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Abstract: The necessity to mitigate pollutant emissions highlights the importance of research
into flexible aircraft. Identifying models that accurately represent these aircraft is essential for
the validation of early-stage design models and control design. This study focuses on per-
forming a parametric system identification in the time domain for aircraft with varying levels
of flexibility. The approach employs a simplified longitudinal stability and control model for
short-period dynamics, rooted in the Quad-M methodology (Maneuver, Measurements, Model,
and Method). The system identification technique used is the output error method, applied to a
flexible model aircraft in three different flexibility configurations. Data were collected through
nonlinear simulation of the flexible aircraft. Comparison of identification results across the dif-
ferent flexible configurations indicates an improvement in parametric values by incorporating
elastic effects into the identification models. The study also explores the feasibility of various
sensors to more closely simulate flight test procedures. Identifications are analyzed by compar-
ing deflection measurements and accelerometers as observational variables, with acceleration
measurements providing more accurate parameter estimations. Future work should extend the
analysis presented to system identification using flight test data.

1 INTRODUCTION

Aviation faces various technological challenges, including reducing pollutant emissions. Con-
sequently, aircraft with higher aspect ratios are now favored for their greater aerodynamic ef-
ficiency and lower fuel consumption. This trend raises concerns about flight dynamics, as vi-
brations from flexibility tend to occur at lower frequencies, leading to significant couplings that
cannot be ignored.

Advances have been made in modeling, simulating, and testing flexible aircraft. At the Instituto
Tecnológico de Aeronáutica (ITA), in partnership with the University of Michigan, the LNCA
(Laboratory of New Concepts in Aeronautics) used the X-HALE prototype to study these as-
pects [1, 2]; see Figure 1. Validations and adjustments of these models are necessary, making
system identification a crucial tool.

Aircraft identification theory has been thoroughly documented through two distinct approaches:
in the time domain [3] and in the frequency domain [4]. While numerous studies focus on rigid-
body aircraft identification, the identification of flexible aircraft remains less explored. A pio-
neering study by [5] discusses using the maximum likelihood method for parameter estimation
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Figure 1: X-HALE prototype with a 6-meter wingspan from ITA/LNCA. Source: LNCA Internal Archive

in elastic aircraft, highlighting potential issues related to sensor placement, motion equation
modeling, and center-of-mass positioning.

Transitioning from theoretical discussion to practical application, [6] conducted identification
procedures for the Light Eagle, a highly flexible aircraft. Due to its low-frequency modes,
significant coupling between elastic and rigid modes hindered successful identification. The
study emphasized the need for a comprehensive elastic model and suitable maneuvers to excite
elastic modes for accurate parameter identification.

More recent studies, such as [7], achieved complete aircraft identification in the time domain
using the output error method, incorporating elastic effects and fluid-structure coupling in sta-
bility and control derivatives. This study validated the approach with five different modes and
compared it with a rigid-body analysis. Similarly, [8] used the output error method with a
reduced model, including elastic modes, angle of attack, and pitch rate, to characterize short-
period dynamics’ sensitivity to aircraft flexibility. Using a simulated platform, they identified
desired stability and control derivatives. In the frequency domain, [9] successfully identified a
dynamic model for a flying wing, considering three elastic modes and planning future control
law design projects.

This work is motivated by the research conducted by [8], which used a simulated model with
two elastic modes and fixed some derivatives to eliminate correlations. The analysis observed
modal shapes, force in z, angle of attack, and pitch rate excited by a specific 3-2-1-1 maneuver.
This work aims to improve upon previous research by not fixing any parameters and incorpo-
rating additional information from angular acceleration measurements and real sensors. The
goal is to make the study procedure, conducted on simulated platforms, effective for future
identification investigations on a real aircraft platform.

This paper is organized as follows: first, the simulation model is described in Section 2. Second,
the model identification methodology is described in Section 3. Third, the airplane models and
different flexibility configurations are presented in Section 4. Then, identification results are
presented in Section 5. Finaly, conclusions and further work are discussed in Section 6.

2 FLEXIBLE AIRPLANE DYNAMICS - IDENTIFICATION AND SIMULATION MODEL

This work follows the equation of motion of flexible airplanes originally proposed by [10],
where the following assumptions are considered:

• The structural deformation is sufficiently small, allowing the use of linear elastic theory;
• A set of normalized vibration modes is known (both frequency and modal shapes);
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• Every mass element is point-like;
• The structural deformation is considered small, or simply that the deformation and its rate

of change are collinear;
• The specific mass of each element is constant;
• The inertia tensor is considered constant.

Due to these hypotheses, the coupling between the rigid body equations of motion and the
structural dynamic model occurs only due to the influence of the structural dynamics in the
aerodynamics. Furthermore, the equations of motion are equivalent to classical rigid-body dy-
namics, added by second-order modal equations for the structural dynamics. The rigid body
dynamics is given by:

u̇− rv + qw + g sin θ =
X

m

v̇ − pw + ru− g sinϕ cos θ =
Y

m

ẇ − qu+ pv − g cosϕ cos θ =
Z

m
Ixxṗ− (Ixy q̇ + Ixz ṙ) + (Izz − Iyy)qr + (Ixyr − Ixzq)p+ (r2 − q2)Iyz = L
Iyy q̇ − (Ixyṗ+ Iyz ṙ) + (Ixx − Izz)pr + (Iyzp− Ixyr)q + (p2 − r2)Ixz = M
Izz ṙ − (Ixzṗ+ Iyz q̇) + (Iyy − Ixx)pq + (Ixzq − Iyzp)r + (q2 − p2)Ixy = N ,

