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Abstract: This paper presents a novel approach to suppress gust-induced limit cycle oscilla-
tions (LCOs). The proposed method integrates incremental nonlinear dynamic inversion (INDI)
and robust nonlinear model predictive control (NMPC) with tightened constraints. The INDI
method estimates and actively rejects gusts, resulting in a reduced disturbance residue. The
upper bound of the disturbance residue can be estimated either online or offline and is used to
bound the maximum state deviation caused by uncompensated disturbances, thereby imposing
tightened constraints for the NMPC scheme to improve the robustness of constraint satisfaction
and stabilize the system. Simulation results on a 2-D nonlinear aeroservoelastic wing demon-
strate that the proposed method stabilizes the nonlinear system and reduces the disturbed peak
plunge and pitch motions by up to 20.69% and 33.70%, respectively. Additionally, the method
mitigates the conservativeness of the robust NMPC, with an 81.67% reduction in the offline esti-
mated upper bound of the disturbance residue. The online estimation of the disturbance residue
captures its peak value while further relaxing the tightened constraint set when disturbance ef-
fects are small. The proposed control scheme effectively suppresses gust-induced LCO motions
and reduces the conservativeness of the tightened constraint sets used in the robust NMPC [1].

1 INTRODUCTION

The development of next-generation civil aircraft has focused on weight savings through the
use of lightweight materials and more aerodynamically efficient wings. These innovations have
led to flexible wing designs, significantly increasing the nonlinear couplings between wing
aerodynamics, inertia, and aeroservoelasticity. Consequently, nonlinear flexible wings are more
sensitive to gusts and exhibit unstable and marginal stable phenomena, such as flutter and limit
cycle oscillations (LCOs). Therefore, increasing attention has been given to gust disturbance
rejection and nonlinear system stabilization through control means.

The dominant methods for rejecting gusts on flexible wings focus on controller synthesis using
a linearized model trimmed at the cruise condition. Techniques such as static output feed-
back [2], linear quadratic regulator (LQR) [3], and linear quadratic Gaussian (LQG) [4–7] have
demonstrated effective gust load alleviation (GLA) results on the linearized model in simula-
tions. Multi-objective optimal controllers based on LQG and output feedback were proposed
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in [8], which consider drag optimization, maneuver load alleviation, GLA, and flutter suppres-
sion in one controller synthesis. However, when these controllers are applied to the nonlinear
model, degradations in controller performance are observed [6,7]. To have the robustness of the
controller against model uncertainties and external disturbances addressed, methods like H∞
and µ synthesis [9] were developed for GLA on flexible wings equipped with Lidar, showing
up to 72% peak bending moment reductions in simulations. Additionally, H∞ with feedforward
control [10] and H∞ with observer-based active feedback control [11] further improved GLA
results. These linear control methods have also been designed for active flutter suppression
(AFS) tasks. A mixed H2/H∞ gain scheduling control scheme [12] and a linear parameter-
varying gain scheduled controller [13] were proposed to stabilize the nonlinear aeroservoelastic
system. Closed-loop stability, robustness and disturbance rejection performances were shown
through simulation. However, none of these linear control methods guarantee the nominal sta-
bility for nonlinear systems.

Research on controller design for disturbance rejection and stabilization directly on nonlinear
flexible wings is limited, with few studies exploring incremental nonlinear dynamic inversion
(INDI) [14, 15], nonlinear model predictive control (NMPC) [16–18], intelligent critic con-
trol [19], end-to-end deep reinforcement learning [20], and nonlinear distributed hamiltonian
control [21]. Each of these approaches has its limitations: INDI does not address state con-
straints, NMPC requires the prediction of future gusts if the gust dynamics are embedded in
the nominal system, the trained parameters in learning-based controllers lack physical insights,
and nonlinear distributed Hamiltonian control from [21] requires an overhead gust sensor and a
predefined gust model to predict gust propagation.

We aim to develop a method that enhances robustness against gusts and stabilizes the nonlinear
system while maintaining all states within a safe operation range. There is a gap in control of the
nonlinear flexible wing, as no current method addresses gust compensation using active distur-
bance rejection control, stabilization of the nonlinear system, and robust constraint satisfaction
at once.

