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Abstract: Recovery of in-flight loads is crucial for guidance, navigation, and control. The
harsh aerothermal conditions experienced in hypersonic flight provide additional challenges for
conventional sensors typically installed on the outer surface of the structure. This study in-
vestigates a novel vehicle-as-a-sensor concept, where internal measurements of the vehicle’s
deformed state are used to infer the loading it is subjected to. The proposed inverse model
for this problem consists of a neural network, where strain measured through fiber optic sen-
sors characterizes the deformed state and is used as an input to the machine learning algorithm
which outputs the load state. An experimental testbed consisting of an aluminum scaled rep-
resentative version of the IC3X, a slender hypersonic vehicle, is used as a proof of concept. A
finite element model is developed and verified against results of a ground vibration test. The
testbed is instrumented with fiber optic strain sensors along the length of the vehicle and force
is applied through four actuators attached to load cells. Several static loading cases consisting
of combinations of the various actuators are used to evaluate discrepancies between the as-built
structure’s response and the predictions from the model. Calibration factors are applied to the
model strain results to account for manufacturing of the aluminum model and sensor installa-
tion uncertainties, such as thickness of the adhesive layer used to attach the optical fibers to
the model surface. The neural network is trained with data consisting of numerical load and
strain pairs under conditions spanning those of the experiment. The neural network-based in-
verse model is validated against the experimental data and compared with a Data-Driven Force
Reconstruction method that assumes a linear relation between strain and force. Errors on load
recovery given the strain measurements are quantified.

1 INTRODUCTION

Having reliable real-time flight data is necessary for the control of any type of aircraft. For
hypersonic flight, where outer surface temperatures are expected to reach around 1400°C due
to heating [1], the use of conventional surface sensors becomes a challenge. As part of a larger
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AFOSR-funded University Leadership Initiative project called Full-Airframe Sensing Technol-
ogy for Hypersonic Aerodynamics Measurements (FAST), a novel vehicle-as-a-sensor con-
cept [2] is explored. This nonintrusive technique aims to infer the external aerodynamic loads
on a vehicle from measurements of deformation, acceleration, and temperature on its internal
structure.

Previous work by Pham et al. [2] showed the feasibility of this concept by applying machine
learning to obtain pressure loads on a vehicle in hypersonic conditions using strain values. Pan-
igrahi et al. [3] developed an alternate predictive model based on a pseudo-inverse matrix tech-
nique for estimating bending loads within structural systems and validated it with experimental
data on a scaled benchtop model of a hypersonic slender vehicle.

Blocher et al. [4] obtained static pressure and temperature field measurements of a scaled model
of the IC3X [5], a representative hypersonic vehicle, under angle of attack of 0° and 6° in
Mach 5 flow. Similarly, Dhanagopal et al. obtained experimental pressure [6] and temperature
distributions [7] of a scaled model of the IC3X in Mach 7 flow. These results were obtained to
support validation efforts of the vehicle-as-a-sensor concept.

Physics-informed neural networks used to model inverse problems have previously been in-
troduced by Raissi et al. [8] and successfully applied by Singh and Willcox [9], where they
demonstrated the capability of performing trajectory adjustments of a vehicle according to on-
board sensor measurements. While other inverse model methodologies are available and have
been applied to the current problem of interest (see [2,3] and [10]), neural networks (NN) are a
promising solution for this problem given their capability of modeling non-linearities, quick re-
sponse once trained, and extensive literature and documentation. For instance, Klotz et al. [11]
demonstrated that a neural network can be trained on experimental strain data measured with
a fiber optic sensing system on a modern business jet wing and is able to successfully recover
wing twist angle.

A strain-to-load neural network model is developed for a scaled version of the IC3X and val-
idated with experimental data. Considerations on the accuracy of load recovery are provided,
given the sensor locations and noise levels observed on the experimental setup.

The models used for this analysis are described in Section 2, where the experimental setup and
equipment is discussed followed by a description of the numerical model used for generating
the training data. Given that a numerical model is always an approximation of the reality, a
methodology for calibrating the data is proposed. Section 3 describes the process for obtaining
the inverse model and details on the neural network architecture definition. The results are
shown in Section 3.3, where the errors on model calibration and load recovery are quantified.
Finally, Section 4 describes the main conclusions.

