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Abstract: An intrusive model order reduction algorithm for nonlinear dynamical systems is
presented. Reduced Order Models (ROMs) are constructed using information on the eigen-
spectrum of the linear dynamical system, projecting a Taylor series expansion of the Full Order
Model (FOM) onto a reduced basis of representative eigenvectors. Higher derivatives of the
FOM are taken with respect to the ROM coordinate system using source–transformation auto-
matic differentiation. The resultant ROM derivative codes are parameterised with respect to the
system properties, thus requiring ROM code generation only once. The algorithm is applied
to an aeroelastic pitch–plunge aerofoil with up to cubic structural nonlinearities. The reduced
model form sufficiently captures the quadratic and cubic nonlinear dynamics of the full model
in response to a range of gust disturbances. Post–flutter limit cycle oscillations are captured
using a small subset of modes.

1 INTRODUCTION

Meeting civil aviation sustainability targets requires significant performance improvements of
next generation aircraft. Of interest is improving fuel efficiency towards reducing greenhouse,
and, other environmentally harmful emissions. One means of achieving this goal is by increas-
ing wing aspect ratio, thus reducing lift–induced drag, and in turn, reducing fuel consumption.
These high aspect ratio configurations involve highly flexible lifting surfaces with structural
nonlinearities. It is of interest to study the dynamic response of the resultant aeroelastic sys-
tems, for example; to verify structural limits are not exceeded in response to excitation; or, to
design control laws for gust load alleviation or flutter suppression. Control law design for these
highly flexible aeroelastic systems requires sufficiently accurate predictions of the nonlinear
dynamics. Use of the full order, nonlinear, coupled fluid–structural system would guarantee
accurate prediction of the nonlinear dynamics, but is often computationally intractable for con-
trol design. Thus, there exists the motivation for nonlinear Model Order Reduction (MOR), to
reduce system size and computational complexity, while retaining the critical dynamical prop-
erties of the system.
Ref. [1] formulated a MOR algorithm for application to flexible aircraft control design. The
approach uses information of the eigenspectrum from the FOM Jacobian matrix, projecting a
Taylor series expansion of the original system onto a representative basis of eigenvectors, thus
reducing the state-space dimension, and retaining only critical frequency content. In Ref. [1],
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reduced order nonlinearities were approximated via matrix-free Finite-Differencing (FD). In
Ref. [2], the same form of MOR technique was modified with Automatic Differentiation (AD)
to overcome round-off and/or truncation errors associated with approximating high-order re-
duced derivatives via FD. This work continues with the work of Ref. [2], now constructing
ROMs of nonlinear aeroelastic systems using source–transformation AD. The use of source–
transformation AD permits the generation of parametric ROM derivative codes of the FOM
source code. These derivative codes are generated once and may be re–evaluated inexpensively
for different system parameters.
This work will demonstrate the model reduction algorithm using a two–dimensional aeroelastic
aerofoil system with up to cubic nonlinearity in the structure. Compact and parametric reduced
order forms of the nonlinear dynamical system are created. This work constitutes an investiga-
tion into the form and structure of these reduced models and their capability to predict nonlinear
dynamics.
This paper is structured as follows. In Section 2, the general form of the FOM is given. Section
3 continues with a high-level overview of this work’s MOR methodology. In Section 4, the
aeroelastic system equations of motion are given for an aerofoil section elastically suspended in
pitch and plunge. Section 5 continues with an analysis of the dynamics. Nonlinear ROMs are
then constructed and their dynamics compared against the nonlinear FOM in Section 6.

2 FULL–ORDER MODEL

The FOM may take the form of a nonlinear dynamical system, expressed here in state–space
form as

ẋ = f (x (t) , u (t)) (1)

where t denotes the time variable, x (t) ∈ Rn is the system state vector, u (t) ∈ Rp is an
input excitation vector, and f : Rn → Rn is the state evolution function, or nonlinear residual.
Here, n represents the state–space dimension and, p, the number of inputs. The system has an
initial condition x (0) = x0, and has an equilibrium point xeq and corresponding ueq such that
f (xeq, ueq) = 0. It is noted that f is assumed to be infinitely differentiable.

Defining ∆x = x − xeq and ∆u = u − ueq as the state–vector, and, input excitation vector
increments with respect to the equilibrium solution, a Taylor series expansion of the nonlinear
residual in Eq. (1) can be expressed as

f (x) ≈ A1∆x +B∆u +A2 (∆x, ∆x) +O
(∣∣∆x3

∣∣) , (2)

which retains up to second order nonlinearity in the state–vector increment. Here,A1 ∈ Rn×n

is the system’s Jacobian, or first derivative matrix of f , and A2 ∈ Rn is the second order
expansion term. B ∈ Rn× p is the first derivative of f with respect to the input excitation.