In control aspects, robust NMPC with tightened constraints [1] can achieve the desired stabil-
ity and robust constraint satisfaction but tends to be overly conservative. Existing relaxation
methods, such as sliding mode coupled robust NMPC [22], are complex when designing the
sliding surface and suffer from chattering problems. Disturbance observer (DO) based robust
NMPC [23] requires an estimated disturbance model, which is not always available. Hence,
there is a need for a simpler method to reduce conservativeness in robust NMPC.

A loosely coupled INDI with NMPC for quadrotor control was proposed in [24], which used
INDI for disturbance compensation and NMPC to provide virtual commands, demonstrat-
ing improved trajectory tracking ability under external disturbances compared to a differen-
tial flatness-based controller. However, state constraints are not considered explicitly, and the
disturbed states may leave the safety bound. Inspired by this work, we develop an INDI-
coupled robust NMPC to suppress the gust-induced LCOs. Our contributions include the fol-
lowing: Firstly, INDI compensates for part of the disturbances, resulting in a smaller disturbance
residue. Secondly, the disturbance residue has a smaller upper bound than the nominal distur-
bance, allowing for less conservative tightened constraints used in the robust NMPC to stabilize
the system. Moreover, we demonstrate that the upper bound of the disturbance residue can
be estimated online, further relaxing the tightened constraints when the gust effects are small.
Overall, the proposed method actively rejects disturbances, suppresses gust-induced LCOs, en-
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hances robust constraint satisfaction, and reduces the conservativeness of the robust NMPC.

The rest of the paper is structured as follows. Section 2 presents a 2-D nonlinear aeroservoe-
lastic system and background on the robust NMPC with tightened constraints. The control
algorithm is derived in Section section 3, and modifications are made in Section 4 for a 2-D
aeroservoelastic system. The proposed INDI-coupled robust NMPC is simulated in Section 5
and compared with nominal NMPC and robust NMPC. Conclusions are drawn in Section 6.

2 PRELIMINARIES

2.1 The aeroservoelastic model

The two-dimensional nonlinear aeroservoelastic model used in this study is taken from [19]:[
mt mwxαb

mwxαb Iα

] [
ḧ
α̈

]
+

[
ch 0
0 cα

] [
ḣ
α̇

]
+

[
kh(h) 0
0 kα(α)

] [
h
α

]
=

[
−L(ḣ, α, α̇, β)

M(ḣ, α, α̇, β)

] (1)

where h and α are the plunge displacement and the pitch angle. The model includes nonlinear
stiffness parameters, kh(h) in a second-order polynomial form and kα(α) in a fourth order
polynomial form, listed in (2) and (3). The inertia matrix contains parameters including the
total mass mt, the mass of the wing mw, the moment of inertia Iα, the nondimensional distance
from the elastic axis to the center of mass xα, and the wing semi-chord length b. Additionally,
the damping of the plunge and pitch motions are denoted as ch and cα. The aerodynamic
force L(ḣ, α, α̇, β) and moment M(ḣ, α, α̇, β) are linear functions with respect to the surface
deflection β.

Kh = 2844(1 + 0.9h2) (2)

Kα = 2.82(1− 22.1α + 1315.5α2 − 8580α3 + 17289.7α4) (3)

In addition to the aeroservoelastic model, the actuator dynamics is modeled as a first-order
system with a cutoff frequency of 60 rad/s.

β̇ + ωcβ = ωcβc (4)

The input for the actuator is βc. When combining the aeroservoelastic model and the actuator
dynamics, we obtain the state vector

[
h α ḣ α̇ β

]T
and a control input βc. It is important

to note that the given model represents a 2-D wing section. In real flight, the wing root and
tip displacement will vary significantly. As the author of [19] does not specify the location of
this wing section, the state constraint will only apply to the pitch angle, which ranges from -20
degrees to 20 degrees. Meanwhile, the surface deflection is limited between -10 to 10 degrees.