2 MODELS AND METHODS

The experimental validation of the proposed NN-based inverse model requires the setup of a
representative testbed and the development of an accurate numerical model for the generation
of training data. For simplification, the current setup consists of a no-flow benchtop model. And
for the possibility of including thermal effects in continuing studies the current model is made
of aluminum as opposed to ABS, as was previously developed and used by Panigrahi et al. [12].
This change in material ensures that the model can be heated without melting or plastically
deforming.
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2.1 Experimental Model and Setup
The model was a 40% scale of the full-size IC3X, and was machined from Aluminum 6061
with a Young’s Modulus of 71 GPa. The internal structure was designed to have localized areas
of thinner wall, referred to as flexures in Figure 1. These flexures created areas of higher strain
and produced ideal strain sensor location points. The model was supported by a sting balance
approximately 0.42 meters away from the tail, serving as the model’s fixed boundary condition.

Figure 1: Internal Structure of Benchtop IC3X with flexure design.

Four linear actuators were attached to the underside of the model, shown in Figure 2, with three
actuators connected forward of the sting attachment, and one actuator attached aft of the sting
attachment. Each actuator sat in-line with a ball joint to account for angular deflection of the
model and keep the applied force normal to the surface. It also sat in-line with a LCM201
Tension/Compression load cell capable of up to 500 Newton loading with a ±1% Full-Scale
Output accuracy. Its signal was acquired in an internal full-bridge configuration with the NITB-
4330 8-Channel Bridge Input module mounted in a PXIe-1088 chassis.

Four fiber optic strands were mounted inside the model, each containing eight Fiber Bragg Grat-
ing (FBG) sensors that measured local bending strain. The sensors were attached to the model
using Micro Measurements M-Bond 200 Adhesive to allow for strain transmittance. The fiber
cables were connected to the Technobis Switched Gator FBG Interrogator that emitted a Class
1 laser along each strand at a defined length of time per channel. The Switched Gator measured
the reflected wavelength from each FBG sensor before it switched to the next channel, and a
change in the reflected wavelength would correspond to an induced strain. The Switched Gator
operated in a “switched” configuration where the laser was gated through each connected chan-
nel one at a time, and data was acquired in that time frame. The configuration used for this setup
allowed for 50 milliseconds of data collection per channel switch, obtaining approximately 900
samples at each interrogation. From there, five of these chunks of samples were used in later
averaging to obtain a single strain value per sensor.

The sensors were mounted in the centers of flexures, near the sting attachment point, and in
the tail section, shown in the schematic in Figure 2. Fore of the attachment point, sensors were
placed 30-degrees off from the cardinal directions, allowing all sensors to measure appreciable
strain and avoid low-to-no microstrain response at/near the neutral axis. Aft of the attachment,
the sensors were placed at the 0/90/180/270-degree locations. Two sensors in the tail region
were unresponsive, but thirty sensors remained operational. The FBG sensors were capable of
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Figure 2: (Top) Benchtop Experimental Setup. (Bottom) Schematic of Model with sensor placement and actuator
locations. Red - 30◦ from Model’s 90◦, Blue - 30◦ from Model’s 270◦, Black - 30◦ from Model’s 180◦,
Green - 30◦ from Model’s 0◦.

measurement with noise ranging approximately 6 microstrain with a standard deviation of 2
microstrain.

Impact hammer testing was conducted to experimentally identify the modal frequencies of the
benchtop model. The model was suspended via bungee cords at the nose and tail to allow a free-
free boundary condition. A PCB Piezotronics single-axis shear accelerometer was mounted to
the model to measure the response after a hammer impact, and the hammer struck the model
in eleven different locations. The hammer’s applied force was also measured which allowed
for a frequency response function (FRF) to get mode shapes and natural frequencies for each
location. Two hammer location FRFs are shown in Figure 3 as well as the resulting first bending
mode shape at approximately 321 Hz.

Figure 3: (Left) Frequency Response Function at two locations. (Right) First Bending Mode Shape at 321 Hz.

Thirty nine load cases were created with this experimental setup to validate the recovered forces
of the inverse models. The load cases that are referred to in later sections are shown in Table
1. A positive force indicates the actuator pushing the model and travelling upward, while a
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negative force indicates the actuator pulling the model and travelling downward.