(1)

where the components of the aircraft’s velocity in the body coordinate system are represented
by (u, v, and w), the components of the angular velocity (p, q, and r), the Euler angles (ϕ, θ, and
ψ), the moments and products of inertia of the aircraft (Ixx, Iyy, Izz, Ixy, Ixz, Iyz), the aircraft’s
mass m, the altitude h, the forces in the X , Y , and Z axes, and the moments about the L, M,
and N axes. To complete the state equations, the following kinematic relationships are added:

ϕ̇ = p+ q sinϕ tan θ + r cosϕ tan θ

θ̇ = q cosϕ− r sinϕ

ψ̇ = (q sinϕ+ r cosϕ) sec θ

ḣ = u sin θ − v sinϕ cos θ − w cosϕ cos θ

(2)

In this formulation, the flexibility is considered by including modal coordinates degree of free-
dom, which leads to the following set of second-order equations:

η̈i(t) + 2ξiωni
η̇i(t) + ω2

ni
ηi(t) =

Qi

mi

, (3)

where ηi represents the modal displacements (displacements related to the i-th mode), Qi the
generalized forces acting on each mode, mi the modal mass, ωni

the natural frequency, and ξi
the damping factor. This development allows us to characterize the flexible aircraft with six
degrees of freedom for the rigid body dynamics and an additional N degrees of freedom for the
elastic modes, resulting in a total of 6 +N degrees of freedom.

The structural displacements can be recovered from the mode shapes (ϕ⃗i(x, y, z)) and the modal
displacements (ηi(t)):

d⃗ =
∞∑
i=1

ϕ⃗i(x, y, z)ηi(t), . (4)
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This equation indicates that the displacement at each point is a linear combination of infinite
mode shapes and modal displacements. For practical purposes, this sum is truncated, consid-
ering only a finite number (N ) of known modal shapes. Typically, only low-frequency modes
are considered, as they have a greater coupling with the traditional rigid body dynamics of the
aircraft.

Finally, the aerodynamic forces, moments and generalized forces is obtained considering di-
mensionless coefficients:

X = q∞SCX , Y = q∞SCY , Z = q∞SCZ

M = q∞SbCM , L = q∞Sc̄CL , N = q∞SbCN ,

Qi = q∞SCQi
,

(5)

where the dimensionless coefficients are assumed linear with respect to flight variables, modal
displacements and modal rates:

CXF
= CXF

0 + CXF
α α + CXF

β β + CXF
δ δ + CXF

p p+ CXF
q q + CXF

r r

+
N∑
i=1

CXηi
ηi +

N∑
i=1

CXη̇i

η̇ic̄

2V

CYF
= CYF

0 + CYF
α α + CYF

β β + CYF
δ δ + CYF

p p+ CYF
q q + CYF

r r

+
N∑
i=1

CYηi
ηi +

N∑
i=1

CYη̇i

η̇ib

2V

CZF
= CZF

0 + CZF
α α + CZF

β β + CZF
δ δ + CZF

p p+ CZF
q q + CZF

r r

+
N∑
i=1

CZηi
ηi +

N∑
i=1

CZη̇i

η̇ic̄

2V

CLF
= CLF

0 + CLF
α α + CLF

β β + CLF
δ δ + CLF

p p+ CLF
q q + CLF

r r

+
N∑
i=1

CLηi
ηi +

N∑
i=1

CLη̇i

η̇ib

2V

CMF
= CMF

0 + CMF
α α + CMF

β β + CMF
δ δ + CMF

p p+ CMF
q q + CMF

r r

+
N∑
i=1

CMηi
ηi +

N∑
i=1

CMη̇i

η̇ic̄

2V

CNF
= CNF

0 + CNF
α α + CNF

β β + CNF
δ δ + CNF

p p+ CNF
q q + CNF

r r

+
N∑
i=1

CNηi
ηi +

N∑
i=1

CNη̇i

η̇ib

2V

CQi
= Cηi

0 + Cηi
α α + Cηi

β β + Cηi
δ δ + Cηi

p p+ Cηi
q q + Cηi

r r

+
N∑
j=1

Cηi
ηj
ηj +

N∑
j=1

Cηi
η̇j

η̇j c̄

2V

(6)

The equations of motion for flexible vehicles under these hypotheses are closely related to the
classical rigid body equations, assuming stability and control derivatives that typically have a
clear physical meaning. These equations are particularly suitable for system identification, as
the stability and control derivatives can be identified from flight tests.
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In this preliminary work, the equations presented in this section will be used both to simu-
late the aircraft and to generate numerical data for evaluating the identification methodology.
Furthermore, simplified versions of these equations will serve as the identification model.

3 MODEL IDENTIFICATION - QUAD-M METHODOLOGY

In this section, the system identification methodology to be used is presented. Based on Quad-M
(presented by [3]), this section is subdivided into maneuver, measurements, model, and method,
with the goal of describing the framework used for identification in this work.

3.1 Maneuver

Following the Quad-M standard, the first step consists of defining the Maneuver. The goal of
identifying the stability derivatives related to a specific mode, whether it is rigid body dynamics
or flexible, creates the need to perform a maneuver that excites this oscillatory movement.

The main maneuvers used in identification studies are step, pulse, doublet, 3-2-1-1 signal, and
frequency sweep. The type of mode to be excited determines the choice of maneuvers to opti-
mize the identification process of the necessary parameters. According to [3], the most common
motions for system identification include exciting the short period, Dutch roll, phugoid, level
turn, sideslip, pushover pullup, and bank-to-bank roll. Exciting the short period mode is par-
ticularly effective for identifying all derivatives related to the aircraft’s longitudinal movement,
making it the primary mode used in this work. To excite the short period mode, the doublet
and 3-2-1-1 inputs are most commonly used. Ref. [3] provides an effective general rule for
determining the time step of these inputs, as shown in:

∆tdoublet =
2.3

ωn

(7)

∆t3211 =
2.1

ωn

(8)

where ωn is the natural frequency of the mode that should be excited.