The considered perturbation, gw, is the vertical 1-cos discrete-time wind gust with respect to the
wing body frame. The disturbed pitch angle αw has the form

αw = atan
(
Usinα− gw

Ucosα

)
(5)

where U = 15 m/s is the free stream velocity. When the gust is presented, the α variable in
the pitch stiffness coefficient kα, lift L, and moment M is replaced by αw. The state vector,
the derivative of the state vector and the actual flap deflection are assumed to be continuous.
Therefore, all perturbations can be treated as additive disturbances for the controller design.
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2.2 Robust NMPC with tightened constraints

The model stated in (1) fits the criterion of an input affine nonlinear system described in (6):

ẋ = f(x) + g(x)u+ w (6)

where x ∈ Rn is the state vector, u ∈ Rp is the input vector, n ≥ p, w is the additive disturbance,
f : Rn → Rn and g : Rp → Rn. The disturbance is assumed to be bounded, ||ω|| ≤ ω̄m, and x
and u are constrained by subspaces X ∈ Rn and U ∈ Rp.

Assumption 1 (Lipschitz continuous in x̄) Let the nominal dynamics be ˙̄x = f(x̄) + g(x̄)u.
There exists a Lipschitz constant l > 0, such that for any x̄1, x̄2 ∈ Rn and any u ∈ Rp,
||f(x̄1) + g(x̄1)u− f(x̄2)− g(x̄2)u|| ≤ l||x̄1 − x̄2||. For a vector x, ||x||Q =

√
xTQx.

Assumption 1 states that the nominal model dynamics is Lipschitz continuous. This assumption
is commonly seen in many input-affine nonlinear systems and is crucial for robustness analysis.
Based on Assumption 1, with the same initial conditions and control input sequence starting at
time t0, the deviation between the nominal states x̄∗(t|t0) and real states x(t) is norm-bounded
by (7) [1].

∥x̄∗(t)− x(t)∥ ≤ ω̄m

l
(el(t−t0) − 1), (7)

Equation 7 and its variations have appeared in many robust NMPC schemes [1, 22, 23] to de-
scribe the upper bound of the error between x and x̄∗. Subsequently, robust NMPC with tight-
ened constraints is designed as follows:

uopt(x) =argmin
u

N−1∑
i=0

(||x̄i − xi,r||Qx + ||ui − ui,r||Qu) + ||x̄N − xN,r||QN

subject to ˙̄x(t) = f(x̄(t)) + g(x̄(t))u(x̄(t)),

x̄i ∈ X ∼ Bx(i), ui ∈ U

(8)

where the optimal control actions are derived by minimizing a discrete-time cost function with
weighting matrices Qx, Qu and QN . The states and inputs are sampled in N equal time intervals
spanning the prediction horizon T to perform numerical optimization. The operator ∼ is the
Pontryagin set difference, i.e., given two sets A ⊆ Rn and B ⊆ Rn, A ∼ B ≜ {z ∈ Rn|z+ y ∈
A, y ∈ B}. The set Bx(i) holds the upper bound on the sampled state deviation given by (9).

Bx(i) = {x ∈ Rn|∥x∥ ≤ ω̄m

l
(el

T
N
i − 1)}, (9)

Consequently, the real states will satisfy the nominal constraints because the nominal states are
forced to be bounded by the tightened constraint, x̄i ∈ X ∼ Bx(i), as described by (7). How-
ever, the time-related exponential term in (7) could render a small or even infeasible tightened
constraint set, eventually leading to an unsolvable optimal control problem.

Previous works [22, 23] have used model-based active disturbance rejection techniques to al-
leviate the conservativeness of robust NMPC. Instead of maximum nominal disturbance, the
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maximum disturbance residue is used to bound the state deviation. However, offline computa-
tion is still required to obtain the disturbance residue bound. The complexity of the controller
design also increases due to the model-based active approach.