These terms may be defined as follows

A1 =
∂f

∂x

∣∣∣∣
xeq

(3)

A2 (∆x, ∆x) =
1

2!

n∑
r, s=1

∂2f

∂ xr∂ xs
∆xr ∆xs (4)

B =
∂f

∂u
(5)
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The Taylor expansion of Eq. (2) is used as an approximation of the large–order system of Eq. (1).
It is this approximation that is projected onto the reduced basis which is discussed in the subse-
quent section.

3 MODEL ORDER REDUCTION

The large–order system approximation of Eq. (2) is projected onto a subspace formed by a small
number m of eigenvectors of the Jacobian matrix evaluated at the equilibrium point. Given a
Jacobian matrix A1 ∈ Rn×n, suitable basis vectors are obtained by solving the right and left
eigenvalue problems, respectively

A1ϕr = λr ϕr, AT
1 ψr = λ̄r ψr for r = 1, . . . , n (6)

The eigenvalues of A1 are the same as the eigenvalues of AT
1 , whereas the eigenvectors of

A1 are different from the eigenvectors of AT
1 . If all eigenvalues are distinct, the right and

left eigenvectors corresponding to different eigenvalues are biorthogonal (ψ̄T
r ϕs = 0 for all

r ̸= s). It is suggested to construct these eigenvectors to satisfy the following biorthogonality
conditions

ϕ̄T
r ϕr = 1
ψ̄T

r ϕr = 1
ψ̄T

r ϕ̄r = 0
for r = 1, . . . , n (7)

If these properties are satisfied, then it can be viewed that the projection of the Jacobian matrix
on the left and right eigenvectors yields the following relations

ψ̄T
r A1ϕr = λr, ψ̄T

r A1 ϕ̄r = 0 for r = 1, . . . , n (8)

A rational choice to extract a small number m of basis vectors is to retain only the slow modes
since they are likely to dominate the system dynamics, with the exception of unstable fast modes
leading to the instability of the system. The diagonal matrix of eigenvalues, and the right and
left modal matrices are written

Λ =

λ1 . . .
λm

 , Φ =

 | |
ϕ1 . . . ϕm

| |

 , Ψ =

 | |
ψ1 . . . ψm

| |

 (9)

The r–th column of the matrices Φ and Ψ contains the right and left eigenvector, respectively,
associated with the eigenvalue λr. These right and left modal matrices contain the desired in-
formation about the dynamics of the system.

It is important to note that for a purely real eigenvalue and its corresponding eigenvectors, the
biorthogonality conditions cannot be met, asϕr = ϕ̄r. This requires the eigenvectors to instead
be scaled according to

ψ̄T
r ϕr =

1

2
(10)

which then leads to the relation
ψ̄T
r A1 ϕr =

λr
2
. (11)
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3.1 Linear Reduced Order Model

An approximation of the state vector increment ∆x (t) can be considered with another state
vector, constrained to stay in the subspace spanned by the columns of Φ,

∆x ≈ Φ z + Φ̄ z̄ (12)

for some z (t) ∈ Cm. The complex conjugate of z is denoted by z̄. Substituting the transfor-
mation of coordinates (12) into the large–order system approximation of Eq. (2) while retaining
only the linear terms yields an over–determined system of equations with respect to the state
vector z

Φż + Φ̄¯̇z = A1Φz +A1Φ̄z̄ +B∆u (13)

Pre–multiplication of this equation by Ψ̄T and then subsequently exploiting the relations of
Eq. (7) and Eq. (8) yields a linear ROM, given by

ż = Λz +Bm∆u (14)

recalling that Λ is a diagonal matrix containing the subset of retained eigenvalues, and defining
Bm = Ψ̄TB.

3.2 Nonlinear Reduced Order Model

Nonlinearities are retained by taking higher order derivatives of f with respect to the reduced
state vector variable z. For example, the ROM equivalent second order expansion term is given
by

Az
2 (z, z) =

1

2!

m∑
r, s=1

(
∂2 f

∂ zr ∂ zs

∣∣∣∣
xeq

zr zs +
∂2 f

∂ z̄r ∂ zs

∣∣∣∣
xeq

z̄r zs+

∂2 f

∂ zr ∂ z̄s

∣∣∣∣
xeq

zr z̄s +
∂2 f

∂ z̄r ∂ z̄s

∣∣∣∣
xeq

z̄r z̄s

) (15)

Then, a nonlinear reduced–order model, retaining up to second order nonlinearity, is written in
state–space form as

ż = Λz +Bm∆u + Ψ̄T Az
2 (z, z) (16)

with initial condition z (0) = Ψ̄T x0.

It is noted in Eq. (16), that the ROM second order expansion term A2 (z, z) is pre–multiplied
by Ψ̄T . This operation may be performed once, prior to time–integration, by pre–multiplying
the second order derivatives in Eq. (15) by Ψ̄T . This results in the ROM second order expan-
sion term being constituent of four, second order derivatives, each of which are of dimension
O (m3). Therefore, the ROM nonlinearity is computed also in the dimension of the reduced
state vector variable, z. Thus, for m ≪ n, as assumed initially, the ROM system will provide
a computationally inexpensive evaluation of the nonlinearity in comparison with the FOM.