In this work, we used doublet and 3-2-1-1 elevator inputs adjusted with the goal of exciting the
short period mode and the first flexible natural frequencies of the airplane.
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Figure 2: Example of maneuvers used for identification: 3-2-1-1 (left) and doublet (right).

3.2 Measurement

The measurements are related to the sensing design to obtain the necessary inputs and outputs
for the identification process. In this preliminary study, we are preparing for future flight tests
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that will be performed using our flexible aircraft platform, the ITA X-HALE. Meanwhile, sim-
ulation models were used to generate data, using a “virtual flight test”. Different measurement
strategies will be presented in the following sections. In all cases, the elevator control input,
angle of attack and pitch rate will be measured. Furthermore, the following different choices
will be explored in this work:

1. Measuring of modal displacements (ηi) and their rates (η̇i) (which is a purely theoretical
test of the methodology, since we wouldn’t be able measure these variables directly in a
flight test);

2. Measuring structural displacements at different points of the flexible structure;
3. Measuring accelerations at different points of the flexible structure;
4. Furthermore, some simulations will also consider measuring the total forces and moments

applied to the airplane (or, vertical acceleration of the rigid-body, and angular accelera-
tion).

3.3 Model

In this work, the focus will be on parametric identification in the time domain, considering a
simplified model of the one presented in Section 2.

Only the short-period dynamics will be considered among the rigid-body degrees of freedom.
In this case, the state variables will be the vertical component of the aircraft’s velocity in the
body axis w and the pitch rate q, in addition to the elastic modes. The dynamic equations are
represented by:

ẇ = (qum+mg cos θ +Qz)/m, (9)

q̇ = QM/Iyy, (10)

η̈i = −2ξiωni
η̇i − ω2

ni
ηi +

Qηi

mi

(11)

where Qz and QM represent the vertical force and pitching moment, respectively:

Qz =
1

2
ρc̄V 2

0 S

(
CZ0 + CZαα + CZδδ +

∞∑
i=1

CZηiηi

)
+

1

4
ρc̄2V0S

(
CZqq +

∞∑
i=1

CZη̇i η̇i

)
,

(12)

QM =
1

2
ρc̄V 2

0 S

(
CM0 + CMαα + CMδδ +

∞∑
i=1

CMηiηi

)
+
1

4
ρc̄2V0S

(
CMqq +

∞∑
i=1

CMη̇i η̇i

)
.

(13)
For the identification model, all the mass and structural information is supposed to be known,
and we will focus on identifying the aerodynamic stability and control derivatives.

During this work different hypotheses about the number of modes of the identification model
will be considered (including a case of a rigid body only, with N = 0).

3.4 Method

The method represents the identification procedure itself that will be used. In this work, the
focus was on time domain identification, exploring the output error method.

The output error method consists of a parametric prediction of a mathematical model through
the minimization of a cost function between the predicted model and the data received from the
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system. To perform the estimation, Ref. [3] uses Fisher’s maximum likelihood theory:

J(Θ, R) =
1

2

N∑
k=1

[z(tk)− y(tk)]
TR−1[z(tk)− y(tk)] +

N

2
ln[det(R)] +

Nny

2
ln(2π), (14)

where z represents the measured data vector, y is the model output vector, tk is the sampling
time, ny the number of observation variables, Θ the parameter vector, andR is the measurement
noise covariance matrix, which is generally unknown in flight tests. Since simulated data were
used in this work to replace the tests, the disturbances applied to each data point are known, and
thus the cost function reduces to the following equation, as the other terms are constants:

J(Θ, R) =
1

2

N∑
k=1

[z(tk)− y(tk)]
TR−1[z(tk)− y(tk)] (15)

The minimum of the cost function is obtained by ∂J(Θ,R)
∂Θ

= 0. Expanding in a Taylor series and
truncating after the first term, we have:

∂J(Θ, R)

∂Θ i+1
≈ ∂J(Θ, R)

∂Θ i
+
∂2J(Θ, R)

∂Θ2 i
∆Θ, (16)

where ∆Θ = Θi+1 − Θi. Since the first derivative is zero, and inverting the Hessian matrix to
isolate the parameter vector, we have:

∆Θ = −
[
∂2J(Θ, R)

∂Θ2 i

]−1
∂J(Θ, R)

∂Θ i
. (17)

The complexity of this method is related to obtaining the Hessian matrix. Ref. [3] presents
Balakrishnan’s simplification which applied leads to the optimization methodology known as
Gauss-Newton. Another method, Levenberg-Marquardt, combines gradient descent with Gauss-
Newton, increasing the convergence region of the method, implemented in this work. Basically,
an update parameter is introduced in the Hessian matrix, exemplified in:

∂2J(Θ, R)

∂Θ2
=

N∑
k=1

[
∂y(tk)

∂Θ

]T
R−1

[
∂y(tk)

∂Θ

]
. (18)

In this work, the Levenberg-Marquardt is used as optimization method.

4 FLEXIBLE AIRCRAFT SIMULATION MODEL

This section describes the simulation model used in this paper, based on the equatins presented
in Section 2. The aircraft is based on the model described by [10], which is similar to the B1-
Lancer airplane (Fig. 3). The geometric and inertia properties of the model are presented in
Table 1 and stability and control derivatives are presented in Table 2.

