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Abstract: Traditionally, ground vibration tests of aircraft are processed using modal analysis 
algorithms. Most algorithms that are in commercial use today are grounded in the domain of linear 
system identification. These tools have proven their worth and are still the state-of-the-art in 
commercial aviation, even though advances have been made in the research community. One of 
the more promising advances is the ability now to develop fully nonlinear models from 
experimental data. This capability could drastically improve the quality of information that can be 
extracted from a ground vibration test experiment. In this work, we utilize recently developed 
concepts in the nonlinear state-space modeling framework, for instance, a nonlinear state selection 
method for the polynomial nonlinear state-space models and nonlinear function decoupling for a 
state-space neural networks. These concepts enable to build more concise, nonlinear, explainable 
(to some extent), data-driven models. We illustrate the methodology first on an analytical example 
containing multiple linear modes and one isolated source of nonlinear distortion and compare the 
performance of classical linear techniques to the new nonlinear modeling framework. Then, we 
demonstrate this framework on a real-life multiple-input-multiple-output ground vibration test of 
the Magnus eFusion light sports aircraft.  

1 INTRODUCTION 
The goal of this paper is to demonstrate state-of-the-art nonlinear state-space (NSS) modeling 
framework to model real-life aerodynamic, aeroelastic and structural testing measurements. While 
we primarily focus on its application to a battery-operated small aircraft, it is important to 
emphasize that usage of this framework is not limited to this specific example as it can be applied 
to diverse applications. 
Mechanical vibrating structures, such as aircrafts, often exhibit different types of nonlinear 
behavior. These are, for instance, free-play of control surfaces, stick-and-slip behavior at hinges, 
large deformations of slender wings, nonlinear friction. However, due to complexity reasons, 
nonlinear systems are often approximated by linear systems. This is also the case with processing 
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and modeling ground vibration tests (GVT): most algorithms that are in commercial use today are 
grounded in the domain of linear system identification. 
These tools have proven their worth and are still the state-of-the-art in commercial aviation, even 
though advances have been made in the research community. In this work, however, instead of 
trying to reduce the impact of the nonlinear distortion – as common with the commercial tools – 
we show the potential benefit of including nonlinearities in the model structure.  
When building nonlinear models from data, one of the biggest challenges is to limit the number of 
parameters of the model structure. This is especially true for complex nonlinear systems such as 
aircraft. To that end, in this work, we utilize recently developed concepts (a nonlinear state 
selection method, nonlinear function decoupling, a single-branch neural network) embedded in 
our NLSS modeling framework, to build a nonlinear, more explainable, data-driven model [1]. 
The key idea of the proposed framework is that we make an explicit separation between linear and 
nonlinear terms of the state-space models. This is beneficial because state-space models are well 
suited for understanding, control, and simulation.  

All of the nonlinear models are initialized with the help of the so-called Best Linear Approximation 
(BLA) framework [2] [3] that provides the frequency response matrix (FRM) estimate and its noise 
and nonlinear distortion analysis. In this work, we consider two conceptually similar but 
technically quite different nonlinear parametric modeling approaches. 

1. We extend the already existing polynomial nonlinear state-space (PNLSS) method [4] that will 
allow to incorporate only the state variables that are most impacted by nonlinearities in the 
nonlinear part of the model.  

2. Furthermore, we employ nonlinear state-space neural network models (SSNN) where the 
nonlinear terms of the state-space models are entirely replaced by (recurrent) neural networks 
resulting in a much smaller number of parameters and more interpretability than using deep neural 
networks [5]. We also consider the decoupled model structure form with tailored – data-based - 
activation functions [6]. 