Table 1: Experimental loading cases. Forces are in newtons.
Case # F 1 F 2 F 3 F 4 Case # F 1 F 2 F 3 F 4

1 36.6 59.5 0 0 21 0 -94.1 -104.5 0
2 -35.7 -54.5 0 0 22 35.4 35.6 12.5 0
3 109.6 12.6 0 0 23 -12.7 -32.5 -23.1 0
4 -89.0 -29.1 0 0 24 23.4 44.0 51.1 0
5 6.0 98.6 0 0 25 -17.8 -45.0 -39.9 0
6 -13.7 -65.9 0 0 26 11.7 38.1 97.4 0
7 90.7 93.0 0 0 27 -28.0 -37.4 -53.6 0
8 82.1 -59.8 0 0 28 52.7 29.6 25.1 0
9 -51.5 -81.1 0 0 29 -58.3 -54.2 -30.0 0

10 -88.0 141.8 0 0 30 72.7 84.7 56.3 0
11 84.6 -121.7 0 0 31 95.4 91.8 71.3 0
12 0 59.4 41.2 0 32 -67.8 -63.1 -71.3 0
13 0 -63.1 -39.3 0 33 -52.9 -79.9 -112.3 0
14 0 22.6 92.1 0 34 44.9 48.1 44.3 37.3
15 0 -14.3 -93.6 0 35 37.5 73.1 70.4 -83.4
16 0 129.8 165.9 0 36 -37.9 -68.6 -56.6 99.4
17 0 -109.1 -137.4 0 37 -46.4 -92.3 116.3 70.8
18 0 82.3 106.2 0 38 59.9 103.6 -109.6 -73.9
19 0 92.8 -110.7 0 39 -50.4 111.3 -73.5 83.0
20 0 -86.7 100.5 0

2.2 Numerical Model and Calibration

A finite element model (FEM) of the benchtop model of the IC3X was developed in Abaqus.
The geometry was meshed with 10-noded tetrahedrals, consisting of elements that are appropri-
ate for elastic static analysis as well as thermal transient analysis. A mesh convergence analysis
was performed where the relative error on displacement in selected nodes for the final mesh
was lower than 0.4%. A highly refined mesh was chosen since accurate strains were the main
output of interest. The material properties assigned to the model can be seen in Table 2.

Table 2: Aluminum 6061 properties.
Density 2770 kg/m3

Young’s modulus 71 GPa
Poisson’s ratio 0.33

Results from the experimental modal characterization of the model, as presented in Section
2.1, were used for the verification of the FEM. The first and second bending modes were ex-
perimentally identified, and their mode shapes were qualitatively compared to the numerical
ones. The frequency comparison for the first 6 modes can be seen in Table 3, where a range of
experimental frequencies is shown considering the results obtained from the eleven FRFs.

Modes 1 and 2 correspond to the first in-plane and first out-of-plane bending modes, respec-
tively. While the as-built structure shows a difference in frequency, the numerical model does
not. This difference can be attributed to the loss of axial symmetry in the experimental model
due to manufacturing deviations as well as the setup of the boundary condition. Modes 3 and
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Table 3: Frequency comparison between FEM and the as-built structure.
Mode Experimental Numerical Difference

1 [320.99, 321.78] Hz 334.28 Hz [3.74, 3.98] %
2 [323.35, 324.13] Hz 334.28 Hz [3.04, 3.27] %
3 [471.78, 479.63] Hz 476.61 Hz [−0.63, 1.01] %
4 - 560.75 Hz -
5 [738.66, 747.09] Hz 705.33 Hz [−4.73, −5.92] %
6 [738.66, 747.09] Hz 705.37 Hz [−4.72, −5.91] %

4 correspond to fin dominated modes, not easily captured experimentally due to the lack of ex-
citation on that location during the test. Modes 5 and 6 correspond to the second in-plane and
out-of-plane bending modes. For these, the identification of two separate peaks on the FRFs
was not possible. The differences observed range between 3 to 6%. The first bending exper-
imental frequency is lower than the numerical one, whereas the second bending experimental
frequency is higher than the numerical one.

Mass and center of gravity values were also compared, as can be seen in Table 4. The center
of gravity was measured from the tail of the structure. The differences observed were all lower
than 6%, showing that the numerical model is a good representation of the as-built structure.

Table 4: Mass properties comparison between FEM and the as-built structure.
Experimental Numerical Difference

Mass 7.2 kg 7.6 kg 5.3%
CG 0.45 m 0.43 m −4.6%

The measured strains according to different static loading conditions are compared against the
numerically obtained strains to evaluate the necessity of calibration of the model. The differ-
ences observed can be due to:

• the attachment of the sensor to the model surface,
• wall thickness discrepancy between the as-built and numerical models close to the mea-

surement location due to manufacturing imperfections,
• difference in position and direction of measurement of the strain between the as-built and

numerical models,
• hysteresis on the experimental data due to thermal drifting of the sensor, and
• measurement noise.