To provide direct comparison with the FOM system approximation of Eq. (2), the equivalent
FOM second order expansion term,A2 (∆x, ∆x) is constituent of one, second order derivative,
of dimension O (n3). This term is illustrated in the left hand side of Figure 1. The right hand
side of Figure 1 shows an illustration of the four ROM second order derivative terms, after
pre–multiplication by Ψ̄T .
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Figure 1: Illustrative comparison of the FOM (left) and ROM (right) second order derivatives,
recalling that n is the dimension of the FOM and m, the dimension of the ROM.

3.3 Higher Order Reduced Order Model Derivatives

Formation of the nonlinear ROM requires computing the higher order derivatives with respect
to the reduced state vector variable z, such as those within Eq. (15). In Refs. [1], [3] and [4],
the higher order ROM derivatives are computed using matrix–free finite differencing. Finite–
differencing however can suffer from round–off and truncation errors, making the computation
of subsequent higher–order derivatives difficult. It is noted in Ref [4], that these difficulties
are more significant in the evaluation of the third derivative with finite–differencing, where
evaluation of the second derivative is otherwise successful.

In Ref [2], Automatic Differentiation (AD) was used to obtain machine precision accurate
derivatives in a computationally efficient manner. AD exploits the fact that a computer code
that implements a general function ẏ = f (x) can be decomposed into a sequence of elemen-
tary function operations. The derivative is then obtained by applying the standard differentiation
rules (e.g., product, quotient, and chain rules). This work employs the same technique, using
the ADiGator MATLAB toolbox [5] for AD. It is noted here that source–transformation AD
is used. This allows the formation of ROM derivative codes. These codes need only be gen-
erated once, after which, they can be evaluated at a fraction of the generation cost to yield
the desired ROM derivative. The advantage of the source–transformation technique is that the
ROM derivative codes can be parameterised such that a single code generation is valid across
a parameter range. The drawback however comes in that the FOM code must be reasonably
simple with respect to the number of operations on the state–vector variable, otherwise the
source–transformed ROM derivative codes will become impractically large.

The computation of the higher order ROM derivatives with respect to a complex variable is
given in Ref [2]. For completeness, the method is described again here.

To start a concise notation is chosen, denoting the complex variable z ∈ C as

z = ℜ (z) + iℑ (z) = zRe + i zIm (17)

The complex derivatives of a real function, f : R → R, with respect to z may be written in the
form:

∂ f

∂ z
=

1

2

(
∂ f

∂ zRe

∣∣∣∣
zIm

− i
∂ f

∂ zIm

∣∣∣∣
zRe

)
(18)
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and
∂ f

∂ z̄
=

1

2

(
∂ f

∂ zRe

∣∣∣∣
zIm

+ i
∂ f

∂ zIm

∣∣∣∣
zRe

)
(19)

The calculation of any higher order derivative is facilitated by recursive application of Eqs. (18)
and (19). Hereafter, it is implicitly understood that the partial derivative is obtained keeping all
other variables constant. For example, second order derivatives with respect to z and z̄ are:

∂2 f

∂ z ∂ z
=

1

4

(
∂2 f

∂ zRe ∂ zRe

− i
∂2 f

∂ zRe ∂ zIm
− i

∂2 f

∂ zIm ∂ zRe

− ∂2 f

∂ zIm ∂ zIm

)
(20)

∂2 f

∂ z ∂ z̄
=

1

4

(
∂2 f

∂ zRe ∂ zRe

+ i
∂2 f

∂ zRe ∂ zIm
− i

∂2 f

∂ zIm ∂ zRe

+
∂2 f

∂ zIm ∂ zIm

)
(21)

∂2 f

∂ z̄ ∂ z
=

1

4

(
∂2 f

∂ zRe ∂ zRe

− i
∂2 f

∂ zRe ∂ zIm
+ i

∂2 f

∂ zIm ∂ zRe

+
∂2 f

∂ zIm ∂ zIm

)
(22)

∂2 f

∂ z̄ ∂ z̄
=

1

4

(
∂2 f

∂ zRe ∂ zRe

+ i
∂2 f

∂ zRe ∂ zIm
+ i

∂2 f

∂ zIm ∂ zRe

− ∂2 f

∂ zIm ∂ zIm

)
(23)

The third and subsequent higher order terms can be obtained similarly via further recursive
application of Eqs.(18) and (19).

Prior to the practical application of any AD toolbox, it is noted that that while the system
dynamics f is defined for real variables (recall, for example, Eq. (1)), the above derivatives
are taken with respect to a complex variable, z. This situation can be dealt with using the
transformation of coordinates, Eq. (12).