The proposed nonparametric industrial framework is illustrated on the ground vibration test (GVT) 
measurement of a battery-operated electrical airplane. The detailed results and modal analysis of 
this GVT analysis can be found in [7] [8]. 
The numerical results presented in this work were obtained using the SAMI (Simplified Analysis 
for Multiple Input Systems) toolbox. Interested readers are referred to [9]. However, our focus in 
this work is on the novel methodology rather than the usage of the toolbox. 
This paper is organized as follows. Section 2 briefly describes the considered systems and the main 
assumptions applied in this work. Section 4 discusses the estimation framework. In Section 4 the 
description and a basic analysis of the GVT experiments are given. The modeling results are 
elaborated in Section 5. Conclusions can be found in Section 6. 
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2 BASICS 

2.1 Assumptions 
The considered systems are mechanical or civil dynamic vibrating structures. The linear part of 
the dynamics of a linear multiple-input-multiple-output (MIMO) system can be nonparametrically 
characterized in the frequency domain by its Frequency Response Matrix (FRM, a matrix whose 
elements are FRFs [10]) 𝐺 at frequency bin k, which relates 𝑛! inputs 𝑈 to 𝑛" outputs 𝑌 of N 
measurement samples as follows:  

𝑌[𝑘] = 𝐺[𝑘]𝑈[𝑘] (1) 

where 𝐺[𝑘] ∈ ℂ#!×#", 𝑌[𝑘] ∈ ℂ#!×%, 𝑈[𝑘] ∈ ℂ#"×%, 𝑘 = 0… &'%
(

 at frequency 𝑓) = 𝑘𝑓*/𝑁 with 
sampling frequency 𝑓*.The system represented by 𝐺 is linear when the superposition principle is 
satisfied in steady state, i.e.: 

𝑌[𝑘] = 𝐺[𝑘]{(𝑎 + 𝑏)𝑈[𝑘]} = 𝑎	𝐺[𝑘]{𝑈[𝑘]} + 𝑏	𝐺[𝑘]{𝑈[𝑘]} = (𝑎 + 𝑏)	𝐺[𝑘]{𝑈[𝑘]} (2) 

where a and b are scalar values. If 𝐺 is constant, for any a, b (and excitation), then the system is 
called linear-time invariant (LTI). On the other hand, when 𝐺 varies with a and b (and the variation 
depends also on the excitation signal – e.g. level of excitation, distribution, etc.) then the system 
is called nonlinear. However, if the system satisfies the principle of superposition but 𝐺 varies over 
the measurement time, then it is known as a linear time-varying system [11]. 
In terms of instrumentation, it is assumed that 1) the measurement system is synchronized, 2) the 
excitation signal is exactly measured , 3) the actuator (e.g. shaker) of the system is nearly linear, 
and 4) the output is measured with time-domain additive, independent and identically distributed 
Gaussian noise (denoted by 𝐸) with zero mean and finite variance, such that the measurement 
𝑌+,-*./,0 is given by: 

𝑌+,-*./,0[𝑘] = 𝑌[𝑘] + 𝐸[𝑘] (3) 

2.2 Multisine excitation and detection of nonlinearities 
A wide range of excitation signals are available for efficiently and user-friendly structural testing 
[12]. Industrial practitioners prefer to use sine-sweep or noise excitation due to its randomness and 
simplicity, however, there is a potential issue with spectral leakage and limited ability to detect 
nonlinearities. We suggest the use of multisine signals (also known as periodic pseudo-random 
noise) as they are simple to create, periodic, and exhibit noise-like characteristics: in the time 
domain, they resemble white noise and behave similarly, although they are not actually noise [10] 
[13]. The magnitude characteristics of multisines are set by the user in the frequency domain 
(typically flat) but the phases are randomly chosen. For experiments with multiple inputs, we 
recommend using orthogonal multisine excitation signals [14, 15]. The proposed procedure is to 
generate independent random excitations for every input channel [16], as opposed to the classical 
Hadamard technique [17]. An illustration of the MIMO multisine signals is shown in Figure 1. 
Furthermore, applying multiple random realizations of the multisine signal and/or adjusting the 
excitation level can also make the nonlinearities more apparent. A freeware implementation of a 
multisine toolbox can be found in [18]. 
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Figure 1: The proposed multisines signals for a very simple 2x2 MIMO scenario.  