The effect of hysteresis can be mitigated by zeroeing the equipment for every measured load
point (essentially recalibrating it). The position and direction of the sensors were carefully mea-
sured and small differences here are not expected to be of great influence. Since the structure
was CNC machined, a sufficient level of precision is expected on the wall thickness. Thus, the
main contributor to the difference is expected to be the thickness of the glue used for attaching
the fiber optic sensing cable to the model surface.

In order to properly account for this, a calibration factor is applied to each of the 32 sensor
locations. A minimum set of loads is used on the calibration process. For this experiment,
using load cases with single actuator inputs considering actuators 1 and 4 is enough, since if
actuator 4 was not included there would be sensing points not excited due to the position of the
boundary condition. The load cases consisted of forces ranging from −152 N to 394 N. The
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calibration factor is then obtained by minimizing the error defined as

Error =
∣∣∣εnum
CF

− εexp

∣∣∣ , (1)

where εnum corresponds to the numerical strain, CF corresponds to the calibration factor, and
εexp corresponds to the experimental strain. Values of strain lower than a threshold (attributed
to noise and also close to the zero value) are discarded to avoid distortions of the data. For
the results presented here, this threshold was set to 5 microstrain. This method accounts for
calibrating the slope of the data, given that the load to strain relation here is linear. And it ignores
any biases/offsets in the experimental data, which seemed to be minimal upon observation and
should be filtered out. The average calibration factor obtained is of around 1.2, while ranging
from 0.8 to 1.7.

These calibration factors were verified against the load cases presented in Table 1. The error
obtained for each of the strain sensors after applying the calibration factors to the numerical
data can be seen in Figure 4. Most of the differences lie well within noise range, with a few
outliers.
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Figure 4: Error between calibrated numerical strain data and experimental strain data for the verification cases.

3 STRAIN-TO-LOAD INVERSE MODEL

The methodology for obtaining the inverse model is presented next, followed by the results of
applying it to the numerical and the experimental cases. The neural network-based methodology
is presented first, followed by a summary of the Data-Driven Force Reconstruction approach as
applied by Panigrahi et al. [3]. Then, a comparison between both methods on force recovery is
performed.

3.1 Neural Network-Based

The strain-to-load inverse model introduced here for the vehicle-as-a-sensor concept is obtained
through a neural network (NN). An NN is proposed as opposed to other solutions that consider
the linearity of the problem such as the inverse map developed by Pham et al. [10] and the
pseudo-inverse matrix approach applied by Panigrahi et al. [3]. The application of the NN will
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allow for capturing nonlinearities arising from the addition of thermal effects to be done at later
studies.

The NN is trained on numerical data coming from the calibrated FEM results. The training data
consist of load and strain pairs obtained with elastic static solutions. The load is modeled as
four point forces positioned according to the actuators setup and the strain is obtained on the
32 sensor locations in the direction of installation. A total of 2401 cases were generated with
combinations of the four actuators ranging from −300 N to 300 N in increments of 100 N.

A feedforward fully connected neural network for regression is trained. The number of layers,
varying from 1 to 5, the size of each layer, varying from 1 to 400 , the activation function, the use
of standardization, and the use of regularization are obtained using Bayesian optimization with
a k-fold cross validation using 5 partitions. The k-fold partition allows for automatic resampling
of the data, mitigating any biases on separating it between training and testing sets.

3.2 Data-Driven Force Reconstruction (DDFR)

Another approach implemented to predict forces is the Data-Driven Force Reconstruction
(DDFR) method, previously applied to the IC3X by Panigrahi et al. [3]. In DDFR, a parameter
called the influence coefficient matrix is calculated using the input (strain) and output (force),
and that parameter itself becomes the basis for an inverse model that predicts output based on
the given input. The first step was to calculate the strain influence coefficient matrix. Assuming
strain and force are linear, one can relate strain ε for a given force f using Equation 2. Here [C]
is called the strain influence coefficient matrix.

ε = [C]{f} (2)

The strain and force are variables that can be obtained from the experiment and, therefore,
are known parameters. Since forces and strains are known, one can employ a least-square
formulation to calculate [C], as shown in Equation 3. After calculating the [C] matrix, one can
take the Moore-Penrose inverse matrix as shown in Equation 4, where the prediction of force
fp is calculated by supplying strain input ε to the pseudo-inverse of the [C] matrix, denoted by
[C]+.