In the proposed approach, conservativeness is relaxed with a sensor-based INDI approach. A
simple, computationally efficient online INDI-based method is proposed for the maximum pos-
sible state deviation estimation and disturbance rejection. Additionally, predefined margins for
the tightened constraints and soft state constraints with slack variables are used to relax solver
infeasibility problems when tightened constraints are infeasible and when the states are out-
side the tightened constraints. These state constraint margins are inspired by the methodology
described in [16], where the authors considered future gusts linearly decreasing to zero over
the first half of the prediction steps and assumed zero gusts for the latter half in their NMPC
controller scheme. Setting margins on the tightened constraints implies that future disturbances
will not exacerbate. This is a reasonable assumption since only the first control actions from
NMPC are used. Additionally, the initial states are updated using the real state measurements at
each controller sampling time, diminishing the significance of predictions beyond the first step.

3 METHODOLOGY

The control objectives of this study are active disturbance rejection and steering the states to
the origin while adhering to input and state constraints. To achieve these objectives, an INDI-
coupled robust NMPC with online maximum state deviation estimation is proposed. This con-
troller integrates the optimal control action u∗

0 with a disturbance compensation auxiliary con-
troller uINDI. The command input uc is computed using (10):

uc = u∗
0 + uINDI. (10)

3.1 Disturbance estimation and rejection using INDI

This section introduces INDI-based control to estimate and actively reject disturbances. For
systems in (6), the instantaneous additive disturbances can be estimated using the inverse of the
dynamics and low-pass filtered state measurements, xf , [24].

ω = ẋf − f(xf )− g(xf )uf (11)

Equation 11 holds under the assumption that disturbances are slow-varying relative to the low-
pass filtered dynamics. With the optimal control action u∗

0, the desired state derivative ẋd is
given by

ẋd = f(xf ) + g(xf )u
∗
0. (12)

Subsequently, by substituting the estimated disturbances from (11) back into the system in (6),
and replacing ẋ with ẋd from (12), an incremental expression for the command input is obtained
in (13) where † is the pseudoinverse operator.

uc = g(xf )
†(g(xf )u

∗
0 − (ẋf − f(xf )− g(xf )uf )) = u∗

0 + uINDI (13)

Due to underactuation and input saturation, only a portion of the estimated disturbance is re-
jected. The remaining disturbance, or the disturbance residue, is used within the robust NMPC
framework to estimate the state deviations.
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3.2 Coupling INDI with robust NMPC

Upon solving the optimal control problem defined in (8), the optimal control action, u∗
0, for the

first time step is extracted from uopt. The disturbance residue ωres is then calculated using (14)

ωres(s) = ω(s) + g(xf (s))uc − g(xf (s))u
∗
0, (14)

where uc and ω are from (13) and (11). The upper bound of the disturbance residue for tradi-
tional robust NMPC is defined by

ω̄m,INDI = sup
s∈[0,∞]

ωres(s) ≤ ω̄m, (15)

with an offline parameter identification to find the minimal value of ω̄m,INDI through an infinite
time span.

Due to the INDI disturbance compensation, this upper bound of disturbance residue is smaller
than the nominal disturbance upper bound, resulting in a smaller upper bound on the state de-
viation. However, the upper bound from (15) can still have a large magnitude and lead to con-
servative tightened constraints, which will be demonstrated in simulations. To further relax the
tightened constraints, a margin on the state constraint for future predictions is set, guaranteeing
that the tightened constraints are feasible.

ω̄m,INDI(t) = sup
s∈[t−ts,t]

ωres(s). (16)

Additionally, a sliding window online estimation of ω̄m,INDI with a window length of ts is pro-
posed to avoid the need for prior knowledge on ω̄m offline.

4 CASE STUDY ON THE 2-D NONLINEAR AEROSERVOELASTIC MODEL

The additive disturbance equivalent aeroservoelastic system, without considering the actuator
dynamics, has state x =

[
x1 x2 x3 x4

]T
=

[
h α ḣ α̇

]T
and input u = β. Its dynamics

can be expressed as

ẋ =


ẋ1

ẋ2

ẋ3

ẋ4

 = fae(x, u,h , ωα) =


x3

x4

fḧ(x) + gḧ(x)u+ ωh

fα̈(x) + gα̈(x)u+ ωα

 , (17)

with bounded additive disturbances ωh and ωα. The nominal system is represented by ˙̄x =
fae(x̄, u). The local Lipschitz assumption for this nominal system is given by

∥ ¨̄α1(x̄1, u)− ¨̄α2(x̄2, u)∥
=∥

[
0 0 0 1

]
(fae(x̄1, u)− fae(x̄2, u)) ∥

≤∥fae(x̄1, u)− fae(x̄2, u)∥
≤l∥x̄1 − x̄2∥.