2.3 Best Linear Approximation models 
The essence of a Best Linear Approximation (BLA) [17] is to minimize the mean squared error 
between the measured nonlinear response of a system and the response of a linear nonparametric 
frequency response function model for a given level of excitation. In the multisine-driven BLA 
framework, systems are excited by multiple periods and realizations of random phase multisines. 
The key idea is to use statistical features of the multisine excitation signal to separate the phase-
coherent (linear) part of the response signal from the non-phase-coherent part (noise and nonlinear 
distortions), and then to reduce the random nonlinear distortions by averaging over multiple 
realizations of the multisine [19]. Different quantities of the BLA framework are illustrated in 
Figure 2.	𝐺1!#,-/ is the “classical” linear FRM model. The (phase non-coherent) nonlinear 
distortions are represented by 𝐺*. The measurement noise is represented by the 𝐺2. 𝐺3!-* represents 
the bias error, i.e. the remaining imperfections (e.g. additional damping introduced by shaker 
testing) and the coherent nonlinearities (usually it is a negligible amount of nonlinearities). 

  

Figure 2: The theoretical structure of the best linear approximation and its connection to the FRF 
estimate illustrated on the transfer function estimate of a battery-operated aircraft at the driving 

point of the left wing. 
The key idea is to use some statistical features of the excitation signal. In this framework, there 
are 𝑀 different realizations of the multisine excitation signal, each realization is repeated 𝑃 period 
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times. The usage of periodic excitation reduces the effects of the measurement noise (𝐺2). The 
usage of multiple realizations reduces the impact of nonlinear noise (non-coherent nonlinearities, 
𝐺*). The FRM model at period 𝑝 and realization 𝑚 at frequency bin k is given by: 

𝐺> [+][6] = 𝑌+,-*./,0
[+][6] 𝑈[+]7?@@@@A@@@@B

+,-*./,0	9:;	-<	+,6

= ( 𝐺>3>?
[+][6]?@A@B	

9:;
,*<!+-<,*

+ 𝐺>@
[+]C

#"#1!#,-/!<A
B-/!,*	"B,/	+'	C!D,0	!#	6

+ 𝐺>2
[+][6]?@A@B	)

#"!*,
B-/!,*	"B,/	6,+

𝑈[+]
7
 (4) 

where 𝐺> [+][6] ∈ ℂ#!×#", 𝑌>+,-*./,0
[+][6] ∈ ℂ#! , 𝑈[+] ∈ ℂ#", and the † is the generalized inverse.  

 
Figure 3. Evaluation of BLA estimate with the help of multidimensional averaging.  

For further computational and fundamental details we refer to [17]. A freeware implementation of 
a BLA toolbox can be found in [20]. 

3 MODELING FRAMEWORK 

3.1 Overview 
The recommended nonlinear modeling procedure consists of the following interrelated steps: 
§ Step 1: Systems are excited by broadband (preferably by multisine) signals at multiple 

excitation levels.  

§ Step 2: Measurements are processed with the BLA estimation framework [17].  
§ Step 3: Classical linear state-space (SS) models are built based on the BLA estimates on a 

level closest to the linear regime of operation. The model complexity (number of states) can 
easily be determined with a cross-validation-based model order scanning.  

§ Step 4: Building nonlinear models using either polynomial or neural network basis. 
Note that even though the technique works best with the recommended multisines, with some loss 
of useful information and accuracy any broadband signal can be applied. Next, the parametric 
models used in our framework will be briefly discussed.  

3.2 Linear state-space models 
For understanding, design and control we propose to use state-space models (in modal form). An 
𝑛th order discrete-time state-space model can be written as: 
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E𝑥
(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)
							𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)  (5) 

where 𝑢 and 𝑦 vectors contain the input-output values at time instance 𝑡; the state vector 𝑥 ∈ ℝ# 
represents the memory of the system; 𝐴 ∈ ℝ#×#, 𝐵 ∈ ℝ#×#" 	 define the state equation; and 𝐶 ∈
ℝ#!×#, 𝐷 ∈ ℝ##D#! define the output equation. The state vector 𝑥 includes the common dynamics 
present in the different outputs. The state equation represents the evolution of the state as a function 
of the input and the previous state. The output equation relates the system output with the state and 
the input. When dealing with measurements, the ideal noise free output 𝑦(𝑡) in (5) should be 
substituted with the experimental data 𝑦+,-*./,0(𝑡).  
To build linear state-space models – in modal form – we use a special implementation of the SS-
FRM fitting method proposed by [21]. Our experience clearly shows that this FRM based method 
leads to more precise models than the classical time-domain fitting SS methods like the n4sid [22]. 
For tunning all models (including nonlinear models) we make use of a Levenberg–Marquardt 
optimization routine [22]. 