[C] = {ε}{f}(ffT )−1 (3)

{fp} = (CTC)−1CT{ε} = [C]+{ε} (4)

3.3 Results

It might seem auspicious to divide the problem according to the boundary condition. That is,
to have an inverse model considering the set of sensors from the nose until the clamping point
to recover the forces on this side and then another inverse model considering the set of sensors
from the clamping point until the tail to recover the force at the tail. While there isn’t necessarily
a downside of following this definition, a well-trained and well-calibrated neural network is able
to pick such patterns out from the available training data.

Moreover, in the presence of faulty sensors it is best to have a neural network trained considering
this possibility. Table 5 summarizes the normalized mean squared error (NMSE) obtained on
load recovery with this consideration. The first configuration, called NN1, considers all the 32
sensors for training and evaluation. The second configuration, called NN1 + Faulty considers
the previously trained neural network, but zeroes the input for sensors 17 and 18 since those are
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faulty. The third configuration, called NN2, is a neural network trained with additional training
data where the added data consist of repeating the previous set but with sensor 17 zeroed, and
then repeating it once more with sensor 18 zeroed, and considers all the 32 sensors working
for evaluation. The fourth configuration, called NN2 + Faulty, considers the previously trained
neural network, but zeroes the input for sensors 17 and 18. For these cases all trained neural
networks presented a coefficient of determination (R2) of 1.

Table 5: Comparison of error on load recovery of NN-based inverse models considering faulty sensors.
NN1 NN1 + Faulty NN2 NN2 + Faulty

NMSE 9.1× 10−5 4.9× 10−2 3.4× 10−6 3.4× 10−6

This error is obtained considering numerical data only for the 39 conditions presented in Table
1 – which were not used to generate the training data – and normalized by the maximum target
value. Differences between NN1 and NN1 + Faulty are due to inserting values of zero in
sensors 17 and 18 on the NN trained with all 32 sensors. It is possible to see that there is a
considerable change in the order of the magnitude of the error. Differences between NN2 and
NN2 + Faulty are negligible. Now, comparing NN1 and NN2, NN2 results in lower error. This
is likely due to NN2 being trained on a larger number of training data cases.

Random noise modeled as a normal distribution is applied to the numerical data in order to
evaluate how sensitive the recovery of the forces is to noise. The NMSE according to noise
level can be seen in Fig. 5 (note that the error is represented in a logarithmic scale).
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Figure 5: Normalized mean squared error according to noise level on the recovery of forces through the inverse
model, where dashed lines indicate the use of training data with synthetic noise (NN3).

The inverse model is very sensitive to noise, especially around the 0 to 5 microstrain region.
Also, whereas Force 1 can be recovered with a low level of error for all noise levels considered,
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recovery of Force 3 tends to be more inaccurate. This indicates that there might not be enough
sensor points for the inverse model to accurately recover Force 3 (there are only 8 sensor points
between the clamping point and the point of application for Force 3).

The signal-to-noise ratio can also be contributing to a larger error in recovery of Force 3. How-
ever, if that were the main contributor the error would be increasing more rapidly as the noise
level increases. And, by observation, the strain values measured close to Force 3 are of the same
order of magnitude as those observed close to Force 1.

Another solution to this issue consists of artificially adding noise to the training data. Assuming
a normal distribution for noise, with no bias and noise levels within 5 microstrain, five sets of
random noise where added to the training data. The results for this NN trained with synthetic
noise (called NN3) can also be seen in Figure 5.

It is clear that it is possible to improve the accuracy in load recovery for all forces with adding
artificial noise to the training data. While if 0 noise is considered the recovery of the forces is
less accurate, when noise is considered, as is expected in any measurement, the overall error is
decreased.

The low values of error observed when no noise is considered (NN2 at 0 noise level) indicate
that the sampling chosen to generate the training data is adequate for the recovery of the forces
for the 39 cases considered for this evaluation.

However, the error increases for NN3, that is, when noise is considered in the training data.
This increase in error is related to the signal-to-noise ratio observed in the verification cases.
The NMSE according to signal-to-noise ratio observed in those cases can be seen in Figure 6.
While all the cases considered present a signal-to-noise ratio of at least 2/1, where the signal is
the maximum absolute value of strain measured considering all 32 sensors and the noise level is
of 6 microstrain, only 5 cases present a signal-to-noise ratio of 10/1. The ratio between NMSE
of NN3 over the NMSE of NN2 is used to decrease any bias in the trend due to which cases are
being considered in the evaluation, and the ratio is normalized to its initial value to simplify the
interpretation of the results. It can be seen that generally there is a considerable decrease in the
NMSE as a higher signal-to-noise ratio is observed.

