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Abstract: Composite materials are essential in aerospace engineering due to their superior
strength-to-weight ratio. This work explores the reliability-based design optimisation of com-
posite plates under aeroelastic constraints with a focus on cost efficiency. We utilise a simplified
approach focusing on generating surrogate models through conditioned Gaussian Processes,
which predict various aeroelastic responses like flutter speed, gust loads, and static forces.
These models help in the effective navigation of the composite design space. We introduce
a 5 step optimisation algorithm in which we prioritise minimising the gust response and struc-
ture mass while adhering to predefined limits on flutter and strain. The proposed approach not
only simplifies the optimisation process but also enhances the understanding and reliability of
composite material design in aerospace applications, aiming for improved safety and perfor-
mance.

1 INTRODUCTION

Aeroelastic phenomena pose significant challenges to the structural integrity and operational ef-
ficiency of aircraft wings structures [1], built mostly from composite laminates . This research
addresses these challenges by developing a framework for the aeroelastic reliability-based opti-
misation (RBDO) of composite plates [2], utilising surrogate modeling techniques to optimise
design and improve reliability while managing the prohibitive computational costs of direct
aeroelastic simulations [3].

The composite plates under study [4] are designed to replicate a two-zone wing structure, with
varying ply numbers across the zones to simulate different stiffness and mass distributions [5].
This approach allows for a detailed exploration of aeroelastic effects under realistic operational
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Figure 1: Composite plate immersed in airflow

conditions while maintaining a focus on cost-efficiency. The optimisation process is centered
around minimising the mass of the composite structures as well as the gust-induced bending
moment at the plate’s base [6], a critical factor in aeroelastic assessments, while ensuring that
the strain levels and flutter speeds remain within safe operational limits [7].

The optimisation methodology utilised in this study combines Efficient Global Optimisation
(EGO) [8] with a constrained optimisation framework. The constraints, maximum allowable
strain and a lower bound on flutter speed, are incorporated using the Probability of Feasibility
(PoF) approach [9]. This technique modifies the classical Expected Improvement (EI) metric
from Bayesian optimisation to factor in the likelihood of constraint satisfaction, thereby guiding
the search process towards feasible and optimal solutions .

In the preliminary stages, various Design of Experiments (DoE) configurations are explored
based on their spatial properties and the resulting quality of the surrogate models they support
[10]. Metrics such as the minimum and maximum-minimum distances between points, along
with evaluations of the correlation matrices, are used to select the most effective experimental
designs [11].

Given the critical importance of model reliability in RBDO [12, 13], the study rigorously as-
sesses and validates the accuracy of the surrogate models, defined via Kriging (KRG) in the
SMT python library [14]. This validation is essential to ensure that subsequent optimisations
are based on reliable predictions.

Ultimately, the optimisation loop is closed using Genetic Algorithms (GAs) that iteratively
refine the design based on surrogate model evaluations [15]. These algorithms permit the relia-
bility based design, adapting the optimisation process to handle complex and discrete variables
such as the number of plies or the ply orientation [16].

This paper will detail the methodologies adopted and the results obtained, thereby illustrat-
ing the efficacy and robustness of using surrogate models for the aeroelastic reliability-based
optimisation of composite plates.

2 COMPOSITE PLATE AND MATERIAL DESCRIPTION

In this study, a rectangular composite plate model is utilised to evaluate aeroelastic behaviours,
following principles outlined in the Kirchhoff plate theory combined with the Doublet Lattice
Method (DLM) for fluid mechanics representation [17, 18]. This model, which simplifies the
plate as being clamped on one edge and free on other edges and submerged into an airflow
(Figure 1), is a standard in aeronautics engineering for initial aeroelastic representation.
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The plate is constructed of two zones with multiple plies, with each ply oriented at an angle θi,
potentially including errors as random variables defined by:

θi = θ̄i + σθiX, X ∼ N(0, 1), (1)

where θ̄i and σθi represent the mean and standard deviation of the i-th ply’s orientation, respec-
tively.

Table 1: Dimensions and material properties

Parameter Description Value Unit
s/2 Half-span 0.3048 m
c Chord length 0.0762 m

E11 Elastic modulus in 1 direction 140 GPa
E22 Elastic modulus in 2 direction 10 GPa
G12 Shear modulus in 1-2 plane 5 GPa
v12 Major Poisson’s ratio 0.3 -
ρ Density 1600 kg/m3

tp Ply thickness 0.125 mm

2.1 Composite Material Multi-Scale Approach

The optimisation targets finding the best stacking sequence θopt = [θ1, θ2, ...], with the possible
angles being discrete ply angles due to manufacturing constraints [19]. The angles considered
for this study are: 0◦,±15◦,±30◦,±45◦,±60◦,±75◦, 90◦ . The reduced possibilities and dis-
crete nature end up forming a complex design space characterised by numerous local minima.
In order to manage this complex design space, an homogenisation technique is proposed.