The original study considered three different configurations: C1 (rigid aircraft), C2 (baseline
flexible aircraft) and C3 (more flexible aircraft). We defined a C4 configuration, even more flex-
ible. The difference between each configuration is basically the in vacuo vibration frequencies,
which are detailed in Table 3.
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Figure 3: Flexible aircraft model. Source: [10]

Table 1: Aircraft properties. Source: 10

Property Variable Value Unit

Geometry
c̄ 4.66344 m
b 21.34 m
S 180.79 m2

Weight W 130642 kg
Inertia Iyy 8677234.88 kg.m2

Modal Masses
m1 248.93 kg.m2

m2 12997.55 kg.m2

Table 2: Stability and control derivatives presented by [10]

.

Qx Qz QM Qη1 Qη2

CX0 -0.028 CZ0 -0.34 CM0 -0.252 Cη1
0 0.0 Cη2

0 0.0
CXα 0.035 CZα -0.051 CMα -0.029 Cη1

α -2.6e-04 Cη2
α 4.5e-04

CXq -1.7 CZq 14.7 CMq -34.75 Cη1
q -9.49e-02 Cη2

q 1.16e-02
CXδ

0.0267 CZδ
-0.0076 CMδ

-0.045 Cη1
δ -2.24e-04 Cη2

δ -1.12e-03
CXη1

0.0 CZη1
-0.0288 CMη1

-0.0321 Cη1
η1

5.85e-05 Cη1
η2

4.21e-03
CXη̇1

0.0 CZη̇1
-0.0848 CMη̇1

-0.159 C η̇1
η1

-4.2e-04 C η̇1
η2

8.71e-03
CXη2

0.0 CZη2
0.306 CMη2

-0.025 Cη2
η1

-9.0e-05 Cη2
η2

-9.22e-02
CXη̇2

0.0 CZη̇2
1.03 CMη̇2

1.23 C η̇2
η1

-1.97e-04 C η̇2
η2

-2.98e-01

Table 3: In vacuo modal vibration frequencies. Source: 10.

Frequency [rad/s]
Configuration Mode 1 Mode 2
C1 (rigid) - -

C2 (baseline) 12.57 14.07
C3 6.29 7.04
C4 3.14 3.52
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With the necessary data collection in hand, simulations are fed with a 3-2-1-1 maneuver applied
to the elevator, as depicted in Figure 4. The response of angle of attack and pitch rate, for each
of the four configurations, are presented in Figures 5 and 6, respectively. The responses for the
C2 configuration are very similar to those of the rigid body (C1) model. Small differences are
observed in the C3 model. On the other hand, the C4 model response is largely modified (since
the in vacuo vibration modes are closer to the rigid body short period mode). In the sequel, we
will use these different configuration models to test the output error method for identification
purposes under different hypothesis. Since the baseline C2 is only slightly flexible (and the
flexible dynamics does not considerably affects the rigid-body variables, we decided to focus
the following study in the C3 and C4 configurations).
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Figure 4: Input of elevator used in the simulation (3-2-1-1)
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Figure 5: Angle of attack response for the same inputs considering the different configurations (aircraft flexibili-
ties)
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Figure 6: Pitch rate response for the same inputs considering the different configurations (aircraft flexibilities)

5 IDENTIFICATION RESULTS CONSIDERING THE C1, C3 AND C4 CONFIGURA-
TIONS

This section is organized as follows. Firstly, rigid body (C1) is used both as simulation and iden-
tification model (considering only short-period dynamics in the case of identification model) in
§ 5.1. Secondly, C3 aircraft is used as simulation model, and three simplified models are used
for identification: rigid-body short-period, 1 mode, and 2 modes model coupled with short-
period dynamics in § 5.2. Thirdly, the same analysis is repeated for the C4 configuration in
§ 5.3. Then, rigid-body force and moment are added as measured outputs in § 5.4. Finally,
displacement and acceleration measurements are considered as sensors in § 5.5.

5.1 Rigid body (C1) as simulation model

Our first test was simply considering that both the simulation and the identification model uses
only the rigid body degrees of freedom. The only difference between those models is that the
simulation model considers all the longitudinal states, and the identification model assumes only
the short-period states. This is a very classical identification problem, results for the identifi-
cation of stability derivatives are presented in Table 7, and the simulation results are presented
in Figure 8. A sequence of 3-2-1-1 and a doublet maneuver as performed to generate the iden-
tification data from the simulation model. The output error method was able to identify most
stability derivatives with small error.
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Table 4: Comparison of Nominal and Identified Parameters - RB as identification and simulation model

Parameter Nominal Value Identified Value Percentual Error (%)
Cz0 -0.3400 -0.3447 1.40
Czα -2.9221 -2.9176 -0.15
Czq 14.7000 13.1937 -10.25
Czδe

-0.0076 -0.0083 9.74
Cm0 -0.2520 -0.2551 1.25
Cmα -1.6616 -1.6737 0.73
Cmq -34.7500 -34.9339 0.53
Cmδe

-0.0450 -0.0455 1.18

0 2 4 6 8 10 12 14 16 18 20
-4

-2

0

2

4

6

0 2 4 6 8 10 12 14 16 18 20
-10

-5

0

5

10

Figure 7: C1 rigid body model as simulation model, rigid body as identification model
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5.2 C3 flexible aircraft as simulation model
Secondly, we performed several tests considering the C3 flexible aircraft as simulation model.
We increased the complexity of the identification model as follows: First, we assumed only the
rigid-body model; Second, we assumed the identification model with only one flexible mode.
Finally, two flexible modes were considered in the identification model.