The higher order terms appearing in the nonlinear reduced–order model are formed by combi-
nations of simple derivatives. For example, the second order term can be expressed as

Az
2 (z, z) =

∂2 f

∂ z ∂ z
z z +

∂2 f

∂ z ∂ z̄
z z̄ +

∂2 f

∂ z̄ ∂ z
z̄ z +

∂2 f

∂ z̄ ∂ z̄
z̄ z̄ (24)

and the third order term as

Az
3 (z, z, z) =

∂3 f

∂ z ∂ z ∂ z
z z z +

∂3 f

∂ z ∂ z ∂ z̄
z z z̄ +

∂3 f

∂ z ∂ z̄ ∂ z
z z̄ z +

∂3 f

∂ z̄ ∂ z ∂ z
z̄ z z+

∂3 f

∂ z̄ ∂ z ∂ z̄
z̄ z z̄ +

∂3 f

∂ z̄ ∂ z̄ ∂ z
z̄ z̄ z +

∂3 f

∂ z ∂ z̄ ∂ z̄
z z̄ z̄ +

∂3 f

∂ z̄ ∂ z̄ ∂ z̄
z̄ z̄ z̄

(25)

4 AEROELASTIC AEROFOIL SECTION MODEL

This section covers the formulation of the aeroelastic FOM used in this work. Subsections cover
in order, the structural system, fluid system, and coupled fluid–structural aeroelastic system.
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4.1 Structural System
The elastically suspended 2–Degree of Freedom (2–DOF) structural system is as defined in
Figure 2. Plunge deflection is denoted by h and pitch deflection denoted by θ, with h and θ
defined by convention as positive downwards and clockwise respectively. The pitch and plunge
degrees of freedom are both elastically suspended in pitch and plunge, with the plunge restoring
force denoted by K̃h (h), and the pitch restoring moment denoted by K̃θ (θ).

The aerofoil has a chord of length c and semi–chord b. ah denotes the distance between the
mid–chord and elastic axis non–dimensionalised by b and xθ the distance between the elastic
axis and centre of mass non–dimensionalised by b. The aerofoil has mass m, a polar moment of
inertia about the 1/4 chord per unit length Iθ, and, static mass moment Sθ, where Sθ = mbxθ.

Figure 2: 2–DOF aerofoil structural system

The equations of motion of the structural system may be derived from the Lagrange equations,
given by

d

dt

(
∂L
∂q̇i

)
− ∂L
∂ qi

= Qi (26)

where L is the Lagrangian – defined as the total kinetic energy of the system minus the total
potential energy of the system, qi is a generalised coordinate and Qi is a generalised force, with
the subscript i, denoting in no particular order, the degree of freedom considered. The derivation
of the structural system via the Lagrange equations can be found in full in Ref. [6].

The derived equations of motion of the structural system may then be expressed as

mḧ + Sθθ̈ + K̃h (h) = Qh (27a)

Sθḧ + Iθθ̈ + K̃θ (θ) = Qθ. (27b)

where Qh and Qθ are the generalised aerodynamic forces in plunge and pitch respectively.

4.1.1 Structural Nonlinearities
Nonlinearity is introduced to the structural system through the plunge and pitch degree of free-
dom springs. The restoring force and moment of the plunge and pitch springs are defined
respectively as

K̃h (h) = mω2
h h P̃h (h) (28a)
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K̃θ (θ) = Iθω
2
θ θ P̃θ (θ) (28b)

where ωh and ωθ are the decoupled frequencies of plunge and pitch respectively. P̃h and P̃θ are
nonlinear functions which are used to add quadratic and cubic nonlinearities. These terms are
defined as

P̃h (h) = βh1 + βh2 h + βh3 h
2 (29a)

P̃θ (θ) = βθ1 + βθ2 θ + βθ3 θ
2. (29b)

Quadratic nonlinearities may be introduced through the parameters βh2 and βθ2. Cubic nonlin-
earities are similarly introduced through the parameters βh3 and βθ3.

Structural nonlinearities of this form have been covered extensively in Ref. [7], where it is noted
for example that thin lifting surfaces being twisted may be modelled with a cubic hardening
spring which becomes stiffer as twist angle increases. It is noted also that buckling can be
modelled with the opposite spring softening effect, which can be similarly obtained with a
cubic parameter. In Ref. [8] a flutter study was performed considering these hardening and
softening structural nonlinearities. It was seen in Ref. [8] that for a system with a softening
structural nonlinearity (i.e. a negative cubic term), flutter would occur at a point before it would
occur in the equivalent linear dynamical system. This is due to the destabilising effect of the
softening nonlinearity, where the restoring force decreases for larger displacement ranges in
comparison with the linear system. For the system in Ref. [8] with a cubic hardening structural
nonlinearity (i.e. a positive cubic term), it was found that divergent flutter would not occur, with
the dynamics instead settling into stable limit cycle oscillations. This work further introduces
quadratic parameters to the structural nonlinearity. This is done with the intention of increasing
the mathematical complexity of the model, and not necessarily to capture a specific physical
phenomenon.