2.2 Homogenisation Technique

First of all, the homogenisation method used is based on classical laminate theory [20]. The
laminate’s behaviour is described using the rigidity matrices A, B, and D, which relate the
internal forces and moments to the strains and curvatures experienced by the plate:

Nx

Ny

Nxy

Mx

My

Mxy

 =

[
A B
B D

]


ϵx
ϵy
γxy
κx

κy

κxy

 . (2)

The behaviour of our composite stack is determined by 18 variables derived from the A, B, and
D matrices, which are influenced by both the stacking sequences and the material properties.
Optimising these variables is complex, and can be tedious as in most cases material properties
are not subject to change through the optimisation process.

To simplify this complexity, we implement a Lamination Parameter (LP) design approach. This
strategy aims to separate the geometric influences from the material’s mechanical properties.

3



IFASD-2024-17

We define LPs using the orientations θ of the plies and the total thickness t, as follows:

vA
[1,2,3,4] =

1

t

N∑
k

(zk − zk−1) [cos(2θk), sin(2θk), cos(4θk), sin(4θk)] ,

vB
[1,2,3,4] =

4

t2

N∑
k

(z2k − z2k−1)

2
[cos(2θk), sin(2θk), cos(4θk), sin(4θk)] ,

vD
[1,2,3,4] =

12

t3

N∑
k

(z3k − z3k−1)

3
[cos(2θk), sin(2θk), cos(4θk), sin(4θk)] .

(3)

This redefinition reduces the problem’s dimensionality to 12 LPs plus five fixed material depen-
dant variables, thus streamlining the computation of the A, B, and D matrices as per Tsai et
al. [20]:

A = t Ã(vA), B =
t2

4
B̃(vB), D =

t3

12
D̃(vD). (4)

The 12 LPs, symbolised as v, together with the material properties, describe the behaviour
of the laminate’s matrices A, B, and D. In our study, the total thickness t is also a critical
factor, extending our homogenised design space to include 13 variables per zone i of the plate;
represented as (v, t)i.

For the specific scenario of aeroelastic analysis under pure bending conditions, we focus pri-
marily on the D matrix. Moreover we simplify the variable space further to just (vD

1 ,v
D
3 , t) by

imposing a (vD2 , v
D
4 ) = (0, 0) condition. Finally, considering that the plate only has 2 zones, the

final design space is a 6 variable design space such as:

(v, t) = (vD
1 1,v

D
3 1,v

D
1 2,v

D
3 2, t1, t2). (5)

This approach effectively transforms the detailed multi zone ply orientation sequence θ into a
more manageable set of homogenised variables, encapsulating the essential design features into
a simplified model.

3 AEROELASTIC RESPONSE

Aeroelasticity is crucial for ensuring the structural integrity and performance of aircraft compo-
nents under aerodynamic forces. This study refines the understanding of aeroelastic behaviour
in composite wing structures through a simplified plate model analysed using the Doublet
Lattice Method (DLM) with MSC NASTRAN software for comprehensive aeroelastic simu-
lations [17, 18].

3.1 Static Aeroelastic Analysis

Static aeroelastic analysis assesses the plate’s ability to maintain structural integrity under nor-
mal operating loads. This involves examining how the composite structure manages to sustain
and revert to its original shape against aerodynamic forces. The concept of static aeroelastic sta-
bility, which forms an equilibrium between structural and aerodynamic forces, is fundamental
here and described by the equation:

Kq = Fa(q, ρ, U) (6)
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where K represents the stiffness matrix of the plate, q is the generalised displacement vector,
and Fa denotes the aerodynamic force vector dependent on the wing’s deformed geometry, air
density (ρ), and flight speed (U) [7].

3.2 Flutter Analysis

Flutter, an instability coming from aerodynamic, elastic, and inertial force interactions, poses
significant risks to flight safety. Determining the flutter boundary, marked by the critical flutter
speed, is essential for predicting and mitigating this instability. The flutter analysis uses both
time and frequency domain approaches:

Mq̈+Kq = Fa(q, q̇; ρ, U), (7)

where M is the mass matrix. In the frequency domain, the equations become:

(K+ ρU2Ka(ω)− λ2M)q̂+ iλρUCa(ω)q̂ = 0, (8)

λ = σ + iω, (9)

identifying λ as the complex eigenvalue indicating growth rate (σ) and frequency (ω), with Ka

and Ca as the aerodynamic stiffness and damping matrices, respectively [21].