The results for the rigid-body identification model are presented in Table 5 and Figure 8. Despite
the very good agreement between the responses, the errors related to the stability derivatives
are much larger (most of them larger than 10%). The 1-mode and 2-mode identification models
also exhibit very good agreement in the responses, as appears in Figures 9,10,11 and 12. From
Tables 6 and 7, some improvement is observed in the rigid body stability derivatives (despite
the large errors in Czq and Czδ ). Most modal-related stability derivatives have errors smaller
than 10%, with the notorious exception of those related to the coupling effect of η1 and η2 (and
vice versa), such as Cη1η2

and Cη1η̇2
which exhibit errors of about 250% and 640%, respectively.

Table 5: Comparison of Nominal and Identified Parameters - RB identification model - C3 simulation model

Parameter Nominal Value Identified Value Percentual Error (%)
Cz0 -0.3400 -0.3464 1.90
Czα -2.9221 -2.7420 -6.16
Czq 14.7000 19.9934 36.01
Czδe

-0.0076 -0.0076 0.43
Cm0 -0.2520 -0.2426 -3.74
Cmα -1.6616 -1.4448 -13.04
Cmq -34.7500 -31.0332 -10.70
Cmδe

-0.0450 -0.0405 -10.02
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Figure 8: Flexible model as simulation model, rigid body as identification model
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Table 6: Comparison of Nominal and Identified Parameters - C3 as simulation model - 1 mode identification model

Parameter Nominal Value Identified Value Percentual Error (%)
Cz0 -0.3400 -0.3500 2.95
Czα -2.9221 -2.8260 -3.29
Czq 14.7000 11.5565 -21.38
Czδe

-0.0076 -0.0098 29.46
Cm0 -0.2520 -0.2511 -0.35
Cmα -1.6616 -1.6634 0.11
Cmq -34.7500 -33.2419 -4.34
Cmδe

-0.0450 -0.0448 -0.43
Cη1α -0.0149 -0.0150 1.00
Cη1δ -0.0002 -0.0002 -0.17
Czη1

-0.0288 -0.0180 -37.38
Czη̇1

-0.0848 -0.0586 -30.89
Cmη1

-0.0321 -0.0333 3.73
Cmη̇1

-0.1590 -0.1143 -28.12
Cη1q -0.0949 -0.0868 -8.55
Cη1η1

0.0001 0.0001 -2.97
Cη1η̇1

-0.0004 -0.0004 3.96
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Figure 9: Flexible model as simulation model, flexible aircraft with one mode as identification model
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Figure 10: Flexible model as simulation model, flexible aircraft with one mode as identification model - modal
displacements
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Figure 11: Flexible model as simulation model, flexible aircraft with one two modes as identification model
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Table 7: Comparison of Nominal and Identified Parameters - C3 as simulation model - 2 modes identification
model

Parameter Nominal Value Identified Value Percentual Error (%)
Cz0 -0.3400 -0.3502 2.99
Czα -2.9221 -2.9290 0.24
Czq 14.7000 11.6300 -20.88
Czδe

-0.0076 -0.0089 17.40
Cm0 -0.2520 -0.2500 -0.80
Cmα -1.6616 -1.6552 -0.39
Cmq -34.7500 -33.2620 -4.28
Cmδe

-0.0450 -0.0446 -0.89
Cη1α -0.0149 -0.0152 1.70
Cη1δ -0.0002 -0.0002 -0.38
Czη1

-0.0288 -0.0319 10.78
Czη̇1

-0.0848 -0.0485 -42.84
Cmη1

-0.0321 -0.0324 1.05
Cmη̇1

-0.1590 -0.1529 -3.81
Cη1q -0.0949 -0.0885 -6.70
Cη1η1

0.0001 0.0001 -11.61
Cη1η̇1

-0.0004 -0.0004 -7.84
Cη1η2

-0.0001 0.0001 -248.70
Cη2η1

0.0042 0.0042 -0.19
Cη2η2

-0.0922 -0.0916 -0.70
Cη1η̇2

-0.0002 -0.0015 641.75
Cη2η̇1

0.0087 0.0089 1.82
Cη2η̇2

-0.2980 -0.3009 0.97
Cη2α 0.0258 0.0268 3.87
Cη2q 0.0116 0.0316 172.66
Cη2δ -0.0011 -0.0011 -0.26
Czη2

0.3060 0.3842 25.56
Czη̇2

1.0300 -0.8270 -180.29
Cmη2

-0.0250 -0.0097 -61.23
Cmη̇2

1.2300 1.1827 -3.84
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Figure 12: Flexible model as simulation model, flexible aircraft with one two modes as identification model -
modal displacements
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5.3 C4 - very flexible aircraft simulation model

In this subsection, we performed several tests considering the C4 very flexible aircraft as sim-
ulation model. As in the previous subsection, we increased the complexity of the identification
model as follows: First, we assumed only the rigid-body model; Second, we assumed the iden-
tification model with only one flexible mode. Finally, two flexible modes were considered in
the identification model.

The results for the rigid-body identification model are presented in Table 8 and Figure 13.
Differently from model C3, the responses are not adequately repeated using the rigid body
identification model for the very flexible C4 model. The errors related to the stability derivatives
are even larger than in previous results. Adding at least one mode to the identification model,
significantly improves the matching of identified-model response as seem in Figures 14,15,16
and 17. From Tables 9 and 10, the errors in the identified stability derivatives are similar to
those obtained in the C3 model.