3.3 Nonlinear State-Space models 
In our framework, we make an explicit expansion of (5) to include the nonlinearities that lead to 
the generic nonlinear state-space form with nonlinear functions ℰ and ℱ:  

E𝑥
(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + ℰ(𝑥, 𝑢)
								𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) + ℱ(𝑥, 𝑢) (6) 

Here we consider – at the moment – three different types of NSS. The first one is using polynomial 
basis expansion, the other two methods consider neural network expansion. In all cases, the linear 
parts of the NSS in (6) are initialized with the BLA SS models given in (5). 

3.3.1 Polynomial Nonlinear State-Space models 
3.3.1.1 Polynomial Nonlinear State-Space models 
A polynomial nonlinear state-space (PNLSS) model can be expressed as: 

R
𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐸E𝜁(𝑥, 𝑢)
								𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) + 𝐹F𝜂(𝑥, 𝑢)

 (7) 

where 𝐸E ∈ ℝ#D#$ and 𝐹F ∈ ℝ#!D#%. 𝐸E  and 𝐹F matrices realize the nonlinear extension part where 
auto- and cross-terms of the input and states are considered. These terms can include, for instance, 
𝑥((𝑡), 𝑢((𝑡), 𝑥((𝑡)𝑢(𝑡). The vectors 𝜁 ∈ ℝ#$ and 𝜂 ∈ ℝ#% contain the nonlinear monomials in 
𝑥(𝑡) and 𝑢(𝑡)	of multiple chosen degrees.  
The PNLSS model structure is flexible, as it can capture many different nonlinear dynamic 
behaviors [6]. The drawback of the method is that it even for a moderate complexity problem, 
there are an excessive number of model parameters needed and it can result in an unstable model 
when the input data distribution is significantly different from the one what used during the 
training.  

3.3.1.2 Nonlinear state-selection 
It is possible to build more compact PNLSS models using the nonlinear distortion information of 
the BLA. In general, not every resonance (state) is highly nonlinear, therefore it is not necessary 
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(or meaningful) to include these (nearly) linear states in the nonlinear part of the model given in 
(7).  
This technique nonlinear state-selection technique results in a significant model order reduction 
that will improve the overall computational complexity and stability of models. 

3.3.2 Nonlinear State-Space Neural Networks 
3.3.2.1 Generic Nonlinear State-Space Neural Networks 
An alternative and more generic way of expanding the nonlinear terms in (6) is the use of state-
space neural networks (SSNN). The proposed SNNN is defined as 

V
𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) +𝑊D𝑔D Y𝑉DG [

𝑥(𝑡)
𝑢(𝑡)\ + 𝑏HID] + 𝑏D

								𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) +	𝑊A𝑔A Y𝑉AG [
𝑥(𝑡)
𝑢(𝑡)\ + 𝑏HIA] + 𝑏A

 (8) 

where 𝑔 represents a standard nonlinear activation function (such as hyperbolic tangent transfer 
function) with 𝑛# neurons.  𝑊D ∈ ℝ#	J	#& , 𝑉D ∈ ℝ	(#"L#)	D	#&, 𝑊A ∈ ℝ#!	J	#& , 𝑉D ∈ ℝ	(#"L#)	D	#& are 
the weights, 𝑏HID ∈ ℝ, 𝑏D ∈ ℝ, 𝑏HIA ∈ ℝ, 𝑏A ∈ ℝ are the biases (offsets) . This formulation can 
be seen as a type of (shallow) recurrent neural network, referred to as a state-space neural network 
(SSNN). In our implementations, the weights in (8) are initialized randomly, and biases are set to 
zero initial values as suggested by [23].  
The main advantage of using SSNN over deep neural networks that is SSNN results in more 
compact models leading to a substantial model reduction. Compared to PNLSS it offers more 
robustness for unforeseen input distributions, however, it offers much less interpretability. 