3.2.1 Hump Modes in Flutter Analysis

In the context of flutter analysis, hump modes are characterised by maxima in the flutter speed
versus frequency curves [22, 23]. These modes are particularly critical as they can represent
conditions under which the structure is highly susceptible to flutter instabilities at specific fre-
quencies. The analytical detection of hump modes involves examining the frequency response
of the system and identifying where these local maxima occur. Within figures 2, a hump mode
can be observed in mode 3, where the growth rate (σ) is plotted against the wind velocity . By
slightly modifying the material properties of the structure we can observe how the mode turns
unstable as σ > 0 when Vflutter = 153m/s.

3.3 Wind Gust Response Analysis

There is an existing need to understand the structural response to wind gusts, as gusts can
impose sudden, severe stresses to aircraft structures. The gust response of those structures is
modeled through transient analysis reflecting the time-varying nature of aerodynamic forces:

Mq̈+Cq̇+Kq = Fa(q; ρ, U) + Fgust(t), (10)

with Fgust(t) as the gust force impacting over time, added to the regular aerodynamic forces
[6, 18]. This analysis is vital for preparing the aircraft to withstand and adapt to rapid changes
in the aerodynamic environment, thereby enhancing its resilience and operational safety.

4 METHODOLOGY

4.1 Formulation of the Probabilistic Optimisation Problem

Our goal in optimising composite wing structures is to minimise both the expected gust response
and the overall mass, taking into account uncertainties inherent in composite ply fabrication.
These uncertainties can significantly impact the aeroelastic response and structural integrity.

Objective Function: We aim to determine the optimal stacking sequences θi = [θ1, θ2, . . . , θN ]i
that minimises the expected value of the gust-induced maximum bending moment, denoted by
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Figure 2: Hump mode representation in mode 3.
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Mx, while also minimising the thickness (mass) (t1+ t2) which is directly linked to the number
of plies N = (N1, N2). The optimisation function, framed within a probabilistic context, is
expressed as:

E[f(θ)] = (t1 + t2) + wgust · E[Mx(θ)], (11)

where E[·] represents the expected value, accounting for variability in the input ply angles θ ∼
N (θ̄,Σ) and N, the dimension of θ. The coefficient wgust is a weighting factor emphasising
the importance of the gust effect.

Constraints: The design must adhere to probabilistic constraints that ensure critical perfor-
mance thresholds are not exceeded:

1. Flutter Speed Constraint: The probability that the flutter speed falls below a critical thresh-
old must be minimised for aeroelastic stability:

P(Vflutter(θ) < Vmin) ≤ PV
limit, (12)

2. Maximum Equivalent Strain Constraint: The probability that the equivalent strain exceeds
a maximum allowable level must be controlled to prevent structural failure:

P(ϵequivalent(θ) > ϵmax) ≤ Pϵ
limit, (13)

Here, P(·) denotes the probability of the event, which is maintained below predefined limits
P ·

limit set based on safety and performance standards.

Probabilistic Optimisation Problem: The optimisation problem, now formulated in proba-
bilistic terms, seeks a design that not only minimises the expected objective function but also
adheres strictly to the constraints with high probability:

minimise
(θ)

E[f(θ)]

subject to P(Vflutter(θ) < Vmin) ≤ PV
limit,

P(ϵequivalent(θ) > ϵmax) ≤ Pϵ
limit.

(14)

4.2 Methodology layout
Below is an overview of the workflow used in our methodology and the individual description
of each step.

4.3 Step 1: Design of Experiments (DoE)
The first step elaborates on the Design of Experiments (DoE) methodologies considered in this
study, including techniques like Quasi Monte Carlo and Latin Hypercube Sampling. Further-
more, it details the metrics used to evaluate the quality of these experimental designs.

4.3.1 DoE Techniques Initially Considered
• Latin Hypercube Sampling (LHS): A stratified sampling technique that partitions the

range of each variable into N non-overlapping intervals of equal probability and randomly
samples from each interval, ensuring all portions of the distribution are represented.

• Quasi Monte Carlo (QMC): Uses low-discrepancy sequences to cover the design space
more uniformly than regular Monte Carlo. The Sobol sequence is employed to determine
the indexes.