Table 8: Comparison of Nominal and Identified Parameters - C4 as simulation model - rigid body as identification
model

Parameter Nominal Value Identified Value Percentual Error (%)
Cz0 -0.3400 -0.8619 153.50
Czα -2.9221 -2.0223 -30.79
Czq 14.7000 -117.5717 -899.81
Czδe

-0.0076 -0.0680 794.94
Cm0 -0.2520 -0.1694 -32.76
Cmα -1.6616 -0.7057 -57.53
Cmq -34.7500 -16.0994 -53.67
Cmδe

-0.0450 -0.0218 -51.61

Table 9: Comparison of Nominal and Identified Parameters - C4 as simulation model - 1 mode identification model

Parameter Nominal Value Identified Value Percentual Error (%)
Cz0 -0.3400 -0.3704 8.95
Czα -2.9221 -2.7365 -6.35
Czq 14.7000 5.6958 -61.25
Czδe

-0.0076 -0.0128 67.95
Cm0 -0.2520 -0.2550 1.19
Cmα -1.6616 -1.7080 2.79
Cmq -34.7500 -36.3258 4.53
Cmδe

-0.0450 -0.0455 1.11
Cη1α -0.0149 -0.0152 1.80
Cη1δ -0.0002 -0.0002 0.31
Czη1

-0.0288 -0.0162 -43.59
Czη̇1

-0.0848 -0.0801 -5.54
Cmη1

-0.0321 -0.0338 5.17
Cmη̇1

-0.1590 -0.0965 -39.28
Cη1q -0.0949 -0.1058 11.52
Cη1η1

0.0001 0.0001 -9.96
Cη1η̇1

-0.0004 -0.0003 -23.48
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Figure 13: Very flexible model as simulation model, rigid body as identification model
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Figure 14: Very flexible model as simulation model, flexible aircraft with 1 mode as identification model
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Figure 15: Very flexible model as simulation model, flexible aircraft with 1 mode as identification model - modal
displacements
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Figure 16: Very flexible model as simulation model, flexible aircraft with 2 modes as identification model
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Table 10: Comparison of Nominal and Identified Parameters - C4 as simulation model - 2 modes identification
model

Parameter Nominal Value Identified Value Percentual Error (%)
Cz0 -0.3400 -0.3717 9.34
Czα -2.9221 -2.9893 2.30
Czq 14.7000 8.8777 -39.61
Czδe

-0.0076 -0.0114 49.68
Cm0 -0.2520 -0.2531 0.42
Cmα -1.6616 -1.6660 0.26
Cmq -34.7500 -35.9466 3.44
Cmδe

-0.0450 -0.0454 0.98
Cη1α -0.0149 -0.0150 0.51
Cη1δ -0.0002 -0.0002 0.99
Czη1

-0.0288 -0.0335 16.48
Czη̇1

-0.0848 0.1257 -248.19
Cmη1

-0.0321 -0.0306 -4.71
Cmη̇1

-0.1590 -0.1349 -15.14
Cη1q -0.0949 -0.1003 5.70
Cη1η1

0.0001 0.0001 24.18
Cη1η̇1

-0.0004 -0.0003 -27.33
Cη1η2

-0.0001 -0.0005 407.74
Cη2η1

0.0042 0.0042 0.27
Cη2η2

-0.0922 -0.0928 0.65
Cη1η̇2

-0.0002 -0.0011 480.56
Cη2η̇1

0.0087 0.0096 9.79
Cη2η̇2

-0.2980 -0.3047 2.23
Cη2α 0.0258 0.0264 2.49
Cη2q 0.0116 -0.0817 -804.52
Cη2δ -0.0011 -0.0011 1.11
Czη2

0.3060 0.4012 31.11
Czη̇2

1.0300 -4.1623 -504.11
Cmη2

-0.0250 -0.0690 176.01
Cmη̇2

1.2300 0.8961 -27.15
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Figure 17: Very flexible model as simulation model, flexible aircraft with 2 modes as identification model - modal
displacemnts
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5.4 Including force loads as measured ouputs

Despite the good agreement between the responses identified and original model obtained in the
previous results, many stability and control derivatives presented relatively large percentage er-
rors during the identification procedure. During identification, a large correlation was observed
between several parameters. To improve identification, we decided to add new measurement
outputs: the rigid-body force Z (or, equivalently, the acceleration ẇ), and the rigid-body mo-
ment M (or, equivalently, the angular acceleration q̇). The results for the simulation models
C3 and C4, using the two-mode identification model, are resumed in Tables 11 and 12. An
important improvement of most stability and control derivatives. Only five derivatives exhibit
errors larger than 10%.

Table 11: Comparison of Nominal and Identified Parameters - C3 aircraft - 2 modes identification model measuring
forces as outputs

Parameter Nominal Value Identified Value Percentual Error (%)
Cz0 -0.3400 -0.3407 0.21
Czα -2.9221 -2.9157 -0.22
Czq 14.7000 14.2570 -3.01
Czδe

-0.0076 -0.0076 0.05
Cm0 -0.2520 -0.2519 -0.06
Cmα -1.6616 -1.6515 -0.61
Cmq -34.7500 -33.5513 -3.45
Cmδe