(18)

From the Lipschitz assumption, the upper bound on the pitch angle error between its optimal
nominal value and real value is derived in (19). The input for the optimal nominal state is u∗

0

whereas the input for the real state is the disturbance compensated input uc.
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∥ᾱ∗(t|t0)− α(t)∥

=∥ᾱ∗(t0) +

∫ t

t0

˙̄α∗(s)ds− α(t0)−
∫ t

t0

α̇(s)ds∥

=∥
∫ t

t0

(∫ s

t0

¨̄α∗ (x̄∗(r|t0), u∗
0(r|t0)) dr

)
ds−

∫ t

t0

(∫ s

t0

α̈(x(r), uc(r|t0))dr
)
ds∥

=∥
∫ t

t0

(∫ s

t0

¨̄α∗ (x̄∗(r|t0), u∗
0(r|t0)) dr

)
ds−∫ t

t0

(∫ s

t0

α̈(x(r), u∗
0(r|t0)) + ωres,α(r)dr

)
ds∥

≤
∫ t

t0

(∫ s

t0

∥ ¨̄α∗(x̄∗(r|t0), u∗
0(r|t0))− α̈(x(r), u∗

0(r|t0))∥dr + ω̄m(s− t0)

)
ds

≤
∫ t

t0

(∫ s

t0

l∥x̄∗(r|t0)− x(r)∥dr + ω̄m(s− t0)

)
ds

≤
∫ t

t0

ω̄m

l
(el(s−t0) − 1)ds

=
ω̄m

l2
(el(t−t0) − 1)− ω̄m

l
(t− t0)

(19)

In (19), the last inequality comes from the Gronwall inequality. The maximum magnitude of
ωres,α, represented by ω̄m, can be either derived offline using (15) or online using (16).

The modified robust NMPC becomes

uopt(x) =argmin
u

N−1∑
i=0

(||x̄i − xi,r||Qx + ||ui − ui,r||Qu) + ||x̄N − xN,r||QN

subject to ˙̄x(t) = f(x̄(t)) + g(x̄(t))u(x̄(t)),

ᾱi ∈ [min{−5◦,−20◦ + Bα(i)}, max{5◦, 20◦ − Bα(i)}]
ui ∈ [−10◦, 10◦]

(20)

where the augmented system dynamics with actuator and the aeroservoelastic models are im-
plemented and the maximum state deviation, Bα, is defined by (21). A ±5◦ margin is applied
on the tightened constraints to prevent infeasible sets.

Bα(i) = {α ∈ R1|∥α∥ ≤ ω̄m

l2
(el

T
N
i − 1)− ω̄m

l
(
T

N
i)}, (21)

Furthermore, because of the actuator dynamics, the command input βc is decoupled from the
disturbance. Therefore, disturbance compensation has to be applied to the real deflection. In-
stead of using the optimal command input u∗

0, the optimal flap deflection at the first step β̄∗
1

is used as the reference signal. The disturbance compensated desired flap deflection is then
defined as:

βd =

[
gḧ(xf )
gα̈(xf )

]†([
gḧ(xf )
gα̈(xf )

]
β̄∗
1 −

[
ωh

ωα

])
(22)

where disturbances ωh and ωα are estimated using (11).
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A separate control law for the actuator is developed to track βd while keeping the command
input, uc, inside the specified constraints.

uc = u∗
0 + tanh(

−ku(βf − βd) + βd − u∗
0

δu
), ku > 0 (23)

δu =

{
10◦ − u∗

0, if (−ku(βf − βd) + βd − u∗
0) ≥ 0

u∗
0 + 10◦, otherwise. (24)

The control law described in (23) maintains the nominal performance of u∗
0, tracks the dis-

turbance compensated desired deflection βd, and keeps the command within the nominal con-
straint, but with a sacrificed disturbance rejection quality. The control gain ku in (23) is set to
four during simulation.