3.3.2.2 Decoupled state-space models 
The decoupled model structure is a special, single-hidden layer neural network where the 
activation functions are tailored to fit the data. The term decoupling comes from the fact that the 
technique was originally developed to decouple high dimensional functions, such as 𝐸E  and 𝐹F 
terms in (7) into univariate terms as illustrated in Figure 4.  

 
Figure 4. Graphical illustration of the decoupled structure. 

The advantage of the decoupled structure is that the univariate functions can easily be visualized 
hence increasing the explainability of the model. The proposed state-space model is defined as (8) 
but with tailored activation functions. This means that 𝑔D and 𝑔A matrices will contain 𝑟 univariate 
activaton functions (branches, or number of neurons in machine learning terms) that will be also 
estimated. Typically, in structural testing, the excitation and the output signals have zero mean 
values and such that the bias terms in (8) can be neglected further reducing the number of 
parameters. 
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4 THE GVT 

4.1 Description of the measurement 
This section provides a brief overview of the GVT measurement of a battery-operated small 
aircraft see (see Figure 5). The eFusion aircraft is a two-seat, all-electric, low-wing monoplane, 
based on a piston engine variant. The light sport aircraft has a symmetric wing profile, a titanium 
firewall, and a center section made of chrome molybdenum alloys. The fuselage is attached with 
a non-retractable tricycle landing gear. It has a length of 6.7 m, height of 2.4 m, and a wingspan of 
8.3 m including winglet, whereas the wing area is 10.59 m². The aircraft is powered by a 60 kW 
electric drive system. The electric propulsion system including motor and batteries is designed by 
Siemens. The aircraft has an endurance of approximately one hour. The aircraft has an empty 
weight of 410 kg and a maximum take-off weight of 600kg. It requires a landing roll from 150 m 
to 200 m.  

 

 
Figure 5: The eFusion battery-operated small aircraft 

The measurement setup consists of 2 shakers–2 force cells (placed under the wings), and various 
91 acceleration channels. The shaker reference (voltage) signals are random phase (odd) multisine 
signals. The sampling frequency is 200 Hz. The period length is 1024 resulting in a frequency 
resolution of 0.1953 Hz. The smallest excited frequency is 1.1719 Hz, the highest excited 
frequency is 50.7813 Hz. There are 7 different multisine realizations. Each multisine realization is 
repeated 3 times. The considered GVT experiment has been executed at two different excitation 
levels. At low-level excitation the shaker generates a broadband 2 N RMS excitation (with a 
measured SNR of 32 dB). At high-level excitation the excitation RMS is 10 N (with an SNR of 33 
dB).  The detailed modal analysis results of this GVT can be found in [8]. 
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4.2 FRM analysis 
Figure 6 shows the FRM at the driving points. Even though the high-level excitation is only 13 dB 
higher than the low-level excitation, it can be clearly observed that FRFs at different levels differ 
a lot from each other. This clearly indicated the presence of nonlinearities. However, for a given 
level of excitation, a novice user is not able to determine if there are nonlinearities present. Using 
the BLA framework we can directly estimate the noise and nonlinearity distortions.  
For instance, at low-level, the first resonance (around 3 Hz, a rigid body mode) has an SNR of 30 
dB and an SNLR (signal-to-nonlinearity ratio) of 40 dB. This means that at this resonance the main 
error source is the noise. At high level of excitation, the SNLR of this mode is around 28 dB, so at 
higher excitation level this rigid body mode behaves nonlinearly (what is to be expected).  
Looking at the largest resonance (4th resonance at around 12 Hz, the first bending mode) one can 
conclude that at this resonance the dominant error source is the nonlinearity at all excitation levels. 
This kind of extra information would have been impossible to derive from the classical H1 
estimation framework. The detailed BLA results can be found in [7]. 

 
Figure 6: Noise and nonlinearity levels at with respect to one measurement block at low and high 

level of excitation. 
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5 THE MODELING RESULTS 
In this section we provide a step-by-step description of the suggested nonlinear modeling 
approach.  