• Regular Monte Carlo: Randomly selects points in the design space with uniform prob-
ability. It lacks the structured approach of other methods but is simple and robust.
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Figure 3: Workflow of the optimisation methodology.
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4.3.2 Experiment Quality Metrics

Quality of the designs of experiments was assessed using several metrics to ensure data relia-
bility and effectiveness of the design:

• Minimum Distance (MinDist): Ensures experiments are not clustered; calculated as:

MinDist = min
i ̸=j

∥xi − xj∥. (15)

• MaxMin Distance: Aims to maximise the smallest distance between points:

MaxMinDist = max
x∈X

min
i ̸=j

∥x− xi∥. (16)

• Correlation Matrix Evaluation: Low correlations indicate more distinct experimental
outcomes; it assesses the independence of factorial levels.

4.4 Step 2: Infill Function Optimisation

Following the initial DoE, the methodology employs Efficient Global Optimisation (EGO) to
enhance the quality of the surrogate model, notably near the optimum solution. The EGO al-
gorithm iteratively adds points to the surrogate models by optimising an acquisition function,
which helps to identifying new, informative data points. This process is used to refine the sur-
rogate model’s predictions over successive iterations. The surrogate models are dynamically
updated as new data points are incorporated, with the continuous integration of new data points
leading to a progressive improvement in the model’s accuracy. The acquisition function used in
this case is a modification of the classic EI to treat constrained optimisation [9]. The optimisa-
tion of the acquisition function is solved via differential evolution algorithms.

4.4.1 Expected Improvement

The standard form of EI [8] is defined as the expected increase in objective function value over
the current best observation f(v∗, t∗), and is given by:

EI(v, t) = E[max(f̂(v∗, t∗)− f̂(v, t), 0)]. (17)

Assuming a Gaussian Process model for the objective function with mean µ(v, t) and standard
deviation σ(v, t), the EI at any point (v, t) in the design space can be expanded using the
properties of the normal distribution as follows:

EI(v, t) = (f̂(v∗, t∗)− µ(v, t))Φ (Z(v, t))

+ σ(v, t)ϕ (Z(v, t)) , (18)

where Z(v, t) is the improvement potential standardised,

Z(v, t) =
f̂(v∗, t∗)− µ(f̂(v, t))

σ(f̂(v, t))
, (19)

and Φ and ϕ are the cumulative and probability density functions of the standard normal distri-
bution, respectively.

9



IFASD-2024-17

4.4.2 Expected Improvement with Constraints

The PoF is used to assess the likelihood that a given design point (v, t) adheres to the constraints
and is modeled using Gaussian Processes for each constraint:

PoF (v, t) = Φ

(
−µc(v, t)

σc(v, t)

)
. (20)

The optimisation process involves iteratively selecting design points that maximise the product
of EI and PoF, effectively balancing the exploration of the design space with adherence to the
constraints.

(vnext, tnext) = argmax
(v,t)

(EI(v, t)× PoF (v, t)). (21)

This methodology, from initial surrogate model development through constrained optimisation,
ensures optimum surrogate construction and design space exploration under varying aeroelastic
conditions.

4.5 Step 3: Objective Function Optimisation

The third step involves optimising the objective function within the surrogate model to find a
deterministic solution in the continuous design space (v, t). This optimisation identifies the best
possible configuration for:

min
v,ti

f̂(v, t). (22)

The transformation involves replacing the probabilistic measures with deterministic values that
represent a conservative estimate of the constraint. For instance, in the case of the flutter speed
constraint, the probability that the flutter speed falls below a critical threshold is transformed
into a deterministic constraint as:

Vflutter(v, t) ≥ Vmin. (23)

Similarly, for the maximum equivalent strain constraint:

ϵeq(v, t) ≤ ϵmax. (24)

Once the deterministic constraints are established, an iterative optimisation procedure is em-
ployed to find the optimal design point. Typically, this involves computing the objective func-
tion and constraints at the current design point via the NASTRAN model, then adding this point
to the design space and recomputing the surrogate model. This process continues iteratively
until convergence is achieved, meaning that the optimal design point remains stable across iter-
ations and satisfies all constraints within acceptable tolerances.
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4.6 Step 4: Discrete Optimum Location

After determining the continuous optimal values for the thickness of the two sections of the
composite plate t, the next step is to translate these values into practical, discrete integers that
can be used in manufacturing (t1, t2) −→ (N1, N2). The number of plies in any section of a
composite structure must be a whole number; hence, the challenge lies in converting continuous
solutions from the optimisation model into viable discrete configurations.

Optimisation Transition to Discrete Values: The optimisation problem under consideration
ensures that the structural and operational constraints are still respected in the discrete domain:

min
(v,Ni)

f(v, N),

Vflutter(v, N) ≥ Vmin,

ϵeq(v, N) ≤ ϵmax.

