutter prediction methodology was 

developed for applications to FFT with limited actuators and sensors. In this study, this technique 

is extended to include LCOs originating from a nonlinearity existing in a control surface freeplay. 

First, a linear flutter boundary is predicted using the DED method and data available at subcritical 

flight conditions. Next, a simple harmonic analysis of the control surface freeplay is carried out to 

extract important harmonic contents of the nonlinearity, and a new DED is formulated in two 

parameters, i.e., the variable dynamic pressure and the effective stiffness of the control surface 

hinge. Using the formulation, it is possible to predict LCO by extrapolating the dynamic 

eigenvalues obtained at the subcritical data points. The proposed methodology is demonstrated 

using computational simulations of a tapered wing with four flaps and a freeplay in one of the 

hinges. It is shown that the new approach yields accurate predictions of LCO without need for 

taking additional data, with only the data obtained during the FFT.  

1 INTRODUCTION 

 

Flutter is a well-known mechanism by which air vehicles become dynamically unstable through 

the interaction of the fluid forces and elastic deformation of the structure. It is a dangerous 

phenomenon to be avoided during the design, analysis, and tests of all airplanes. Although there 

exist analyses and tools that enable estimating the onset of aeroelastic instability, they are often 

subject to modeling errors, uncertainties, and limitations that can produce inaccurate, unreliable 

results. On the other hand, flight test data are a direct reflection of the actual aircraft and therefore 

they are usually accepted with good credibility. Today, it is a customary practice and requirement 

in the aeronautical industry to conduct flight flutter tests before the aircraft enters its service. 

 

There exist excellent literature surveys that discuss various flutter prediction methods based upon 

subcritical (below the flutter boundary) data [1-2].  They include Damping Extrapolation, 
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Envelope Function, Zimmerman-Weissenburger, Discrete-Time Autoregressive Moving Average 

(ARMA), Flutterometer, and the Nissim and Gilyard method [3-8]. The first two methods 

introduce stability parameters that are valid only at a specific dynamic pressure under 

consideration, and hence they heavily depend on extrapolation of the information to higher speeds. 

The other methods consider a coupled fluid-structure system with a variable dynamic pressure. 

The Zimmerman-Weissenburger [5] utilizes the coupled equations of motion, applies the Routh 

stability criterion using a quadratic stability parameter, and solves for the flutter margin. However, 

its application is limited to two degrees of freedom classical bending torsion flutter with quasi-

steady aerodynamics. The Flutterometer [7] is based on an analytical flutter model rather than the 

test data. To account for possible uncertainties and modeling errors in the analysis, certain parts of 

the model are updated analytically. The result is a robust aeroelastic stability formulation. 

Unfortunately, its flutter margin solution is known to be too conservative to be realistic. Nissim et 

al [8] developed a frequency domain system identification scheme in which the aerodynamic and 

structural properties are extracted by manipulating frequency responses of the airplane at two 

different dynamic pressures. But a quasi-steady assumption of the unsteady aerodynamics must be 

made to minimize the number of unknowns. Another work worth mentioning is that of Song et al 

[9] in which the AAEMS (Aerodynamics is Aeroelasticity Minu Structure) developed by Kim [10] 

was used to search for onset of flutter of a rigid wing specimen in a low-speed wind tunnel. Despite 

the absence of aerodynamic measurements, their results were encouraging in that the system 

identification could still lead to a reliable flutter prediction provided the data is taken at a speed 

not too far from the flutter speed. Recently, Roizner et al [11] introduced the Parametric Flutter 

Margin (PFM) method in which a control system is added to the aeroelastic system to take it 

beyond its nominal flutter point. Then by testing the controlled stable system at the nominal flutter 

point, one can infer the nominal flutter point using Nyquist type criteria. Besides obtaining the 

flutter margin, it has the advantage of treating linear and nonlinear flutter by the unified approach.  

 

All of these flutter testing methods have a common and serious issue that they will produce 

converged results only if the data being used has been collected near the flutter point. That is, none 

of them fully accounts for the fundamental aspects of FSI (Fluid-Structure Interaction). As a 

remedy for this drawback, Kim recently introduced the new concept of the Dynamic Eigenmodes 

and Decomposition and applied it successfully to flutter prediction showing that the prediction can 

be done accurately at any flight speeds and altitudes [12-15]. In particular, he showed that the new 

approach can take advantage of the present-day practice, i.e., a progressive flutter testing such that 

test data due to multiple inputs can be replaced by test data due to limited inputs obtained at 

multiple flight points [15]. 

 

Moving to LCO prediction, literature is sparse due to technical challenges to be overcome to make 

measurement of large amplitudes feasible. There has been a fair number of works in computational 

simulations, analyses, and wind tunnel testing of LCO [16-19], but little has been done to establish 

an experimental methodology to predict the nonlinear phenomenon. 

   

In the present work, the original flutter prediction scheme developed for theory and experimental 

testing based on the DED [14-15] is modified and extended to account for large amplitude LCOs. 

For this initial work, we focus on structural nonlinearity caused by a control surface freeplay, 

assuming that aerodynamically the system remains statically nonlinear but dynamically linearized. 