5.1 The datasets 
From each realization, only the steady-state periods are used, averaged (to reduce the noise and 
the computational needs) and the resulting data are split into three parts: 

§ Estimation dataset: 4-4 realizations from low- and high-levels of excitation are used to 
build the models, 

§ Validation datasets: 2-2 realizations from low- and high-levels of excitation are used to 
keep the model complexity under control, 

§ Test datasets: 1-1 realizations from low- and high-levels of excitation are used to compare 
different modeling approaches on a completely independent dataset. 

The main metric used for comparison is the relative root mean squared error (rrmse) that is 
calculated in the time domain as: 

rrmse = 𝑟𝑚𝑠(	(𝑦d − 𝑦+,-*./,0))/𝑟𝑚𝑠(𝑦+,-*./,0 −𝑚𝑒𝑎𝑛(𝑦+,-*./,0)) (9) 

where 𝑦d is a modeled output test signal and 𝑦+,-*./,0 is the measured output test signal. This 
rrmse will be calculated for both for low- and high-level data independently.  
For data-driven modeling purposes, we only consider the flexible modes thus we exclude the rigid 
body modes – everything up to 8.5 Hz (this relatively high frequency is due to high flexibility and 
the light weight of the aircraft). All modeling results presented here are out-of-the-box solutions: 
no manual, fine tuning is applied. Table 1 shows the detailed fitting results. 

5.2 FRF models 
The first models to be assessed are the nonparametric FRM models. As expected, each FRM 
performs best on the level where it has been built.  
From the FRF BLA distortion analysis the SNR and SNLR levels can be estimated. The 
SNLR/SNR levels provide a (rough) indication of the lower bounds of modeling error using a 
linear/nonlinear framework.  
To establish some baseline number, the most distorted FRM channel is taken (the transfer between 
right wing acceleration and left wing excitation). The averaged SNLR level estimates for low-level 
is 27 dB, at high-level it is 20 dB. These values correspond to rrmse levels of 0.05 at low-level and 
0.10 at high-level. The averaged SNR levels are 22 dB at low-level, corresponding to an rrmse of 
0.08, and 21 dB at high-level corresponding to an rrmse of 0.09. It can be clearly concluded that 
at the low-level of excitation, the dominant error source is due to noise, at high-level the 
nonlinearities. These rrmse values give a weak indication of the lower bounds of the error.  
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Figure 7: Output of the low-level BLA FRM model (red line) is compared to the measurement 

(blue line) on a segment of the left-wing acceleration test data. Left: low-level. Right: high-level. 

5.3 SS models 
As our experience shows, the best performance can be obtained when nonlinear models are 
initialized with a linear model trained on the most linear data, low-level experiments are considered 
here. All nonlinear models are initialized with the help of this SS BLA model. 
As a second step, different parametric SS models are built based on the low-level nonparametric 
BLA FRM estimates. To determine the best model order (i.e. number of states), a cross-validation 
model-order scanning method is used between orders 1 and 30.  
The overview of the model order scanning results, obtained on the validation dataset (which was 
not used for training), can be seen in Figure 8. The selected model order is 21 (states). This model 
order contains 529 parameters. Similar linear modeling error level can be observed with 8 states, 
however, this model would cover only a few (significant) modes. The main advantage of the 
proposed SS building technique that we obtain the modal SS representation what can be used – in 
combination with modal analysis techniques – determine what states represent which modes.  
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Figure 8: Parametric model fitting based on BLA FRM. State-space models are trained on the 

estimation dataset. Absolute rms errors are calculated on the validation datasets. 

 
Figure 9: State-space models of order 21 estimated on the BLA FRM. Black lines represent the 

BLA FRFs, the orange lines represent the SS model. 
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Figure 10: Output of the BLA SS model (red line) is compared to the measurement (blue line) on 

a segment of the left-wing acceleration test data. Left: low-level. Right: high-level. 