4.1 Simulation setup

In MATLAB 2023b environment, simulations are carried out to evaluate the performance of
controllers for gust-induced LCO suppression tasks. The system dynamics are sampled at
1000 Hz, while the INDI controller operates at 100 Hz. The robust NMPC controller is tested
with different controller sampling frequencies. The NMPC optimal control problem, described
in (20), is formulated using the nlmpcMultistage controller object, with the optimal control ac-
tion generated by the nlmpcmove command. Additionally, the prediction step N is set to 15,
with a prediction horizon of 0.15 seconds. The input constraints are treated as hard constraints,
while the state constraints are designed to be soft. Moreover, the states and input are scaled
using the scaling matrix Wx and Wu. The specific values of Wx and weighting matrices Qx,
Qu and QN can be found in Table 1.

The local Lipschitz constant l within the operation range is found to be 15, and the gust fre-
quency is adopted from [19], setting to 2 Hz. The maximum gust is determined to be 4 m/s
which gives the maximum pitch angle of 24.43 degrees, exceeding the nominal state constraints,
from the open-loop simulation.

To demonstrate the conservativeness of the estimated upper bound on the state deviation in the
robust NMPC, the NMPC controller is sampled at 6.67 Hz, such that the control horizon is
equivalent to the prediction horizon, as illustrated in the inequality derived in (21). Further-
more, it is demonstrated that increasing the sampling frequency of the robust NMPC controller
can mitigate the conservativeness of the tightened constraints. The subsequent simulations in-
clude assessing the effectiveness of INDI-coupled robust NMPC with offline identified worst
possible disturbance ω̄m. Finally, the proposed INDI-based online estimation of maximum state
deviation with INDI-coupled robust NMPC is simulated to demonstrate the further reduction of
the conservativeness of the tightened constraints.

Table 1: Controller parameters in the robust NMPC

Parameter Description Value
Wx Stae scaling factor diag(

[
0.0279 0.4894 0.4952 6.8143 0.3491

]
Wu Input scaling factor 0.3491
Qx State weight diag(

[
1 10 0 0 0

]
Qu Input weight 0.1
QN Terminal weight diag(

[
15 150 0 0 0

]
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5 RESULTS

5.1 Simulation for nominal NMPC with controller frequency of 6.67 Hz

The conservativeness of the robust NMPC with tightened constraints is first examined. The
NMPC configurations adhere to the precise mathematical formulations specified in (21), where
the control horizon matches the prediction horizon. To determine the minimal value of the
parameter ω̄m as per (21), a series of NMPC simulations were performed under different gust
disturbances. This parameter, once estimated offline, effectively bounds the pitch angle devia-
tion using (21) and is subsequently used to tighten the pitch angle state constraints in the robust
NMPC scheme.

Figure 1: Offline estimation on the upper bound of the additive disturbances. A separate zoomed in plot on the
right shows that state deviations are bounded by (21) with ω̄m = 3500 rad/s2.

Deviations between the actual and predicted optimal pitch state trajectories under four gust
conditions are depicted in Figure 1. The largest deviation occurs between 0.3 seconds and
0.45 seconds due to a 4 m/s 1-cos discrete-time gust. A detailed examination in the zoomed-in
plot reveals that these angle deviations across all cases are norm bounded by (21) with ω̄m at
3500 rad/s2, indicated by the dashed green line.

However, this estimated value of ω̄m from (21) results in a worst-case pitch angle deviation
of 10.55 degrees at the first prediction step. Therefore, a conservative tightened constraint of
±9.45 degrees is derived. More critically, the worst deviations beyond the first prediction step
are larger than 44.44 degrees, exceeding the nominal constraint limit of ±20 degrees and con-
sequently leading to infeasible tightened constraint sets. Such conservative and even infeasible
tightened constraints could render the optimal control problem unsolvable. Fortunately, fast
sampling NMPC controllers, with one control horizon, have mitigated the conservativeness of
the robust NMPC.