As in the linear flutter prediction, the LCO can be interpreted as a dynamic instability with a zero 
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effective damping if the nonlinear solution is approximated in a simple harmonic fashion, similar 

to the harmonic balance approach to general engineering problems. Thus, as in the linear flutter 

prediction an LCO can be determined by checking the dynamic eigenvalues in the frequency 

domain with an effective control surface stiffness. In particular, it is shown that the LCO which 

stems from the control surface freeplay can be traced using only one actuator and one sensor 

attached on the control surface. Furthermore, the LCO mode is just the forced response due to the 

single degree-of-freedom control surface excitation. These are very promising outcomes of the 

new formulation as it bodes well for LCO prediction based on flight test data. The proposed 

scheme is demonstrated using a tapered straight wing with four flaps. Linear flutter is first obtained 

using the previous method [15]. Then, LCO solutions are sought allowing variation in the control 

surface stiffness as well as dynamic pressure. It is shown that the new approach can yield accurate 

predictions of LCO without taking additional tests, with only the data obtained from the FFT.  

2 DYNAMIC EIGEN DECOMPOSITION OF AEROELASTIC SYSTEM 

 

In this section, the DED used for the aforementioned flutter prediction method [14] is reviewed.   

 

The aeroelastic formulation is derived conveniently using the coupled aeroelastic equations of 

motion using the generalized modal coordinates 𝒒 in the mixed time/frequency domain:  

 

                                      𝑴𝒒̈ + 𝑪𝒒̇ + 𝑲𝒒 = 𝑞𝐷𝑸(𝑀∞, 𝑘)𝒒     (𝑁 × 1)                         (1) 

 

If we fix Mach number under the mild assumption that the speed of sound does not change with 

altitude the only parameter that varies is dynamic pressure, 𝑞𝐷 [14]. Following the so called the 

Constant Mach Varying Altitude (CMVA) approach, we divide the solution into the nominal and 

perturbed parts as 𝒒 = 𝒒0 + 𝚫𝒒, with the nominal 𝒒0 denoting the reference dynamic pressure 

𝑞𝐷0
, leads to 

 

                             𝑴𝒒̈0 + 𝑪𝒒̇0 + 𝑲𝒒0 − 𝑞𝐷0
𝑸(𝑘)𝒒0 = 𝟎                                    (2) 

                          𝑴𝚫𝒒̈ + 𝑪𝚫𝒒̇ + 𝑲𝚫𝒒 − 𝑞𝐷𝑸(𝑘)𝚫𝒒 − Δ𝑞𝐷𝑸(𝑘)𝒒0 = 𝟎                                    (3) 

 

where 𝒒0 is assumed to be free of flutter and Δ𝑞𝐷 ≡ 𝑞𝐷 − 𝑞𝐷0
. Computing the transfer function 

from 𝒒0 to 𝚫𝒒, we get 

 

𝑮(𝜔) ≡ [−𝜔2𝑴 + 𝑗𝜔𝑪 + 𝑲 − 𝑞𝐷𝑸(𝑘)]−1Δ𝑞𝐷𝑸(𝑘) 

= [−𝜔2𝑴 + 𝑗𝜔𝑪 + 𝑲 − 𝑞𝐷𝑸(𝑘)]−1[−𝜔2𝑴 + 𝑗𝜔𝑪 + 𝑲 − 𝑞𝐷0
𝑸(𝑘)] − 𝑰𝑁 

≡ 𝑻(𝜔)𝑻0
−1(𝜔) − 𝑰𝑁                                                               (4) 

 

where the frequency responses, 𝑻0(𝜔)  and 𝑻(𝜔)  are obtained at the two subcritical dynamic 

pressures, 𝑞𝐷0
,  𝑞𝐷, respectively. Taking eigen decomposition of (4) yields, 

     

                                              𝑮(𝜔) ≡ 𝑽𝑁(𝜔)𝚲𝑁(𝜔)𝑾𝑁
𝑇 (𝜔)                                                  (5) 

where 
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𝜦𝑁(𝜔) =  (𝑁 × 𝑁) diagonal matrix with dynamic eigenvalues 

𝑽𝑁(𝜔),  𝑾𝑁(𝜔) = (𝑁 × 𝑁) matrices of right and left dynamic eigenmodes 

𝑽𝑁(𝜔)𝑾𝑁
† (𝜔) = 𝑰𝑁  (orthonormality) 

 

It can be shown that the dynamic eigenmodes of the aeroelastic system are invariant to dynamic 

pressure [14]. That is, if we repeat the eigen decomposition at another dynamic pressure, say at 

𝑞𝐷0
, we will get. 

 

                                               𝑮0(𝜔) ≡ 𝑽𝑁(𝜔)𝚲𝑁
′ (𝜔)𝑾𝑁

𝑇 (𝜔)                                                (6)      

 

and the dynamic eigenvalues at 𝑞𝐷 and 𝑞𝐷0 are related by 

 

                                                    𝚲𝑁(𝜔) = [𝑰𝑁 − 𝚲𝑁
′ (𝜔)]−1𝚲𝑁

′ (𝜔)                                            (7) 

 

Suppose that the dynamic pressure is increased from 𝑞𝐷 to 𝑞𝐷 + 𝑘Δ𝑞𝐷. Then, the new eigenvalues 

at 𝑞𝐷 + 𝑘Δ𝑞𝐷 are, 

 