(25)

Here, N denotes the set of integer values (N1, N2) for the number of plies required in each
section.

To select the optimum discrete values for the number of plies (N1, N2), the approach is to
round the continuous values (t∗1/tp, t

∗
2/tp) to the nearest integers, with tp being the thickness of

the base layer. However, simply rounding each value may lead to solutions which do not satisfy
the aeroelastic constraints, so compliance conditions are introduced:

Ensuring Constraint compliance: We apply the following criteria to determine the best round-
ing approach:

• In order to comply with the symmetry condition the thickness of each region must be a
multiple of 2tply

• The sum of the discrete values
∑

Ni has to exceed the sum of the optimised continuous
values

∑
(t∗i /tp) . This ensures that the new configurations have the same or higher

compliance of the constraints.
• Among the feasible rounding options, the choice that minimises the total deviation from

the continuous optimal values is preferred, as this typically maintains closer adherence to
the predicted performance and cost metrics.

The final configuration of N will be denoted as Nopt. This step ensures that the theoretically
optimal design is translatable into a practically manufacturable product while adhering to the
constraints of discrete manufacturing processes.

4.7 Step 5:Performance Matching for Reliability-Based Design Optimisation (RBDO)

The final step involves using the surrogate model to run a RBDO solver based on GAs [15,24].
This stage aims to find the final stacking sequence that meets the reliability requirements under
operational conditions. This phase considers both the performance metrics and the reliability of
the material system, finalising the design process and yielding the final stacking sequence θ.

The RBDO process commences within a precisely defined design space where the number of
plies, denoted as Nopt, is fixed based on the optimal solution derived from earlier deterministic
optimisation stages. Therefore the reliability based optimisation problem can be rewritten as:
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minimise
(v)

E[M̂x(v(θ))]

subject to P(V̂flutter(v(θ)) < Vmin) ≤ PV
limit,

P(ϵ̂eq(v(θ)) > ϵmax) ≤ Pϵ
limit,

(26)

with the M̂x , V̂flutter and ϵ̂eq representing the surrogate model response for a certain input
(v,Nopt) and the LPs being a function of the stacking sequence v(θ).

4.7.1 Implementation of GAs in RBDO

GAs are employed for solving the RBDO due to their robustness in handling complex, non-
linear optimisation problems with multiple local minima. GAs simulate processes in natural
evolution, such as selection, crossover, and mutation, to iteratively improve solution quality:

• Initialisation: Begin with a randomly generated population of potential solutions based
on the defined number of plies Nopt.

• Fitness Evaluation: Each individual in the population is evaluated using a fitness func-
tion that incorporates both the objective function and constraints of the RBDO. This func-
tion typically reflects the structural performance and reliability criteria under variable
material properties and manufacturing conditions.

• Selection: Select individuals based on their fitness scores to form a mating pool; methods
such as tournament selection or roulette wheel selection are commonly used.

• Crossover and Mutation: Generate new individuals (offspring) by combining and mod-
ifying the genetic information (ply orientation and ply drops) of selected parents to intro-
duce diversity and explore new areas of the design space.

• Replacement: Replace less fit individuals with new, potentially superior offspring to
form a new generation.

4.7.2 Handling Variability in Material Properties

One of the primary challenges in RBDO is the variability issued by the manufacturing inaccu-
racies, which significantly impact the performance and reliability of the designed component.
The GA incorporates this variability by evaluating via a Monte Carlo algorithm the fitness of
each design under different realisations of the induced error σθi , effectively simulating the per-
formance across a range of probable manufacturing outcomes. This approach ensures that the
optimised design is not only optimal for the nominal scenario but also robust and reliable against
angular variations in the stacking sequence.

4.7.3 Optimisation Criteria and Algorithm Termination

The optimisation continues until a satisfactory level of fitness is achieved or a predetermined
number of generations is reached. The termination criteria directly influence the computational
cost and quality of the solution. Typically, the process iterates until the improvement between
generations falls below a minimal threshold, indicating that further exploration may yield di-
minishing returns. Moreover, the GA is run several times in order to account for the stochastic
nature of this optimisation model.

5 RESULTS

This section presents the results for the five steps of our methodology: 1. Design of Experi-
ments, 2. Infill Function Optimisation, 3. Objective Function Optimisation, 4. Discrete Opti-
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mum Location and 5. Performance Matching for Reliability-Based Design Optimisation.