5.4 PNLSS models 

5.4.1 Generic PNLSS models 
To reduce the model complexity and the computational needs, only nonlinearities in the state 
equation (i.e., matrix 𝐸E  in (7)) are considered with 2nd and 3rd order multivariate (state and input) 
monomials. A classical, all cross terms included PNLSS model with 21 states and two inputs 
results in a total of 54625 parameters. Using the estimation dataset and activating the nonlinearities 
in the output equation (i.e., matrix 𝐹F in (7)) would require more than 16 GiB RAM, therefore it 
was not considered. For a fair comparison, in the case of SSNN models, no nonlinear terms in the 
output equations will be considered. 
Seeing the fitting results of Table 1, one might wonder why the performance of the PNLSS model 
is so low: the rrmse is reduced only by 0.11 from 0.41 to 0.3. This main reason is that the ratio of 
training data samples (8192) and number of parameters (54625) is very low (0.15). To obtain a 
unique solution, the ordinary least squares algorithms require a ratio higher than 1 [12].  

5.4.2 PNLSS models with nonlinear state-selection 
The question arises: is it necessary to use all auto- and cross-terms of the states in the nonlinear 
part of the NSS equations or is it sufficient to use a lower number of well-chosen states? Using the 
BLA distortion information, one can directly estimate the significance of the nonlinear 
contributions per state, see Figure 6. 
If we use only 2 nonlinear states at around 11 Hz (i.e., the first wing bending mode) we have good 
fitting results with an rrmse of 0.15. at a very low computational price of only 14 extra parameters 
on the top of the 529 SS model parameters. With 6 nonlinear states at around 11, 20, 40 Hz (first 
wind bending mode, the first horizontal tail bending mode, mixed torsional-bending mode) most 
of the nonlinear distortions are covered resulting in substantial improvement compared to the SS 
model resulting an rrmse increase from 0.41 rrmse to 0.13. 
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It is worth mentioning that one might use only the input terms in the nonlinear part of NSS. This 
results in lower rrmse fit (but it is factor 2 improvement compared to the BLA SS). The main 
advantage of this form is that this representation can be used directly in already existing linear 
simulation and controller setups. One might simply extend the 𝐵 matrix with the coefficient of 𝐸E  
and 𝑢 input vector with second and third powers of the input. 

 
Figure 11: The output of the PNLSS model with 6 nonlinear states is compared to the 

measurement (blue line) on a segment of the left-wing acceleration test data. Left: low-level. 
Right: high-level. 

5.5 SSNN models 

5.5.1 Generic SSNN models 
A model order scanning method has been applied with 1, 2, 5, 10, 20 neurons. Each model structure 
has 5 random initializations. This higher number of random realizations is needed because the 
unconstrained nonlinear optimization problem often results in a large spread of rrmse – unlike in 
the case of decoupled structure where most of the time the resulting models are nearly identical. 
The resulting models had a large random spread as per number of neurons and rrmse. The best 
result is found with 15 neurons using all states for the nonlinear part. This is because the latest 
implementation of the generic SSNN does not yet support the state variable selection. This model 
representation is completely black box as for the nonlinear terms, however, if the users are 
interested in a simple but efficient nonlinear method without the need for detailed interpretability, 
this method offers a good fit at a low computational (model complexity) cost. 
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Figure 12: The output of the generic SSNN model with 15 neurons is compared to the 

measurement (blue line) on a segment of the left-wing acceleration test data. Left: low-level. 
Right: high-level. 

5.5.2 Decoupled models 
We tested the direct decoupling technique as well with 2 random realizations and a model order 
scanning between 1 and 5 branches. The fitting results are improved compared to the generic 
SSNN structure.  
In the first modeling attempt, all states were considered, and the best model has been found with 
1 branch (i.e., 1 custom activation function). In the second modeling attempt, when only the 6 
selected states are considered for the nonlinear model part, then a solution with 3 branches has 
been found. It is important to mention that there was so significant difference between the models 
in terms of rrmse. It is because in the case of the decoupled model structure, we have very limited 
number of parameters: per branch, for each state there are two variables (weights in terms of neural 
networks) assigned, and for each input there is one variable assigned. This means that including 
all states or only a few selected states in the nonlinear extension part does not significantly change 
the model complexity. For determining the activation function (the branch) we use a 4th order 
polynomial fit (i.e., 5 parameters) for smooth function estimation. The estimated three branches 
(activation functions) are shown in Figure 13. The odd shapes of activation function are not 
surprising. In general, odd nonlinearities are responsible for moving resonance frequencies (it is 
the so-called hardening or softening stiffness nonlinearity effect). 
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Figure 13: Illustration of three branches (activation functions). 