-0.0450 -0.0450 -0.05
Cη1α -0.0149 -0.0151 1.54
Cη1δ -0.0002 -0.0002 -0.53
Czη1

-0.0288 -0.0290 0.54
Czη̇1

-0.0848 -0.0835 -1.52
Cmη1

-0.0321 -0.0320 -0.25
Cmη̇1

-0.1590 -0.1582 -0.47
Cη1q -0.0949 -0.0892 -5.98
Cη1η1

0.0001 0.0001 -13.55
Cη1η̇1

-0.0004 -0.0004 -4.88
Cη1η2

-0.0001 0.0002 -308.54
Cη2η1

0.0042 0.0042 -0.13
Cη2η2

-0.0922 -0.0916 -0.60
Cη1η̇2

-0.0002 -0.0009 377.32
Cη2η̇1

0.0087 0.0089 1.84
Cη2η̇2

-0.2980 -0.3010 1.01
Cη2α 0.0258 0.0267 3.75
Cη2q 0.0116 0.0343 195.76
Cη2δ -0.0011 -0.0011 -0.22
Czη2

0.3060 0.3118 1.89
Czη̇2

1.0300 1.0013 -2.79
Cmη2

-0.0250 -0.0322 28.96
Cmη̇2

1.2300 1.2150 -1.22
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Table 12: Comparison of Nominal and Identified Parameters - C4 aircraft - 2 modes identification model measuring
forces as outputs

Parameter Nominal Value Identified Value Percentual Error (%)
Cz0 -0.3400 -0.3411 0.32
Czα -2.9221 -2.9485 0.90
Czq 14.7000 13.0068 -11.52
Czδe

-0.0076 -0.0076 0.05
Cm0 -0.2520 -0.2514 -0.24
Cmα -1.6616 -1.6777 0.97
Cmq -34.7500 -36.4293 4.83
Cmδe

-0.0450 -0.0449 -0.12
Cη1α -0.0149 -0.0150 0.61
Cη1δ -0.0002 -0.0002 0.69
Czη1

-0.0288 -0.0291 0.91
Czη̇1

-0.0848 -0.0698 -17.74
Cmη1

-0.0321 -0.0324 0.90
Cmη̇1

-0.1590 -0.1440 -9.42
Cη1q -0.0949 -0.1108 16.76
Cη1η1

0.0001 0.0001 16.91
Cη1η̇1

-0.0004 -0.0003 -35.42
Cη1η2

-0.0001 -0.0003 288.89
Cη2η1

0.0042 0.0042 0.61
Cη2η2

-0.0922 -0.0930 0.92
Cη1η̇2

-0.0002 0.0000 -108.78
Cη2η̇1

0.0087 0.0093 7.11
Cη2η̇2

-0.2980 -0.3041 2.05
Cη2α 0.0258 0.0266 3.04
Cη2q 0.0116 -0.0543 -568.09
Cη2δ -0.0011 -0.0011 1.14
Czη2

0.3060 0.3124 2.09
Czη̇2

1.0300 1.0300 0.00
Cmη2

-0.0250 -0.0213 -14.76
Cmη̇2

1.2300 1.2198 -0.83
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5.5 Using structural displacements and accelerations as measured outputs

One of the major limitations of the tests presented in the previous sections is that they assume
one can measure the modal coordinates ηi and their time-derivatives η̇i. Clearly, they cannot be
measured directly. Thus, this section tests measuring displacements and accelerations along the
airplane.

The relative displacements are real measurable quantities that directly depend on the modal
shapes and displacements, as presented in Equation 4. This type of measurement can be ob-
tained through visual tracking, using strategically positioned cameras (for example, at the wing
root) and measuring the deflection of marked points at other stations in the wing, as in the re-
search conducted by [11]. Ref. [10] do not provide specific data on the modal shapes but a
graphical representation of them, with the sensors positioned at the quarter-chord of the wing,
as shown in Figures 18 and 19. Since the analysis is focused on two symmetric elastic modes,
information on the relative deflections in the z axis is sufficient for a complete description of
the problem.

Figure 18: First elastic mode. Source: [12]

Figure 19: Second elastic mode. Source: [10]

Using software for point acquisition, it is possible to obtain estimated data of the modal shapes
at each station on the wing. Thus, the simulation model is fed and identification can be carried
out through the relative displacements. The points obtained are presented in Table 13, where
lcgi represents the arm relative to the CG of each sensor, ϕ1 the modal displacement relative to
mode 1, and ϕ2 the modal displacement relative to the second elastic mode.

Table 14 presents the values of the derivatives obtained considering displacement sensors.
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Table 13: Values of the modal shapes and the arm relative to the CG at the wing’s sensor stations in meters

lcgi -13.289 -10.668 -8.199 -5.669 -3.109 12.131 23.119 16.581
ϕ1 0.148 0.100 0.055 0.019 -0.043 -0.019 0.234 0.046
ϕ2 -0.020 0.062 0.120 0.176 0.282 0.283 0.299 0.287

Table 14: Comparison of Nominal and Identified Parameters - 2 modes identification model

Parameter Nominal Value Identified Value Percentual Error (%)
Cz0 -0.3400 -0.3412 0.36
Czα -2.9221 -2.9414 0.66
Czq 14.7000 12.8276 -12.74
Czδe

-0.0076 -0.0076 0.43
Cm0 -0.2520 -0.2511 -0.34
Cmα -1.6616 -1.6725 0.66
Cmq -34.7500 -36.0941 3.87
Cmδe

-0.0450 -0.0449 -0.17
Cη1α -0.0149 -0.0147 -1.35
Cη1δ -0.0002 -0.0002 1.73
Czη1

-0.0288 -0.0293 1.74
Czη̇1

-0.0848 -0.0688 -18.87
Cmη1

-0.0321 -0.0326 1.60
Cmη̇1

-0.1590 -0.1453 -8.64
Cη1q -0.0949 -0.1089 14.80
Cη1η1

0.0001 0.0001 42.30
Cη1η̇1

-0.0004 -0.0005 27.55
Cη1η2

-0.0001 -0.0007 699.77
Cη2η1

0.0042 0.0043 1.51
Cη2η2

-0.0922 -0.0939 1.82
Cη1η̇2

-0.0002 0.0054 -2824.69
Cη2η̇1

0.0087 0.0085 -2.49
Cη2η̇2

-0.2980 -0.2879 -3.39
Cη2α 0.0258 0.0263 2.02
Cη2q 0.0116 -0.0332 -386.18
Cη2δ -0.0011 -0.0011 1.01
Czη2