5.1 Step 1: Design of Experiments

In our investigation, three different DoE methods were employed to assess their effectiveness
in exploring the design space of the problem at hand (vD

1 1,v
D
3 2,v

D
1 2,v

D
3 1, t1, t2): MC, LHS

and QMC. For the first two methods, given their Bayesian behaviour, 1000 different DoEs were
generated, and the best-performing design was selected based on the criteria of minimal distance
between points, the quality index and the maximin criterion value.

Table 2: Comparison of DoE Methods

Method Metric Value

Monte Carlo (MC)
MinDist 0.452
Quality Index 0.161
Maximin Criterion Value 1.806

Latin Hypercube Sampling (LHS)
MinDist 0.483
Quality Index 0.152
Maximin Criterion Value 1.818

Quasi Monte Carlo (QMC)
MinDist 0.449
Quality Index 0.119
Maximin Criterion Value 1.861

The analysis of the DoEs outcomes clearly demonstrates that the QMC method outperformed
both LHS and MC. Specifically, QMC achieved the best balance of minimum distance between
points, lowest quality index, and highest maximin criterion value. The minimal distance, which
ensures that points are not overly clustered, is slightly smaller in the QMC though with values
very near the ones offered by MC and LH. The quality index, being the lowest for QMC,
indicates a higher overall quality of the experiment design, suggesting that this method can
better manage the variance within the sampling process. Furthermore, the maximin criterion
value being highest for QMC highlights its capability to maximise the smallest distance between
any two points, thus ensuring a better spread across the design space.

Given these results, the DoE generated via QMC method was selected for use in the optimisation
process. The QMC method’s ability to systematically cover the design space while maintaining
low variability in point distribution makes it particularly suitable for constructing accurate and
reliable surrogate models. This choice is expected to significantly enhance the fidelity of our
optimisation framework, ensuring that the surrogate models developed are both precise and
robust.

5.2 Step 2: Infill Function Optimisation

The surrogate model was iteratively refined using the EGO algorithm previously introduced,
focusing on improving the EI ∗ PoF metric. This method allowed us to identify potential
design points that efficiently balanced between exploration and exploitation of the design space.

The progression of the EI ∗ PoF metric, initially showing substantial improvement, demon-
strates a declining trend in later iterations, suggesting that the search is nearing optimal regions
within the explored design space. Simultaneously, the quality of the correlation matrix, which
assesses the surrogate model’s accuracy, exhibits a worsening trend as iterations progress given
that adding new points disturbs the equilibrated initial distribution. Despite the fluctuating per-
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formance, the EI ∗ PoF metric remained above critical thresholds, ensuring that the design
points never heavily distorted the overall quality of the surrogate models.

Figure 4: Evolution of Metrics Over Iterations with EI ∗ PoF on Log Scale.

5.3 Step 3: Objective Function Optimisation

The optimisation phase of our study successfully identified optimal design parameters that bal-
ance the aeroelastic performance with material efficiency. Through the application of the sur-
rogate model within a deterministic framework, we achieved a design configuration that min-
imised the bending moment while adhering to flutter speed and maximum strain constraints set
by the predetermined limits.

Optimisation Results:

• Design Parameters: The optimal lamination parameters were determined to be:

(vD
1 1,v

D
3 1,v

D
1 2,v

D
3 2, t1, t2) = (−0.4313,−0.4901,−0.3992,−0.5180, 2.1468, 1.4062).

• Bending Moment: The resulting design configuration yields a bending moment of only
202.102Nm, indicating a significant improvement in structural response under loading
conditions.

• Flutter Speed and Maximum Strain: Both the flutter speed and maximum strain values
found were the limit values (corresponding to ϵmax = 0.003 and Vmin = 171.5m/s),
illustrating the model’s capability to adhere to critical performance thresholds with both
constraints being activated at the same time.

Surrogate Model Predictions:

• The standard deviations from the surrogate model predictions provide insights into the
model’s accuracy and reliability:

14
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– Strain: The standard deviation for strain predictions was measured at 7.147×10−6,
reflecting high precision in strain estimation under operational conditions.

– Flutter Speed: A standard deviation of 0.0496m/s for flutter speed underscores the
model’s effectiveness in capturing dynamic aeroelastic behaviours.

– Gust-induced Bending Moment (Mx): The standard deviation for the gust-induced
bending moment was 0.0828Nm, demonstrating the model’s response prediction
capabilities.

Upon adding the initially identified optimum points to the surrogate model and re-computing
it, a subsequent optimisation run identified a new point. The parameters for this new optimal
configuration were found at

(vD
1 1,v

D
3 1,v

D
1 2,v

D
3 2, t1, t2) = (−0.4717,−0.5191,−0.3894,−0.6965, 2.1352, 1.4136).