The parameters used in this work may be assumed as those given in Table 1, unless specified
otherwise.

Table 1: Pitch and plunge polynomial parameters

Plunge Parameters Pitch Parameters
βh1 = 1.0000 βθ1 = 1.0000
βh2 = 0.1500 βθ2 = −5.0000
βh3 = 0.0065 βθ3 = 8.0000

The product of the nonlinear functions with their corresponding displacements are evaluated
over displacement ranges and shown in Figure 3. The left Figure shows the resultant plunge
polynomial and the right Figure shows the resultant pitch polynomial. The line denoted as
”Linear” has terms associated with the second and third order nonlinearities set to 0. The line
denoted as ”Nonlinear” uses the parameters as specified in Table. 1.

It is seen in Figure 3 that for the positive and negative ranges of plunge and pitch displace-
ment, the restoring force and restoring moment will harden or soften. For example, in terms of
plunge displacement, in the positive direction the spring restoring force would harden, and in
the negative direction the spring restoring force would first soften before then hardening.

4.1.2 State–Space Structural Form

The structural system equations of motion given in Eq. (27) are arranged in matrix form as

8
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(a) Plunge (b) Pitch

Figure 3: Plunge and pitch polynomial expressions.

Mstẍd + Kst (xd)xd = Q (30)

where

Mst =

[
m Sθ

Sθ Iθ

]
Kst (xd) =

[
mω2

h P̃h (h) 0

0 Iθ ω
2
θ P̃θ (θ)

]
xd =

{
h
θ

}
Q =

{
−L
M∗

}
.

Here, −L and M∗ are the lift and pitching moment. Lift is defined by convention as positive
downwards.

4.2 Aerodynamic System

The formulation of the aerodynamic system follows Ref. [9], where aerodynamic indicial re-
sponse function approximations are represented in state–space form. The state–space formu-
lation of the aerodynamics provides a straightforward approach to coupling with the structural
system.

The use of indicial response functions is a well–established method for representing sectional
unsteady aerodynamic loads in response to arbitrary forcing via Duhamel superposition [6].
Ref. [10] first derived the indicial lift response through the Wagner function, providing an exact
solution in terms of Bessel functions for incompressible flows. Large–scale, repetitive evalua-
tion of these Bessel functions is often impractical for most use cases however, thus motivating
approximations. Jones’ two–pole exponential approximation [11] has seen widespread use for
incompressible flows.

Ref. [12] identified the separation of unsteady aerodynamic responses in lift and pitching mo-
ment into two components; a circulatory component; and a noncirculatory component. These
components relate respectively to a response generated due to shed vortices by the body, which
develop over time, and, to an instantaneous response generated by the displacement of fluid by
the body. For compressible flows, Ref. [13] first saw to the development of circulatory compo-
nent indicial response functions for mid to high subsonic Mach numbers.

9
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The relations used in this work for normal force and pitching moment due to step changes in
angle of attack, pitch rate and vertical gust velocity are given below. These response functions
follow the formulation of Ref. [9]. A modification providing generalisation for an arbitrary
elastic axis location is also included from Ref. [14]. The contribution pertaining to the gust is
described in Ref. [15].

CNα (τ)

α
=

4

M
ϕI
α (τ, M) + Clα ϕ

C
α (τ, M) (31)

CM∗
α
(τ)

α
= − 1

M
ϕI
αM∗ (τ, M) + Clα ϕ

C
α (τ, M)

(
1

4
− xac (M)

)
(32)

CNq (τ)

q
= 2 (1 − xea)

1

M
ϕI
q (τ, M) +

3 − 4xea
2

Clα

2
ϕC
q (τ, M) (33)

CM∗
q
(τ)

q
= − 7

12M
ϕI
qM∗ (τ, M) − Clα

16
ϕC
qM∗ (τ, M) (34)

CNwg
(τ)

wg

= Clα ϕ
C
wg

(τ, M) (35)

In the above relations, CNα and CNq are the normal force coefficients due to step changes in
angle of attack and pitch rate respectively. The terms CM∗

α
and CM∗

q
are the pitching moment

coefficients due to step changes in angle of attack and pitch rate respectively. CNwg
is the

normal force coefficient due to a step change in vertical gust velocity. xac and xea refer to the
distance from the aerofoil leading edge to the aerodynamic centre, and the distance from the
aerofoil leading edge to the elastic axis, respectively, both non–dimensionalised by the chord
c. The terms ϕC

α , ϕI
α, ϕI

αM∗ , ϕC
q , ϕC

qM∗ , ϕI
qM∗ and ϕC

wg
are the indicial response functions.

The superscript C and I denote a circulatory and noncirculatory component. The subscript
M∗ denotes an indicial function for the pitching moment response. τ is a measure of non–
dimensional time, defined as τ = 2V t

c
.