 
Figure 14: The output of the decoupled model with 6 nonlinear states and three branches is 

compared to the measurement (blue line) on a segment of the left-wing acceleration test data. 
Left: low-level. Right: high-level. 

5.6 Summary 
An overview of the best obtained modeling results is shown in Table 1. As the nonparametric 
analysis shows, the MIMO GVT measurement is nonlinear. This means that using a simple linear 
model may result in unacceptable accuracy. To build SS models we used an FRM-based fitting 
technique because its robustness and simplicity. We considered an SS model built on the low-level 
data using 21 states.  
The classical PNLSS models come with a hefty price tag: the tuning time and the memory needs 
are excessive due to the extremely high number of nonlinear parameter terms (54096). The 
performance of the full PNLSS models can be further improved using the nonlinear state-space 
selection method resulting in a drastic decrease of number of nonlinear parameters (936 in case of 
6 nonlinear states, and 23 in case of inputs only).  
A more time-saving option can be using the decoupled model structures or the generic SSNN 
models. The obtained results provide an excellent balance between the number of parameters 
computational time and the performance. The main drawback of the generic SSNN is that the 
model interpretability is somewhat limited. 
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The results can be further optimized using 1) more data for tunning, 2) more optimization steps of 
other optimization routine, 3) fine tuning the model structure, and in case of neural network models 
4) using more random realizations. 
Table 1. Overview of the modeling results. 

* exact figures depend on the hardware and software implementations (a low-cost laptop has been used for the model fitting). 

6 CONCLUSIONS 
Nonlinear black-box modeling of complex real-world nonlinear systems is computationally 
demanding as a high number of model parameters is needed. This generally results in a loss of 
interpretability as well. 
In this study, we presented modeling approaches aimed at addressing these challenges. The first 
approach extends the classical PNLSS framework with a nonlinear-state selection process, 
leveraging insights from signal-to-noise and signal-to-nonlinearity ratios derived from the BLA 
framework. The second approach utilizes SSNN either with tailored activation functions or with 
generic activation functions. We show how both strategies allow to maintain or even improve the 
interpretability of nonlinear models while keeping the model order under control. 
The proposed nonlinear modeling framework is illustrated on ground vibration testing of the 
Magnus eFusion light sports aircraft. 

ACKNOWLEDGEMENT 
This work was funded by the VLAIO AVIATOR project under grant number HBC.2022.0800 and 
SRP60 of the Vrije Universiteit Brussel. 
  

Model 

Relative rms error on test data 

Computational 
time* 

Number of 
parameters 

Memory need 
of the tuning 

method* 

Low-
level 

High-
level 

Mean Un-
weighted 

mean 

low-level BLA FRM 0.11 0.43 0.27 0.41 <1 sec 174 < 1 GiB 
high-level BLA FRM 0.48 0.28 0.38 0.30 <1 sec 174 < 1 GiB 
BLA SS of 21 states 0.19 0.43 0.31 0.41 < 1 minute 529 < 1 GiB 
PNLSS with 21 NL states 0.18 0.31 0.25 0.30 < 1 day 529 +54096 < 16 GiB 
PNLSS with 2 NL states 0.22 0.14 0.18 0.15 < 1 hour 529+14 < 4 GiB 
PNLSS with 6 NL states 0.16 0.09 0.13 0.12 < 2 hours 529+936 < 4 GiB 
PNLSS with 6 NL states - 
inputs only 0.24 0.20 0.22 0.21 < 1 hour 529+42 < 4 GiB 

SNNN 15 with neurons 0.22 0.20 0.21 0.20 
< 10 minutes 
 whole process:  
< 1 hour 

529+698 < 4 GiB 

Decoupled model 
21 NL states1 branch 0.23 0.17 0.20 0.18 

< 10 minutes 
entire process:  
< 1 hour 

529+49 < 4 GiB 

Decoupled model  
6 NL states, 3 branches 0.28 0.18 0.23 0.19 

< 5 minutes 
whole process:  
< 0.5 hour 

529+57 < 4 GiB 
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