            [𝑰𝑁 − 𝑘𝚲𝑁(𝜔)]−1𝑘𝚲𝑁(𝜔)                                                 (8) 

 

while the dynamic eigenmodes remain unchanged. Therefore, the aeroelastic instability, i.e., 

flutter, is found by the condition: 

 

      1 − 𝑘𝑓𝜆𝑁𝑖 (𝜔𝑓) = 0                                                          (9) 

 

for at least one of the indices, 𝑖 = 1,2, … , 𝑁. See Fig. 1. The critical flutter dynamic pressure is 

𝑞𝐷𝑓 = 𝑞𝐷 + 𝑘𝑓Δ𝑞𝐷. Equally important, it can be shown that the flutter mode is indeed one of the 

invariant dynamic eigenvectors, 𝒗𝑁𝑖 (𝜔𝑓), at the critical frequency, 𝜔𝑓  [14]. This conclusion 

implies that a flutter mode is an intrinsic property of the aeroelastic system independent of the 

dynamic pressure, rather than the solution pertaining to the flutter condition. 

 

 

 

 

 

 

 

 

Fig. 1 Stable and unstable systems according to Nyquist Stability [20] 

 

It is mentioned that in reality getting the (𝑁 × 𝑁) modal responses 𝑮(𝜔) is difficult because we 

do not have a sufficient number of actuators to excite the modes. On the other hand, one can always 

install as many sensors as necessary. Kim [15] resolves this issue by replacing the (𝑁 × 𝑁) data 
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with data due to limited inputs obtained at multiple flight points. We will assume that as a 

prerequisite for LCO prediction this approach has been implemented and used to conduct the FFT. 

3 EXTENSION TO LIMIT CYCLE OSCILLATION 

 

In essence, all of the above logic and schemes developed for the prediction of the linear dynamic 

instability are applicable to LCOs. However, the dynamic instability determined by (9) should be 

interpreted differently in the following sense. An LCO with a specified amplitude level exists at 

the critical point with a zero effective aeroelastic damping allowing the oscillation to sustain in a 

steady-state fashion. Under the quasi-linear assumption, it implies that the sustained oscillation 

has only one major harmonic component. Thus, this type of solution is equivalent to that of a 

harmonic balance method for general nonlinear analysis where only harmonic terms of a major 

frequency, sin(ω𝑡) , cos (ω𝑡) are retained with all other higher harmonics neglected.  

 

3.1 Fourier Analysis of Nonlinear Freeplay and Equivalent Stiffness 

 

Considering that we deal with only structural nonlinearity, it is natural and reasonable to 

approximate the nonlinear motion about the control surface hinge axis using the Fourier Analysis. 

See Fig. 2 for the bilinear nature of the stiffness curve where a gap of 𝛿 is allowed in the control 

surface freeplay angle. Expressing the hinge moment in a sinusoidal motion and the equivalent 

stiffness 𝐾𝛽𝑒𝑞, the Fourier Transformation leads to [19]: 

 

   𝑀𝛽(𝑡) = 𝐵1𝑠𝑖𝑛𝜔𝑡 =
𝐵1

𝛽𝑅
𝛽𝑅𝑠𝑖𝑛𝜔𝑡 = 𝐾𝛽𝑒𝑞𝛽                          (10) 

 

          𝐾𝛽𝑒𝑞 =
𝐵1

𝛽𝑅
=

𝐾𝛽

𝜋
(𝜋 − 2𝑎𝑟𝑐𝑠𝑖𝑛

𝛿

𝛽𝑅
− 2

𝛿

𝛽𝑅
√1 − (

𝛿

𝛽𝑅
)2)  (𝐾𝛽 =the nominal stiffness)      (11) 

 

.  

 

 

 

 

 

 

 

 

 

Fig. 2 Bilinear stiffness of a symmetric freeplay [19] 
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Fig. 3 Equivalent stiffness curve vs. non-dimensional rotation angle 

 

Fig. 3 shows the graph of the equivalent stiffness ratio as a function of  the amplitude ratio, 𝛽/𝛿. 

 

3.2 Dynamic Eigen Decomposition with Two Parameter Variations 

 

The prediction of LCO using DED proceeds as follows. First, let Δ𝑲 represent an increment in the 

stiffness matrix from the nominal stiffness 𝑲0 due to the change in the control surface stiffness. 

As in the case with the variation in dynamic pressure 𝑞𝐷, we need a transfer function whose DED 

will yield dynamic eigenvalues and eigenmodes necessary to check the new dynamic instability: 

 

     𝑮𝐾(𝜔) ≡ [−𝜔2𝑴 + 𝑗𝜔𝑪 + 𝑲0 − 𝑞𝐷𝑸(𝑘)]−1(−𝚫𝑲)                      (12) 

 

where assuming the control surface with freeplay is in the last degree-of-freedom, 

 

𝚫𝑲 ≡ [

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝛿𝐾𝛽𝑒𝑞

]                               (13) 

 

For LCO calculations, the nominal stiffness for the hinge axis is set to be zero. That is, 𝐾𝛽0 =

0.  Since 𝑟𝑎𝑛𝑘(Δ𝑲) = 1 we expect the DED of (12) will have a single nonzero dynamic 

eigenvalue. Hence, we can use the following (1 × 1) transfer function instead: 

 

𝑔𝐾(𝜔) ≡ −𝒄𝐾[−𝜔2𝑴 + 𝑗𝜔𝑪 + 𝑲0 − 𝑞𝐷𝑸(𝑘)]−1𝜟𝒌                           (14) 

 

where 𝒄𝐾  is the sensor matrix for the control surface rotational angle: 

 

        𝒄𝐾 ≡ ⌊0 ⋯ 0 1⌋    (1 × 𝑁)                                           (15) 
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and 𝜟𝒌 is the last column of 𝜟𝑲. Note that 𝑔𝐾(𝜔) should be available from the FFT provided that 

the flutter testing has already taken place, although in the present formulation the dynamics of the 

actuator connected to the control surface is ignored for simplicity of the expression [21]. 