4.3 State–Space Aerodynamic Form

The exponential approximations of these indicial response functions, and their equivalent state–
space representations are given in Ref. [9] and Ref. [15]. For clarity, the process to obtain a
component of the normal force coefficient in state–space form is shown in the following.

The normal force coefficient has four components; a circulatory normal force component; an
instantaneous normal force component due to step changes in angle of attack; an instantaneous
normal force component due to step changes in pitch rate; and, a normal force component due
to gust disturbance. The following focuses on the circulatory normal force component.

The indicial circulatory response due to step changes in angle of attack is approximated by the
two–pole exponential function

ϕC
α (τ, M) = 1 − A1exp

(
−b1β2 τ

)
− A2exp

(
−b2β2 τ

)
(36)

where, β =
√
1 − M2, which is the Prandtl–Glauert factor for compressibility. The constants

of the exponential function are given as A1 = 0.30, A2 = 0.70, b1 = 0.14 and b2 = 0.53.
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From this exponential approximation, the circulatory normal force response to a step change in
angle of attack can be written in state–space form as[

ẋ1
ẋ2

]
=

(
2V

c

)
β2

[
−b1 0
0 −b2

] [
x1
x2

]
+

[
1
1

]
α3/4 (t) (37)

where α3/4 is the angle of attack at the three–quarters–chord, given by

α3/4 (t) = α (t) +
(3 − 4xea) q (t)

2
. (38)

This permits expression of the state–space system as[
ẋ1
ẋ2

]
=

(
2V

c

)
β2

[
−b1 0
0 −b2

] [
x1
x2

]
+

[
1 3− 4xea

2

1 3− 4xea

2

]{
α (t)
q (t)

}
(39)

or more conveniently as[
ẋ1
ẋ2

]
=

[
a11 0
0 a22

] [
x1
x2

]
+

[
b11 b12
b21 b22

]{
α (t)
q (t)

}
. (40)

The output equation for the circulatory normal force coefficient is given by

CC
N (t) = CNα

2V

c
β2
[
A1b1 A2b2

] [x1
x2

]
(41)

which is written in the form

CC
N (t) =

[
c11 c12

] [x1
x2

]
. (42)

This system of 2 ODEs describes the combined circulatory normal force component due to step
changes in angle of attack and pitch rate. The remaining unsteady aerodynamic contributions,
including the gust, are represented with a further 8 ODEs. The total unsteady aerodynamic
response in normal force and pitching moment can then be described by a combined system of
10 ODEs, which is given below as

ẋa = Axa + Bua + Bg ug (43)

with output equation {
CN

CM∗

}
= Cxa + Dua (44)

where the aerodynamic input and gust disturbance vectors have been redefined as given below
to simplify notation:

ua =

{
α
q

}
ug =

{ wg

V∞

}
. (45)

In the 10 ODE system of Eq. 43, 8 ODEs describe the unsteady aerodynamic response of the
aerofoil to changes in angle of attack and pitch rate, and 2 ODEs describe the unsteady aerody-
namic response of the aerofoil to gust disturbance. The reader is directed to Ref [9] and Ref [16]
for detail on the aerofoil aerodynamic contributions toA,B,C andD. The gust contributions
in the disturbance matrixBg and in the matricesA and C are given in Ref [15].
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4.4 State–Space Aeroelastic Form

The state–space system describing the total unsteady aerodynamic response may now be cou-
pled with the structural equations to form an aeroelastic system. This coupling is as described
in Ref. [17] and Ref. [18]. For completeness these steps are repeated in the following.

The vector of aerodynamic forces can be expressed as{
−L
M∗

}
=

1

2
ρ V∞

[
−c 0
0 c2

] {
CN

CM∗

}
= T2

{
CN

CM∗

}
, (46)

and now recalling the total unsteady aerodynamic output equation of Eq. (44), can be written as{
−L
M∗

}
= T2 (Cx + Dua) . (47)

The state–space aerodynamic input quantities, α and q are now expressed in terms of the struc-
tural system displacements h and θ such that

ua =

[
0 1
0 0

] {
h
θ

}
+

[
1/U 0
0 c/U

] {
ḣ

θ̇

}
= T11xd + T12xv. (48)

The aerodynamic force vector may then be written as

Q = T2 (Cxa + DT11xd + DT12xv) . (49)

Similarly, the state–space aerodynamic input equations may be written as

ẋa = Axa + BT11xd + BT12xv + Bg ug. (50)

The state–space aeroelastic system can then be written asI 0 0
0 Mst 0
0 0 I

 
ẋd

ẋv

ẋa

 =

 0 I 0
T2DT11 − Kst (xd) T2DT12 T2C

BT11 BT12 A

 
xd

xv

xa

 +

 0
0
Bg

 ug

(51)
where I is an identity matrix. The aeroelastic mass matrix, Mae is on the left hand side of the
system of equations. Pre–multiplying both sides byM−1

ae then leads to the system of equations

Ẋ = Aae (xd)X + Bg,ae ug (52)

where Aae is the aeroelastic system matrix, which is a function of the structural displacements
xd. Bg,ae is the aeroelastic gust disturbance matrix.