All previous results are obtained with numerical data only. When experimental strain is used as
the input for NN3, the recovery of the forces can be seen compared to their expected value and
results obtained with Panigrahi et al.’s DDFR method [3] in Figure 7.

While recovery of Force 1 is successful, recovery of the other forces seems more challenging.
Their accuracy could be further improved by:

• obtaining experimental data with higher signal-to-noise ratio,
• improving the calibration of the numerical data,
• adding different noise levels to the training data set,
• using a noise distribution closer to what is observed during the experiment for generating

the artificial noise added to the training data, and
• adding more sensor points.

When comparing with Panigrahi et al.’s DDFR technique [3], the NN is less accurate for Force
2, while more accurate for Forces 1, 3, and 4, especially in cases where the force is zero. It
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Figure 6: Signal-to-noise ratio versus normalized NMSE ratio between NN3 and NN2.

seems that the NN is better able to handle the noise, while losing some of the accuracy on
higher loads due to that. Table 6 compares the mean absolute difference of both inverse models
with the experimental data.

Table 6: Comparison of mean absolute difference between NN3 and DDFR recovered forces against experimental
data.

NN3 DDFR
Force 1 Force 2 Force 3 Force 4 Force 1 Force 2 Force 3 Force 4
0.01 N 8.55 N 4.51 N 0.46 N 0.21 N 2.57 N 10.38 N 0.99 N

As the next step for this work is to implement these methods on a distributed loading case
(e.g. hypersonic wind tunnel pressure distribution), it is useful to compare relevant pseudo-
aerodynamic terms between the recovered and experimental results. Total lift, pitching moment,
and center of pressure – in this case, the location where total lift acts – defined respectively in
Equations 5 to 7, were used as comparison parameters between the two methods. For brevity,
only a single case from each loading configuration was listed in Table 7 showing the percent
difference between recovered and experimental forces.

LT =
4∑

i=1

Fi (5)

MP =
4∑

i=1

Fixi (6)

xCoP =
MP

LT

(7)
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Figure 7: Recovered forces using experimental strain in NN3 compared with experimental value and Panigrahi et
al.’s DDFR [3].

Table 7: Percent difference of aerodynamic terms between recovered and experimental forces.
NN3 DDFR

Case # Load Configuration LT MP xCoP LT MP xCoP

1 Force 1/Force 2 16.0 11.2 2.2 9.6 1.2 4.1
12 Force 2/Force 3 6.4 4.5 0.6 3.4 9.0 1.7
24 Force 1/Force 2/Force 3 4.2 12.8 3.4 7.1 8.2 0.4
35 Force 1/Force 2/Force 3/Force 4 4.1 3.6 0.5 2.8 2.4 0.4

Overall, the DDFR model predicted these aerodynamic terms more accurately. However, the
neural network presented errors of the same order of magnitude, while resulting in a more
accurate estimation of the center of pressure for some cases.

4 CONCLUDING REMARKS

An inverse model that predicts loads given strain values was developed based on a neural net-
work and its accuracy was assessed given experimental data and compared to a pseudo-inverse
based method. The neural network-based inverse model is proposed for addressing a novel
vehicle-as-a-sensor concept for hypersonic flight conditions, where the vehicle’s deformed state
is used to infer the aerodynamic state it is subjected to.
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An experimental testbed based on a scaled version of the IC3X was developed, where strain is
measured through fiber optic sensing cables and four point forces are applied through actuators.
The experimental results are used for validation of the proposed method.

The neural network is trained on numerical data obtained through static elastic solutions of a
detailed calibrated FEM of the scaled model. The training data set was enhanced with consid-
erations on faulty sensors and noise levels for improved accuracy on load recovery. The effect
of signal-to-noise ratio on the presented results was also assessed.

While recovery of forces, as well as of aerodynamic terms, is shown to be successful for the
proposed method, some challenges regarding accuracy remain. They can be tackled mainly
by obtaining an adequate characterization of the noise expected in the measurements, and also
considering signal-to-noise ratio conditions where the patterns to be observed in the strain mea-
surements are not significantly changed by noise.

Future studies will include the addition of thermal effects to the problem and address the recov-
ery of pressure distributions as measured in wind tunnel experiments.
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