 

Next, get dynamic eigen decomposition of the rank 1 function (14): 

     

     𝑔𝐾(𝜔) ≡ 𝑣𝐾(𝜔)𝜆𝐾
′ (𝜔)𝑤𝐾

𝑇(𝜔)                                               (16) 

 

Suppose the control surface stiffness changes by 𝑚𝜟𝒌 from the nominal value, or the amplitude 

of the control surface changes following the 𝐾𝛽𝑒𝑞  vs. 
𝛽

𝛿
 curve (Fig. 3). Then, according to the 

Nyquist Stability the stability of the new system with 𝑲0 + 𝑚𝜟𝑲 at 𝑞𝐷 can be determined by 

checking the new dynamic eigenvalue, 𝜆𝑘 ≡ 𝑚𝜆𝐾
′ /(1 − 𝑚𝜆𝐾

′ ). That is, an LCO point and its 

solution are found by the condition, |1 − 𝑚𝑐𝜆𝐾
′ (𝜔𝑐)| = 0. 

 

One can vary the stiffness with Eq. (16), but it is valid only at the fixed dynamic pressure. In 

reality, the critical dynamic pressure for an LCO is not known a priori, nor the transfer function 

can be obtained at the critical speed. Therefore, it is preferable to consider a transfer function, 

 

                      𝑔𝐾𝐷(𝜔) ≡ −𝒄𝐾[−𝜔2𝑴 + 𝑗𝜔𝑪 + 𝑲0 − (𝑞𝐷0
+ 𝑙Δ𝑞𝐷)𝑸(𝑘)]

−1
𝜟𝒌                   (17) 

 

where 𝑞𝐷0
 is a reference dynamic pressure used during the FFT so that the dynamic instability or 

LCO can be sought by varying both 𝑞𝐷 and 𝑲, i.e., 𝑙 and 𝑚. Towards this end, note 

 

[−𝜔2𝑴 + 𝑗𝜔𝑪 + 𝑲0 − (𝑞𝐷0
+ 𝑙Δ𝑞𝐷)𝑸(𝑘)]

−1
𝜟𝒌 = 

=< 𝑰 − 𝑙[−𝜔2𝑴 + 𝑗𝜔𝑪 + 𝑲0 − 𝑞𝐷0
𝑸(𝑘)]

−1
Δ𝑞𝐷𝑸(𝑘) >−1 

                                 ∙ [−𝜔2𝑴 + 𝑗𝜔𝑪 + 𝑲0 − 𝑞𝐷0
𝑸(𝑘)]

−1
𝜟𝒌                                                  (18) 

 

In the above expression, from (4)-(6) we have [−𝜔2𝑴 + 𝑗𝜔𝑪 + 𝑲0 − 𝑞𝐷0
𝑸(𝑘)]−1Δ𝑞𝐷𝑸(𝑘) =

𝑽𝑁(𝜔)𝚲𝑁
′ (𝜔)𝑾𝑁

𝑇 (𝜔). On the other hand, [−𝜔2𝑴 + 𝑗𝜔𝑪 + 𝑲0 − 𝑞𝐷0
𝑸(𝑘)]

−1
𝜟𝒌 is the response 

of the modal degrees-of-freedom due to the control surface excitation. As explained earlier, we 

cannot have the full (𝑁 × 𝑁) transfer function matrix due to lack of inputs (for instance, we have 

six at most for a conventional airplane with flaps, ailerons, an elevator, and a rudder). Following 

Ref. [15] in which the (𝑁 × 𝑁) modal response is replaced with (𝑀 × 𝑀)(𝑀 < 𝑁) sensor outputs 

obtained at multiple flight points, we will approximate   

 

𝑔𝐾𝐷(𝜔) ≈ 𝒄𝐾𝑽𝜈(𝜔)[𝑰 − 𝑙𝚲𝜈
′ (𝜔)]−1𝑾𝜈

𝑇(𝜔)𝒈𝐾𝐶 (𝜔 ) 

                                                             ≡ 𝑣𝐾(𝑙, 𝜔)𝜆𝐾
′ (𝑙, 𝜔)𝑤𝐾

𝑇(𝑙, 𝜔)                                          (19) 

 

               𝒄𝐾 ≡ ⌊0 ⋯ 1⌋  (1 × 𝑀) 

                       𝑽𝜈, 𝚲𝛎
′ , 𝑾𝜈 ≡ 𝐷𝐸𝐷 𝑜𝑓 (𝑀 × 𝑀) 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑙𝑖𝑚𝑖𝑡𝑒𝑑  

                                              𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑠 𝑎𝑡 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑓𝑙𝑖𝑔ℎ𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 

                     𝒈𝐾𝐶(𝜔) ≡ (𝑀 × 1) 𝑠𝑒𝑛𝑠𝑜𝑟 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛  



IFASD-2024-232 

 8 

                                   = −𝑪[−𝜔2𝑴 + 𝑗𝜔𝑪 + 𝑲0 − 𝑞𝐷0
𝑸(𝑘)]

−1
𝜟𝒌                                         (20) 

  

It is emphasized again that all of 𝑽𝜈 , 𝚲𝛎
′ , 𝑾𝜈 and 𝒈𝐾𝐶  are available already from the previous FFT. 