5.2 Simulation for nominal NMPC with controller frequency of 100 Hz

The conservativeness of the robust NMPC with tightened constraints often leads to mathemati-
cally infeasible problems. This issue can be alleviated by using the NMPC scheme with a faster
controller frequency. In this simulation, the controller frequency is increased from 6.67 Hz to
100 Hz, reducing the control horizon from fifteen to one.

As highlighted previously, the maximum state deviation occurred under the largest gust con-
dition of 4 m/s. Accordingly, later simulations focus exclusively on 4 m/s gust case. From
the NMPC simulation with a control horizon of one, the minimal value of ω̄m is 1200 rad/s2,
which is 65.71% smaller than the case where control horizon equals the prediction horizon. In
Figure 2, the top plot displays the trajectories of disturbed pitch angles and the optimal nominal
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pitch angle. In the bottom plot, the offline estimated worst deviation of α with ω̄m of 1200
rad/s2 upper bounds the real deviation.

Time [s]

[d
eg

re
e]

0 0.2 0.4 0.6 0.8 1

0

10

20 ,

7,$

0 0.2 0.4 0.6 0.8 1
0
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6 jj,! 7,$jj
O0ine max jj,! 7,$jj

0.29 0.3 0.31 0.32

3.4
3.6
3.8

Figure 2: Simulation results of nominal NMPC with 100 Hz controller frequency. The top plot includes optimal
nominal and real pitch angle trajectories. The bottom plot includes the pitch angle deviation due to the
gust and the upper bound of this deviation using (21).

Despite the reduction in ω̄m, Equation 21 gives the worst pitch angle deviation of 15.24 degrees
at the second prediction step, resulting in a conservative tightened constraint of ±4.76 degrees.
Unfortunately, tightened constraints after the second step also fall into infeasible sets, as the
predicted worst deviations exceed the nominal constraints. These new tightened constraints,
although relatively more relaxed than in previous simulations, again underscore the conserva-
tiveness of robust NMPC when tightened constraints are used.

5.3 Simulations for nominal NMPC, robust NMPC and INDI-coupled robust NMPC (ω̄m =

1200 rad/s2)

In this section, the robust NMPC and INDI-coupled robust NMPC are simulated with the 4m/s
gust, with ω̄m of 1260 rad/s2 derived from the previous section, and with the ±5 degrees margin
on the pitch angle tightened constraint. Moreover, the results from these two robust control
schemes are compared with the open-loop response and the NMPC simulation results.

First, the open-loop state phase portraits with zero initial states are plotted in Figure 3, showing
the 4 m/s 1-cos discrete-time gust-induced LCOs in the plunge and pitch motions. The phase
portraits from the INDI-coupled robust NMPC closed-loop response are plotted alongside the
open-loop response, showing the elimination of gust-induced LCOs. Figure 4 compares the
plunge and pitch motions of the wing section. All three methods stabilize the systems which
otherwise experience gust-induced LCOs in the open-loop response. For the plunge movement,
there are -17.14%, 11.23% and 20.69% peak reductions using NMPC, robust NMPC and INDI-
coupled robust NMPC. In addition, The peak pitch angles are reduced by 6.54%, 19.72% and
33.70% for these three methods, respectively. The maximum pitch angle from the robust NMPC
simulation is within the nominal constraint, which demonstrates the robustness of the tightened
constraint procedure. Furthermore, the superior performance of INDI-coupled robust NMPC
shows the success of using INDI to reject disturbances.