Being only 0.1483 units away from the previous optimum, indicating a minimal shift in the
design space. The bending moment generated by gust in the new point is 197.596Nm, only
slightly improving the last computed point.

Due to the proximity in design space and potential distortion effects on the surrogate model’s
quality, this new point was not added to the model database. The decision was based on the
desire to maintain the integrity and reliability of the surrogate model without introducing sig-
nificant noise or bias from closely spaced data points.

Analysis of Strain Distribution in Optimum result: The optimisation process involved eval-
uating the strain distribution across the composite plate to ensure that the design adheres to
structural integrity standards under operational loads. The resulting strain map, illustrated in
Figure 5, provides a detailed visualisation of the equivalent strain across the plate.

Figure 5: Equivalent strain distribution across the plate, highlighting the multi-zone behaviour with varying strain
intensities.

The strain map clearly shows the multi-zone behaviour of the plate, with varying strain inten-
sities evident across different sections. This behaviour shows how different areas of the plate
will respond under specific loading conditions, which is fundamental in tailoring the material
properties and thickness to meet specific design requirements.

Flutter Analysis Visualisation for optimal result: The close proximity to a hump mode in
the flutter analysis is depicted in the figure below, indicating the critical nature of the design in
terms of aeroelastic stability, which will have a major role in the RBDO.

This step underscores the efficiency of the surrogate model in navigating the complex design
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Figure 6: Visualisation of the eigenvalue analysis showing the proximity to a hump mode in the flutter analysis,
illustrating the critical interaction between aerodynamic and structural dynamics at the optimised design
point.

space of aeroelastic structures, achieving an optimised design that not only meets but effectively
balances between performance objectives and computational cost.

5.4 Step 4: Discrete Optimum Location
Following the successful identification of the optimal solutions for the lamination parameters in
the continuous design space, the next phase involved transitioning these solutions to practical,
discrete variables alignable with actual manufacturable composite plies. This transition is of
paramount importance to ensure that the design solutions are not only theoretically optimal but
also viable for real-world production.

Conversion to Discrete Variables: The optimisation sought to determine the nearest feasible
stacking sequence configurations that would conform to manufacturable standards. Given the
continuous optimal results: (t1, t2)opt = (2.1352, 1.41360567625) if we divide by the ply thick-
ness tp we obtain (t1/tp, t2/tp)opt = (17.0823, 11.3088). Therefore, the the number of plies will
be (N1, N2) = (18, 12) .

The optimisation via differential evolution was now launched with the fixed values of (N1, N2) =
(18, 12). With the new computed points being added to the surrogate in order to refine it, after
a total of 3 iterations the optimum response obtained was:

Adjusted Optimal Bending Moment: The bending moment for this configuration was cal-
culated to be 182.45Nm, which was the lowest among the considered configurations. Con-
straints: Both the flutter speed and maximum strain values found were the limit values (corre-
sponding to ϵmax = 0.003 and Vmin = 171.5m/s),

This point was not further added to the surrogate models in order to enhance the quality of the
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response in the (N1, N2) = (18, 12) design zone given the low variability and small distance to
the previously computed points.

5.5 Step 5: Performance Matching for RBDO

This phase focused on minimizing gust response, constrained by flutter speed and strain pa-
rameters, with a fixed value of (N1, N2) = (18, 12). The RBDO employed a GA, rigorously
designed to handle the inherent uncertainties in the ply orientation given by the fabrication
processes.

To ensure the effectiveness and efficiency of the GA, it is imperative to fine-tune its parameters
and operational conditions. The fine-tuning process involved iterative testing and validation
against a set of benchmark problems, with adjustments made based on the performance metrics
such as convergence rate and solution quality. Parameters such as population size, mutation rate,
and crossover probability were adjusted in small increments, while monitoring the impact on
the GA’s ability to find optimal solutions within a reasonable timeframe. This iterative approach
allowed us to identify the optimal settings that balance exploration and exploitation within the
GA framework.

Table 3: Conditions and Parameters of the GA

Parameter Value
Population Size 1000
Crossover Probability 0.8
Mutation Probability 0.3
Elitism group 100
Convergence Criterion 100 Generations
Standard Deviation σθ 2°
Monte Carlo Samples 50000

Table 3 summarizes the key settings and values used in the GA, which were fine-tuned as
described. All of these parameters were previously defined. Additionally, the table includes
the standard deviation σθ, representing the variability introduced in the composite materials ply
orientation, and the number of samples used in the Monte Carlo analysis.

Figure 7: Visualisation of the design space exploration by the GA for the 1st and 30th generations.