The premise of using (19) in lieu of (17) is that in so far as the eigen structure of the full matrix is 

well captured by the smaller matrix it will yield accurate information about LCO as it does for 

linear flutter. Using (19) it is now possible to vary both 𝑞𝐷 and 𝜟𝒌 independently by the two 

scalars, l and m to find an LCO that satisfies 

 

      1 − 𝑚𝑐𝜆𝐾
′ (𝑙𝑐 ,  𝜔𝑐) = 0                                 (21) 

 

This procedure is similar to that of linear flutter prediction except that we now have two, instead 

of one, parameters to vary (Fig. 4). 

 

 

 

 

 

 

 

 

Fig. 4 Parameter variations along two paths for LCO prediction. 

 

3.3 Identification of LCO Mode 

 

One question remains: how do we identify an LCO mode? Is it possible to find the mode from the 

pre-existing data as it was for a flutter mode? In the case of flutter, it was proven that one of the 

dynamic eigenmodes at the critical frequency is identical to the flutter mode and it is independent 

of dynamic pressure [14]. Can we draw a similar conclusion for the case of LCO prediction? To 

answer these questions, let’s examine the following (𝑁 × 𝑁) modal transfer function: 

 

[−𝜔𝑐
2𝑴 + 𝑗𝜔𝑐𝑪 + 𝑲0 − (𝑞𝐷0

+ 𝑙𝑐Δ𝑞𝐷)𝑸(𝑘𝑐)]
−1

(−𝜟𝑲) 

                                          ≡ 𝒗𝐾𝑡(𝑙𝑐, 𝜔𝑐)𝜆𝐾𝑡
′ (𝑙𝑐 , 𝜔𝑐)𝒘𝐾𝑡

𝑇 (𝑙𝑐 , 𝜔𝑐)                                  (22) 

 

Note that since 𝑟𝑎𝑛𝑘(𝜟𝑲) = 1, Eq. (22) yields only one non-zero dynamic eigenvalue 𝜆𝐾𝑡
′ . 

Therefore, with only one non-zero column available in the transfer function matrix the (𝑁 × 1) 

forced response due to the control surface excitation, [−𝜔𝑐
2𝑴 + 𝑗𝜔𝑐𝑪 + 𝑲0 − (𝑞𝐷0

+

𝑙𝑐Δ𝑞𝐷)𝑸(𝑘𝑐)]
−1

𝚫𝒌 becomes the dynamic eigenvector 𝒗𝐾𝑡(𝑙𝑐 , 𝜔𝑐) corresponding to the non-zero 

dynamic eigenvalue. 

 

If the aeroelastic system has an LCO solution at the critical condition, (𝑙𝑐 , 𝑚𝑐 , 𝜔𝑐), then  
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[−𝜔𝑐
2𝑴 + 𝑗𝜔𝑐𝑪 + (𝑲0 + 𝑚𝑐𝜟𝑲) − (𝑞𝐷0

+ 𝑙𝑐Δ𝑞𝐷)𝑸(𝑘𝑐)]
−1

(−𝑚𝑐𝜟𝑲) 

                                          = 𝒗𝐾𝑡(𝑙𝑐, 𝜔𝑐)𝜆𝐾𝑡(𝑙𝑐 , 𝑚𝑐 , 𝜔𝑐)𝒘𝐾𝑡
𝑇 (𝑙𝑐 , 𝜔)                                 (23) 

 

will diverge because 𝜆𝐾𝑡(𝑙𝑐 , 𝑚𝑐 , 𝜔𝑐) ≡ 𝑚𝑐𝜆𝐾𝑡
′ /(1 − 𝑚𝑐𝜆𝐾𝑡

′ ) diverges. Pre-multiplying both sides 

of (23) by −𝜔𝑐
2𝑴 + 𝑗𝜔𝑐𝑪 + (𝑲0 + 𝑚𝑐𝜟𝑲) − (𝑞𝐷0

+ 𝑙𝑐Δ𝑞𝐷)𝑸(𝑘𝑐) yields, 

 

                                −𝑚𝑐𝜟𝑲 = [−𝜔𝑐
2𝑴 + 𝑗𝜔𝑐𝑪 + (𝑲0 + 𝑚𝑐𝜟𝑲) 

                                                −(𝑞𝐷0
+ 𝑙𝑐Δ𝑞𝐷)𝑸(𝑘𝑐)]𝒗𝐾𝑡(𝑙𝑐 , 𝜔𝑐)𝜆𝐾𝑡(𝑙𝑐 , 𝑚𝑐 ,  𝜔𝑐)𝒘𝐾

𝑇 (𝑙𝑐 , 𝜔)   (24) 