Eq. 52 describes the FOM used in this work. The FOM has state–space dimension 14. The
external disturbance vector, ug, has 1 element relating to gust disturbance.
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Table 2: Full Order Model Parameters

M = 0.850
µ = 100.000
rθ = 0.500
c = 15.000 ft
ωh = 10.000 rad s−1

ωθ = 50.000 rad s−1

Clα = 14.650 rad−1

xac = 0.286
xθ = 0.250
xea = 0.250

5 FULL ORDER MODEL ANALYSES

In this section analyses of the FOM are performed. First, a linear system stability analysis is
performed, which is a prerequisite to MOR by the method described in Section 3. An analysis
of the FOM dynamics is then presented. The analyses of the dynamics is used to observe the
differences between the linear and nonlinear dynamical systems, and, to determine disturbances
causing the worst–case dynamic response.

The aerofoil structural parameters and flight conditions used in this work are given in Table 2.
Parameters and conditions may be assumed as those given in Table 2 unless specified otherwise.

Values for the speed of sound a and density ρ have been defined according to the ISA at an
altitude of 32, 808 ft. Aerofoil mass per spanwise unit length, static mass moment and mass
moment of inertia are computed via the respective relations m = µπ ρ b2, Sθ = mbxθ and
Iθ = mb2 r2θ , where µ is mass ratio and rθ is radius of gyration about the elastic axis. In this
work, aerofoil mass is computed using a separate value of density according to the ISA at an
altitude of 15, 000 ft.

5.1 Linear System Stability Analysis

Towards creating ROMs of the dynamical system according to the method described in Sec-
tion 3, a linear system stability analysis is required. Performing this analysis collects the nec-
essary information of the eigenspectrum, and permits some meaning to be assigned to this
information.

The aeroelastic system is defined in equilibrium over a density range. This density range is
from the density given by the ISA at 32, 808 ft, to a density of zero. The aeroelastic state vec-
tor at equilibrium for each density increment is 0. Evaluating the aeroelastic system matrix
Aae at equilibrium yields the Jacobian matrix. Eigenvalue problems of the Jacobian matrix are
computed at each density increment. At zero density, the fluid and structural systems are decou-
pled.It is then possible to identify the eigenvalues (and associated eigenvectors) corresponding
to bending and torsion in the structural system, and, to the indicial response functions in the
aerodynamic system by following the eigenvalue traces from the decoupled system, into, and
through the coupled system.

5.1.1 Aeroelastic Mode Tracking

Before proceeding with the root–locus for varying density, complications are noted to arise
when solving these types of sequential eigenvalue problems. One difficulty is that there is no
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guarantee the eigenvalues resultant from commercially available eigenvalue solvers will be or-
dered in a physically consistent way. This necessitates a sorting algorithm. The simplest means
of sorting the eigenbasis is by eigenvalue frequency content. However, this sorting mechanism
may be problematic where mode crossing occurs. Mode crossing is where as the parameter
of interest, for example density is varied, the eigenvalue traces corresponding to certain modes
may cross multiple times.

A mechanism to sort the eigenbasis over a varying parameter range is presented in Ref [19],
which uses the bi–orthogonality of the left and right eigenvectors. Sorting by this method is
convenient as the left and right eigenvalue problems are required in the construction of the
ROMs considered in this work. Thus, with little extra computational effort on top of what is
already required to construct ROMs over the varying parameter range, it is possible to sort the
eigenbasis to ensure physical consistency between parameter increments.

The method of Ref [19] is detailed in the following. For two consecutive parameter incre-
ments with Jacobian matricesAi andAi+1, the bi–orthogonality conditions of the left and right
eigenvectors will be satisfied such that

Ψ̄T
i Φi = I (53)

Ψ̄T
i+1Φi+1 = I (54)

A matrix is computed by projection of the set of left eigenvectors of the current parameter
increment onto the set of right eigenvectors of the next parameter increment as

Si, i+1 = Ψ̄T
i Φi+1. (55)

Providing that the parameter increment is sufficiently small, bi–orthogonality will be approxi-
mately satisfied between the left and right eigenvectors of different parameter increments. Thus,
the matrix Si, i+1 on being appropriately sorted will be diagonally dominant. Applying the di-
agonally sorted order of the matrix Si, i+1 to the eigenbasis at the next parameter increment will
enforce that Ψi+1 and Φi+1 are sorted according to Ψi.

An example of the matrix Si, i+1 prior to, and after sorting is shown in Figure 4 in terms of
absolute value. In the left panel, the matrix is unsorted, in the right panel the matrix is sorted.
The indices of this sorted matrix are applied to the eigenbasis at the i+1th parameter increment.
Bar height is different along the diagonal as the left and right eigenvectors are scaled according
to Eq. (10) when purely real, and according to Eq. (7) when complex valued.