Figure 7 illustrates the exploration of the (vD
1 ,v

D
3 ) design space during two distinct generations

of a GA run, specifically the 1st and the 20th. The plot emphasizes the broad initial exploration,
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and the distribution of solutions within the 20th generation, concentrating the points close to the
optimal solutions of (vD

1 ,v
D
3 ) for each region of the plate. These images demonstrate the GA’s

ability to explore the design space effectively and to increasingly focus on regions surrounding
the fittest individuals as generations progress.

Figure 8: Convergence plot of the gust response obtained with GA through the RBDO process, showing the opti-
misation progression over 100 generations. Consistency across fifteen separate runs with different initial
conditions underlines the algorithm robustness.

Moreover, the convergence of the GA is evaluated to study the reliability and efficiency of the
optimisation. Figure 8 displays the convergence plot of the algorithm, showing the optimisa-
tion’s evolution across 20 generations. This plot includes results from five distinct runs of the
algorithm, providing a comprehensive review of its convergence behavior. The consistency ob-
served across these runs underscores the algorithm’s robustness and reliability in identifying an
optimal solution, with all runs converging by a maximum of 15 iterations. Within Figure 8, the
value for the fittest individual that meets all probabilistic constraints is depicted.

6 CONCLUSION

This study has successfully demonstrated the application of aeroelastic Reliability-Based De-
sign Optimisation (RBDO) for composite plates utilising dual-space strategy together with sur-
rogate modeling. Our approach has systematically addressed the multifaceted challenges of
designing aerospace composite structures, where both performance optimisation and reliability
assurance are critical. The five-step methodology, integrating sophisticated statistical and com-
putational techniques, has yielded a robust and reliable design, optimised for both aeroelastic
performance and manufacturability.

The first step, involving an extensive Design of Experiments (DoE), established a strong foun-
dation for the subsequent modeling efforts. By employing a Quasi Monte Carlo (QMC) algo-
rithm we ensured comprehensive coverage of the design space, which allows for accuracy and
reliability of the surrogate models. The spatial distribution metrics from this phase indicated
excellent design space exploration, setting the stage for effective surrogate model development.

In the second step, infill function optimisation, we refined the surrogate models through Effi-
cient Global Optimisation (EGO), focusing on the Expected Improvement metric constrained
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by the Probability of Feasibility. This step helped enhance the model’s predictive accuracy,
thereby enabling more precise identification of the optimal design points. The optimisation
of the infill function significantly improved the convergence of the model, demonstrating the
strength of integrating EGO with a probabilistic constraint handling.

The third step, objective function optimisation, utilised the enhanced surrogate models to opti-
mise the objective function within a continuous design space. The results from this phase were
revealed a substantial reduction in the expected gust-induced bending moment and the overall
structural weight, thereby confirming the efficacy of our surrogate-based optimisation approach.

Transitioning to the fourth step, discrete optimum location, we adjusted the continuous solu-
tions to accommodate the discrete nature of manufacturing constraints related to ply thickness.
This step ensured that the theoretical optimisations were feasible in practical manufacturing
scenarios, highlighting the importance of considering discrete variables in composite structure
design.

Finally, the fifth step involved performance matching and RBDO using Genetic Algorithms.
This phase was geared towards ensuring that the final design adhered to stringent reliability
thresholds under operational uncertainties. The optimisation process not only met but exceeded
the reliability standards, with a significantly low probability of failure, thereby underscoring the
reliability of the optimised design.

The integration of these methodologies marks a significant advancement in the field of aeroe-
lastic design optimisation for aerospace composite structures applications. By focusing on both
the optimisation of performance and the assurance of reliability, this study contributes to the
development of safer, more efficient composite structures. The use of surrogate models in con-
junction with probabilistic optimisation techniques represents a scalable, efficient solution to
manage the complex design spaces of composite materials, manufacturing processes and oper-
ational demands.

Future Work: Looking ahead, further research could explore the integration of more com-
plex material models and real-world operational conditions into the optimisation process. Ad-
ditionally, extending this methodology to three-dimensional structures and full-scale aircraft
components could provide deeper insights into the practical implications of this approach. Ex-
perimentation with alternative surrogate modeling techniques and more advanced probabilistic
optimisation algorithms would also be beneficial, potentially leading to even more refined de-
signs. Moreover, addressing the sustainability aspects of composite material usage in aerospace
applications could add another dimension to this research, aligning it with the industry’s in-
creasing focus on reducing environmental impact.

In conclusion, the methods and findings of this study not only enhance our understanding of
aeroelastic phenomena in composite structures but also pave the way for more innovative, effi-
cient, and reliable aerospace design strategies in the future.
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