 

Since 𝜟𝑲 is finite but 𝜆𝐾𝑡(𝑙𝑐 , 𝑚𝑐 ,  𝜔𝑐) → ∞ we require, 

 

                [−𝜔𝑐
2𝑴 + 𝑗𝜔𝑐𝑪 + (𝑲0 + 𝑚𝑐𝜟𝑲) − (𝑞𝐷0

+ 𝑙𝑐Δ𝑞𝐷)𝑸(𝑘𝑐)]𝒗𝐾𝑡(𝑙𝑐 , 𝜔𝑐) = 𝟎                 (25) 

 

That is, 𝒗𝐾𝑡(𝑙𝑐 , 𝜔𝑐) or the forced modal response due to the single control surface excitation at 

the critical condition is the LCO mode. Remember that we can only estimate the mode 

approximately because we have only the sensor measurements available. With this limitation 

aside, we can expect that the single dynamic eigenvector of the corresponding (𝑀 × 𝑀) transfer 

function or the (𝑀 × 1)  forced response due to the single control surface input will closely 

approximate 𝒗𝐾𝑡(𝑙𝑐 , 𝜔𝑐) of the full transfer function (22) and hence will be the LCO mode. It goes 

without saying that the LCO mode can be extracted entirely based on the pre-existing FFT data. 

4 NUMERICAL SIMULATION OF FLIGHT: TAPERED WING WITH FLAPS IN 

SUBSONIC INCOMPRESSIBLE FLOW 

 

For demonstration of the newly proposed LCO prediction methodology, a tapered but unswept 

wing with four flaps is studied. The clean wing is a model originally created for aeroelasticity 

classes taught at MIT, National University of Singapore, and University of Washington. For the 

purpose of modeling the control surfaces and excitation of the wing, four flaps are attached along 

the trailing edge of this wing. The wing’s span is 40 ft, its chord is 22.6 ft, 14.6 ft at the root and 

tip, respectively. Each flap is 3.5 ft in chord, 10 ft in span. Details of the modeling can be found in 

Ref. [15]. 

 

4.1 Structural and Aerodynamic Modeling 

 

Fig. 5 is a top view of the wing and flaps. For structural modeling, a total of ten uncoupled modes 

are used for the wing [22], while the flaps are modeled by a rigid rotational mode neglecting 

elasticity. A structural damping of 3% is assumed in all of the modes. Four pairs of sensors are 

located along the elastic axis. Each pair measures the vertical deflections and rotational angles at 

the locations. Additionally, four sensors are located along the hinge axis to measure the rotational 

angles of the flaps. Thus, we have a total of twelve measurements and four excitations. See Fig. 6. 
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Fig. 5 Schematic diagram of tapered wing with four flaps. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Sensor locations for soft hinged wings/flaps. 

 

For aerodynamic modeling, the incompressible and inviscid unsteady aerodynamic theory by 

Theodorsen is used accounting for the motion of the trailing edge control surface [23]. To express 

the unsteady aerodynamics in time-domain, one pole Pade approximation of the circulatory term 

is adopted. Aeroelastic modeling of the wing-flaps is done by coupling the structural dynamic 

equation with the unsteady aerodynamic equation. The size of the aeroelastic system matrix is 
(42 × 42). Following the CMVA practice, air speed was fixed at 𝑉∞ = 511.9 𝑓𝑡/𝑠𝑒𝑐 and the 

dynamic pressure was varied by changing air density alone. In a flight situation, this would be 

equivalent to descending in altitude following a constant Mach curve fixed approximately at 𝑀∞ =
.5.    

 

 

 

 

Red=translational 
Blue=rotational 
All four (#1,2,3,4) 
flaps are used along 

the trailing edge.  
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4.2 Flight Flutter Testing Simulation 

 

It is assumed that during the FFT there were no freeplays existing in the control surface hinges and 

all the data collected are about the clean wing with flaps without structural nonlinearity. This is a 

reasonable assumption because a test aircraft that was newly manufactured should not have such 

structural defects yet. Likewise, no control surface freeplays were included in numerical 

simulations of the FFT. 

 

From the exact eigenvalue analysis of the state-space aeroelastic equation of motion, the wing with 

the soft hinges and with nominal flap stiffness (i.e., no freeplay) is known to flutter at 𝑞𝐷𝑓0 =

453.8 
𝑠𝑙𝑢𝑔

𝑓𝑡 𝑠𝑒𝑐2 , 𝜔𝑓0 = 5.1 𝐻𝑧. Fig. 7 is a Nyquist plot reproduced from Ref. [15] at the nominal 

flutter condition resulting from the DED processing using the (14 × 14) modal responses and 

(12 × 4)  sensor measurements, respectively. The dynamic instability is indicated by the touching 

of the origin. Both predictions agree extremely well with the result from eigenvalue analysis.  

 

Fig. 7 Nyquist plot with nominal stiffness at 𝑞𝐷𝑓 = 453.8
𝑠𝑙𝑢𝑔

𝑓𝑡 𝑠𝑒𝑐2
 (4 actuators, 12 sensors). 