0.3060 0.3176 3.78
Czη̇2

1.0300 1.0067 -2.26
Cmη2

-0.0250 -0.0164 -34.60
Cmη̇2

1.2300 1.1512 -6.41
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The accelerations can also me measured at a point xj , yj and zj of the aircraft as:

ajz = −ẇ + qu− lcgj q̇ +
∞∑
i=1

ϕi(xj, yj, zj)η̈i(t). (19)

Table 15 presents the values of the derivatives considering measuring the acceleration at differ-
ent points of the structure. There is a clear improvement in the estimation of derivatives with
respect to the use of displacements.

Table 15: Comparison of Nominal and Identified Parameters - 2 modes identification model

Parameter Nominal Value Identified Value Percentual Error (%)
Cz0 -0.3400 -0.3405 0.14
Czα -2.9221 -2.9658 1.50
Czq 14.7000 13.0603 -11.15
Czδe

-0.0076 -0.0076 0.38
Cm0 -0.2520 -0.2516 -0.18
Cmα -1.6616 -1.6782 1.00
Cmq -34.7500 -36.5507 5.18
Cmδe

-0.0450 -0.0449 -0.13
Cη1α -0.0149 -0.0151 1.30
Cη1δ -0.0002 -0.0002 -0.52
Czη1

-0.0288 -0.0286 -0.56
Czη̇1

-0.0848 -0.0647 -23.75
Cmη1

-0.0321 -0.0324 0.83
Cmη̇1

-0.1590 -0.1427 -10.28
Cη1q -0.0949 -0.1131 19.14
Cη1η1

0.0001 0.0001 1.06
Cη1η̇1

-0.0004 -0.0003 -38.87
Cη1η2

-0.0001 -0.0001 27.68
Cη2η1

0.0042 0.0042 -1.29
Cη2η2

-0.0922 -0.0924 0.23
Cη1η̇2

-0.0002 0.0004 -293.82
Cη2η̇1

0.0087 0.0075 -13.74
Cη2η̇2

-0.2980 -0.2973 -0.23
Cη2α 0.0258 0.0334 29.58
Cη2q 0.0116 -0.0184 -258.54
Cη2δ -0.0011 -0.0011 1.35
Czη2

0.3060 0.3054 -0.19
Czη̇2

1.0300 1.0430 1.26
Cmη2

-0.0250 -0.0225 -9.83
Cmη̇2

1.2300 1.2236 -0.52

6 CONCLUSIONS AND FURTHER WORK

Aviation faces challenges such as reducing pollutant emissions, leading to a trend towards air-
craft with higher aspect ratios for greater efficiency and lower fuel consumption. However, this
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raises concerns about flight dynamics due to the coupling between rigid and elastic modes at
lower frequencies.

Research in flexible aircraft modeling, simulation, and testing has advanced significantly. At
the Instituto Tecnológico de Aeronáutica (ITA), in partnership with the University of Michigan,
the LNCA (Laboratory of New Concepts in Aeronautics) utilized the X-HALE prototype for
these studies; see Figure 1. Validating these models is essential, making system identification a
crucial tool.

For flexible aircraft, [10] provided stability derivatives for up to four flexible modes, making
it the chosen model for this study. Simulations were conducted for configurations C1 (rigid
body), C3 (flexible), and C4 (very flexible), using 3-2-1-1 and doublet maneuvers. Simulated
data, polluted with Gaussian white noise, were used for identification considering short-period
dynamics.

C1 was identified using rigid-body dynamics, leading to accurate results. Using rigid-body
dynamics for C3 led to good response agreement but poor stability derivative accuracy. For
C4, the identification using a rigid-body model resulted in low agreement in both response and
parameter identification.

An analysis adding observation variables (and sensors) was performed for both C3 and C4
under two conditions: (1) using data from angle of attack, pitch rate, and modal displacements
(and rates); (2) adding normal acceleration and angular acceleration measurements around the
y-axis. The second condition successfully identified all but two of thirty derivatives.

A comparative study on deflection and acceleration sensors showed that acceleration measure-
ments provided better parameter estimates than deflections alone. Unlike [8], this study did
not fix parameters during identification and used sensors that could be practically implemented,
such as deflection and acceleration sensors.

This research underscores the importance of preliminary sensor placement studies and maneu-
ver selection to excite all relevant dynamics for accurate stability and control derivative identi-
fication.

Future work could explore identifying natural frequencies and damping factors of elastic modes
without prior knowledge, using different sensors, and validating with experimental data. Ad-
ditionally, extending the analysis to include other types of sensors, such as strain gauges, and
applying the identification methods to real flight test data would provide further validation. Im-
plementing criteria like Theil’s inequality coefficient for validation and comparing responses
in frequency domains between real and estimated models could enhance the robustness of the
identification process. More complex identification models should be expected when dealing
with highly flexible aircraft, assuming geometrically nonlinear structures, thus leading to chal-
lenges in modeling simplified and parametric equations for such a problem.

These efforts will pave the way for identifying the ITA X-HALE aircraft, which will be used
for model validation, control design, and further development of flexible aircraft technologies.
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