Figure 5 contains visualizations of the tightened constraint procedure for robust NMPC and
INDI-coupled robust NMPC. The peak value of α (red line) may intersect with the tightened

10



IFASD-2024-181

constraint, implying the violation of the soft constraint. As a result, the reachability question
arises. Will the system return to the feasible region in one step? This will be a future research
topic investigating the reachability control problem. Currently, the introduction of slack vari-
ables from the soft constraints partially addresses this problem. In addition, in Figure 5 (b),
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Figure 3: Phase portraits from the open-loop gust response and INDI-robust NMPC closed-loop gust response.
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Figure 4: Open-loop gust response and closed-loop results using NMPC, robust NMPC, and INDI-robust NMPC.
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Figure 5: Visualization of the tightened constraints procedure. (a) Robust NMPC. (b) INDI-robust NMPC.
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there exist large margins between the real trajectory and the possible state deviation represented
by the blue area, indicating that INDI can further reduce the value of ω̄m. In the next section, we
show that the INDI-based sliding window online estimation of maximum deviation can further
mitigate the conservativeness of the tightened constraint.

5.4 INDI-coupled robust NMPC with an online estimation of ω̄m

It has been shown in (14) and observed from Figure 5 (b) that the INDI-coupled robust NMPC
has the potential to further reduce the magnitude of ω̄m for a more relaxed tightened constraint.
By using the proposed INDI-based online estimation from (16), we demonstrate the power of
online estimation to reduce the conservativeness of tightened constraint and potentially elimi-
nate the reachability concern.
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Figure 6: Open-loop gust response and closed-loop results using INDI-robust NMPC with online estimation of
ω̄m.

Firstly, Figure 6 shows simulation results of the INDI-coupled robust NMPC with online dis-
turbance parameter estimation. The sliding window size is 0.15 seconds, which equals the
prediction horizon. The proposed online estimation robust control method achieves the same
peak reductions of 20.69% and 33.70% in the plunge and pitch motions compared to the results
from the INDI-coupled robust NMPC with the offline identified ω̄m.
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Figure 7: Pitch angle errors and estimated maximum pitch angle errors between optimal nominal and real values.
Errors are estimated using the offline identified maximum disturbance, the offline identified maximum
disturbacne residue, and the online sliding window maximum disturbance residue.

The significant takeaway for this online INDI-coupled robust NMPC is the relaxation of the
parameter ω̄m. In Figure 7, we have plotted pitch angle deviation with the black dashed line from
the proposed method (online estimation). The red line represents (21) for the first prediction
step with ω̄m = 1200 rad/s2, the nominal disturbance upperbound. The green dotted line is
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the offline estimation of minimal disturbance residue using (21) that upper bounds the state
deviation, with the minimal value being 220 rad/s2. Therefore, with the integration of INDI in
robust NMPC, the conservativeness is further reduced, and in our case, the tightened constraint
can be relaxed by 81.67%.

Furthermore, looking at the shape of the online estimated maximum state deviation represented
by the blue dash-dot line, we find that the INDI-based online estimation successfully captures
the maximum real deviation. There are few time instances when the estimated deviation is
smaller than the real one. However, these instances happen when the real deviations are small,
and therefore, does not influence the robustness of overall performances. Overall, the online
estimation further relaxes the tightened constraint compared to the offline estimation of ω̄m

when the real state deviations are small. Not only is the conservativeness of tightened constraint
further mitigated by the online estimation, but the reachability problem is also resolved in our
study case. In Figure 8, the real trajectory does not exceed the tightened constraints, indicating
that there exist a feasible set for the state to steer to in the next step.
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Figure 8: Visualization of the tightened constraints from INDI-robust NMPC with online state error estimation.

6 CONCLUSION

In this study, we developed and evaluated a novel INDI-coupled robust NMPC framework for
gust-induced LCO suppression tasks. Integrating INDI with robust NMPC allowed for effective
disturbance rejection and reduced conservativeness of the tightened constraints. Simulation re-
sults using a 2-D nonlinear aeroservoelastic wing under the worst gust condition demonstrated
that the proposed approach stabilized the system and achieved significant reductions in peak
plunge and pitch motions compared to traditional NMPC and robust NMPC methods. Specif-
ically, the online INDI-based estimation of maximum state deviation further relaxed the tight-
ened constraints, enhancing the feasibility of the control scheme. Future work will focus on
analyzing the reachability of the system when states start outside of the tightened constraints.
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