 

 

4.3 Prediction of Limit Cycle Oscillations 

 

To investigate LCOs due to the control surface nonlinearity, we introduce a freeplay in flap #4 (the 

most outboard, closest to the wing tip). Without specifying the gap angle δ, Eq. (21) allows to 

predict LCO in terms of the scalar multiple m given an incremental stiffness 𝚫𝑲 from the nominal 

stiffness 𝑲0. To test out the new scheme, we initially set 𝑚 = 0, 𝚫𝑲 = 𝑲0 retaining 0% of the 

nominal hinge stiffness and varied the dynamic pressure. Based on the data processing using the 

DED formulation (19)-(21), we found that for the 100% reduction in the stiffness the LCO solution 

requires 63.1% decrease in the dynamic pressure, 𝑞𝐷𝑐
= 167.3

𝑠𝑙𝑢𝑔

𝑓𝑡 𝑠𝑒𝑐2 . From Fig. 3 this 

corresponds to an amplitude ratio 0 ≤
𝛽

𝛿
≤ 1. The LCO frequency is found to be 1.05 Hz. This 

Nyquist plot is shown in Fig. 8. Clearly, although it could not be found in the flutter prediction it 

is also a linear flutter solution with zero hinge stiffness in flap #4. Similarly, a second LCO point 
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with 0 ≤
𝛽

𝛿
≤ 1  was also found at a higher dynamic pressure, 𝑞𝐷𝑐 = 389.1

𝑠𝑙𝑢𝑔

𝑓𝑡 𝑠𝑒𝑐2  with 𝜔𝑓 =

4.99 𝐻𝑧, but we will focus on LCOs emanating from the first solution at 𝑞𝐷𝑐 = 167.3
𝑠𝑙𝑢𝑔

𝑓𝑡 𝑠𝑒𝑐2. 

 

It is reported that for LCO predictions both the (14 × 14) modal responses and (12 × 4) sensor 

responses were used but no noticeable differences were found in the results. For this reason, only 

results from the (12 × 4) sensor responses are presented in all of figures that follow in this section. 

 

Fig. 8 Nyquist plot of LCO with zero stiffness in the 4th flap at 𝑞𝐷𝑐 = 167.3 
𝑠𝑙𝑢𝑔

𝑓𝑡 𝑠𝑒𝑐2. 

 

Next, we set 𝑚 = −.975  retaining only 2.5% of the nominal hinge stiffness and varied the 

dynamic pressure around the linear flutter point at 167.3
𝑠𝑙𝑢𝑔

𝑓𝑡 𝑠𝑒𝑐2 For the 97.5% reduction in the 

stiffness the LCO solution requires 18.1% decrease in the dynamic pressure, i.e.,  𝑞𝐷𝑐
=

137
𝑠𝑙𝑢𝑔

𝑓𝑡 𝑠𝑒𝑐2. From Fig 3. this solution corresponds to an amplitude ratio of 
𝛽

𝛿
= 1.08. The LCO 

frequency is 1.29 Hz. Fig. 9 shows the Nyquist plot. 

 

Fig. 9 Nyquist plot of LCO with 2.5% nominal stiffness in the 4th flap at 𝑞𝐷𝑐 = 137
𝑠𝑙𝑢𝑔

𝑓𝑡 𝑠𝑒𝑐2. 
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Fig. 10 Nyquist plot of LCO with 10% nominal stiffness in the 4th flap at 𝑞𝐷𝑐 = 88
𝑠𝑙𝑢𝑔

𝑓𝑡 𝑠𝑒𝑐2. 

 

Fig. 10 is another LCO result at 88
𝑠𝑙𝑢𝑔

𝑓𝑡 𝑠𝑒𝑐2 where the effective hinge stiffness has increased to 10% 

of the nominal stiffness while the flap amplitude ratio has increased to 1.24δ  and the LCO 

frequency is 1.81 Hz. Comparing the two consecutive solutions, Figs. 9 and 10, we can expect a 

‘softening’ LCO branch forming here because an increase in the flap amplitude resulted in a 

decrease in critical dynamic pressure.  

 

Fig. 11 and 12 are LCO results at 81 and 160 
𝑠𝑙𝑢𝑔

𝑓𝑡 𝑠𝑒𝑐2, respectively, but unlike the previous two 

cases the amplitude increases as dynamic pressure is increased. It appears that an another LCO 

branch is forming at an upper level of amplitudes with the 𝛽 vs. 𝑞𝐷 trend reversed.  

 

Fig. 11 Nyquist plot of LCO with 25% nominal stiffness in the 4th flap at 𝑞𝐷𝑓 = 81
𝑠𝑙𝑢𝑔

𝑓𝑡 𝑠𝑒𝑐2. 
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Fig. 12 Nyquist plot of LCO with 40% nominal stiffness in the 4th flap at 𝑞𝐷𝑓 = 160
𝑠𝑙𝑢𝑔

𝑓𝑡 𝑠𝑒𝑐2. 

 

Collecting all the LCO solutions predicted and investigated together, we have Fig. 13 in which the 

amplitude ratios of the flap #4 are plotted against critical dynamic pressures. As expected, there 

are two LCO branches forming a ‘softening’ or ‘bad’ group of LCOs. The lower branch which 

starts at 𝑞𝐷𝑐 = 167.3
𝑠𝑙𝑢𝑔

𝑓𝑡 𝑠𝑒𝑐2 merges with the upper branch at 𝑞𝐷𝑐 = 73
𝑠𝑙𝑢𝑔

𝑓𝑡 𝑠𝑒𝑐2 and then continues 

to increase the amplitude following the branch. The frequency at which these LCOs oscillate 

gradually increases along the branch ranging from 1.05 Hz for 
𝛽

𝛿
= 1 to 3.46 Hz for with 

𝛽

𝛿
= 4.25.  

 

Checking LCO modes based on (23) reveals that they consist of mostly a low frequency wing 

bending mode coupled with angular deflections in flap #4. In other words, they are characterized 

mostly by the local control surface motion in the flap undergoing the freeplay. See Fig. 14 for the 

real and imaginary parts of the identified LCO mode at 88 
𝑠𝑙𝑢𝑔

𝑓𝑡 𝑠𝑒𝑐2  (NOTE: the LCO modes 

displayed in Figs 14, 15 are not scaled as per their specified amplitude ratios.). As the amplitude 

increases further matters get complicated because we will run into another group of LCOs in the 

higher region of dynamic pressure starting at around 355.1
𝑠𝑙𝑢𝑔

𝑓𝑡 𝑠𝑒𝑐2. As can be seen from Fig. 13, 

although they display the same characteristics of the ‘softening’ LCOs the amplitudes involved are 

much bigger. Checking LCO modes on this branch confirms that they stem from the linear flutter 

mode that starts at  389.1
𝑠𝑙𝑢𝑔

𝑓𝑡 𝑠𝑒𝑐2 with zero stiffness in flap #4. See Fig. 15 for the identified LCO 

mode at 368.7 
𝑠𝑙𝑢𝑔

𝑓𝑡 𝑠𝑒𝑐2 and compare it with the identified linear flutter mode from Ref. [15]. It can 

be seen that this mode contains motions in all four flaps as well as wing torsion. These LCO modes 

are indeed the same as frequency responses due to the control surface excitations in flap #4 at 1.24 

Hz and 2.24 Hz, respectively, confirming what was found earlier in Section 3.3. 

 

Without performing nonlinear stability analysis, it is reasonable to suspect that the lower branches 

shown in Fig 13 would indicate unstable LCOs whereas the upper ones represent stable LCOs. 

Unstable in that if the flap #4 is kicked by a small disturbance the oscillation will die out but if it 

is kicked by a moderate to large amount of disturbance it will lead to an explosive vibration with 
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a very large amplitude. Worse still, it will pass through the lower branch and jump right up to the 

upper branch with a larger, catastrophic motion. More importantly, these LCOs can occur at speeds 

much lower than the nominal flutter speed. All of these properties of the softening LCOs could 

potentially lead to serious fatigue and safety issues making it imperative to avoid them during the 

design and analysis phases of aircraft. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 LCO branch: amplitude ratio vs. critical dynamic pressure. 

 

 

Fig. 14 LCO mode of the soft hinged wing at 𝑞𝐷𝑐 = 88
𝑠𝑙𝑢𝑔

𝑓𝑡 𝑠𝑒𝑐2 ,
𝛽

𝛿
= 1.24 (4 actuators, 12 

sensors). 
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Fig. 15 LCO mode of the soft hinged wing at 𝑞𝐷𝑐 = 368.7
𝑠𝑙𝑢𝑔

𝑓𝑡 𝑠𝑒𝑐2 ,
𝛽

𝛿
= 2.24 (4 actuators, 12 

sensors). 

 

5 CONCLUDING REMARKS 

 

In this work, a new LCO prediction methodology based on flight test data has been developed 

using the Dynamic Eigen Decomposition (DED) and the Nyquist stability theorem. Previously, 

the DED was used for predicting flutter boundaries [14, 15], but here it is modified to account for 

large amplitude nonlinear effects emanating from the nonlinearities existing within the system. For 

this work, the main focus is on structural nonlinearity due to a single-degree control surface 

freeplay. By using Fourier transform technique and the DED, it was shown that the essential 

characteristics of the nonlinear aeroelastic phenomenon  are well captured as long as the first 

harmonics are a major content in the nonlinearity responses. Interestingly, it was proven that an 

LCO mode at a critical condition is identical to its dynamic eigenmode or equivalently, a forced 

response due to the control surface excitation. Whereas the linear flutter prediction requires 

varying only one parameter, the LCO prediction requires variations in two-dimensional parameter 

space, i.e., dynamic pressure and amplitude level. More importantly, for the proposed scheme to 

work no additional data beyond the flight flutter test (FFT) data is required and LCOs can be 

predicted entirely by manipulating the pre-existing data alone. This should be a great advantage 

when conducting FFT for the purpose of flutter prediction and LCO prediction as well.  

 

It was shown in the numerical simulations of a tapered wing with four flaps that the proposed 

approach can predict LCOs with high accuracy and robustness. In this study, aerodynamic 

nonlinearities due to large motions such as dynamic stall, shocks were not considered, and 

aerodynamics was assumed to be statistically nonlinear but dynamically linearized. Hence, using 

the method must be restricted to subsonic and supersonic flights with moderate ranges of 

amplitudes. More research needs to be done including the aerodynamic nonlinearities and multiple 

control surface freeplays. Needless to say, the method must be validated using real flight test data. 
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