It is noted that the above sorting mechanism requires solutions of the left and right eigenvalue
problems at each parameter increment. Ref. [19] provides a method which only requires solu-
tion of the left eigenvalue problem every other parameter increment. As this work makes use
of the left and right eigenvalue problems in ROM construction, both eigenvalue problems are
solved at each parameter increment. The sorting mechanism used here reflects this, thus the left
and right eigenvectors are used at each increment in the sorting algorithm.

5.1.2 Mode Identification

As mentioned previously, it is possible to identify the physical and mathematical phenomena
that the eigenvalues and associated eigenvectors correspond to.
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(a) Unsorted Si, i+1 (b) Sorted Si, i+1

Figure 4: Example of the sorting algorithm on Si, i+1

Identification of the structural modes is performed by following the eigenvalue traces over a
density range tending to zero. At zero–density, the pure structural system frequencies are iden-
tified. This is shown in the root–locus of Figure 5, which has been truncated near the origin to
emphasise the structural eigenvalues. The maximum and minimum densities are marked in the
Figure. It is seen in Figure 5 that as density decreases, the complex eigenvalues tend towards the
imaginary axis. At zero–density, these eigenvalues have no real component, and are identical
to the eigenvalues of the pure structural system. The bending and torsional modes have been
labelled in Figure 5.

Figure 5: Eigenvalue variation with density tending to zero.

The modes pertaining to the gust dynamics are separately identifiable. The indicial response
function approximation for the gust dynamics is given in Ref. [15] as a two–pole exponential
function of a form similar to Eq. (36). Within each of the exponential function terms there is
a constant value. These constants are ϵ1 β2 and ϵ2 β2, which correspond to the slow and fast
dynamics of the gust contribution. The modes pertaining to the slow and fast gust dynamics
are identifiable by non–dimensionalisation of the eigenvalues (in radians) by the constant terms
ϵ1 β

2 and ϵ2 β2. These modes are always identifiable and do not require decoupling of the fluid
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and structural systems by tending density to zero. The lowest frequency gust mode is marked
in Figure 5. It is seen that as density tends to zero, the real part of the gust mode does not vary.
This is due to the gust contribution being independent of the structural states.

The remaining modes correspond to the indicial response functions ϕC
α , ϕI

α, ϕI
αM∗ , ϕC

q , ϕC
qM∗

and ϕI
qM∗ . These modes are identified by non–dimensionalising the eigenvalues (in radians) of

the decoupled fluid system by the constant terms in the exponentials of the remaining indicial
response functions. The eigenvalue traces can be followed in the same way as for the structural
system mode identification. For example, the indicial circulatory response function due to step
changes in angle of attack given by Eq. (36), has two poles. Non–dimensionalising the eigen-
values (in radians) at zero density by the terms in each exponential; b1β2 and b2β2, will reveal
the eigenvalues corresponding to the low frequency and high frequency indicial circulatory lift
due to angle of attack component. The low frequency component of indicial circulatory lift due
to angle of attack is labelled in Figure 5 as ”Aerodynamic.”. It is seen that as density tends
to zero, the real part of this eigenvalue varies, which is due to the coupling of α and q in the
structural states h and θ.

The modal basis at 32, 808 ft is given in Table 3. The basis is sorted in order of increasing
frequency content. The decoupled system each mode originates from is stated in Table 3 as
either ”Gust”, ”Aerodynamic” or ”Structural”.

Table 3: Full Order Model eigenvalues at 32, 808 ft

Index Origin Mode Eigenvalue Frequency [Hz]
1 Gust ϕC

wg
−3.0901 + 0.0000 i 0.4918

2 Aerodynamic ϕC
α −3.7962 + 0.0000 i 0.6042

3 Aerodynamic ϕC
qM∗ −9.6115 + 0.0000 i 1.5297

4 Structural Bending −1.4249 + 14.0906 i 2.2540
5 Aerodynamic ϕC

α −14.8248 + 0.0000 i 2.3594
6 Aerodynamic Torsion* −36.7824 + 1.9264 i 5.8621
7 Gust ϕC

wg
−42.2414 + 0.0000 i 6.7229

8 Aerodynamic ϕI
α −43.6129 + 0.0000 i 6.9412

9 Structural Torsion −7.2598 + 62.2707 i 9.9777
10 Aerodynamic ϕI

q −73.9035 + 0.0000 i 11.7621
11 Aerodynamic ϕI

αM∗ −102.6123 + 0.0000 i 16.3313

Table 3 contains a mode labelled ”Torsion*”. At 32, 808 ft this mode strongly relates to tor-
sion. However, at zero density, it originates in the decoupled aerodynamic system. As density is
decreased to zero and the aerodynamic system decouples, this complex conjugate pair of eigen-
values becomes two distinct purely real eigenvalues, which correspond to the slow dynamics
of ϕI

αM∗ and to ϕI
qM∗ , which are the instantaneous component indicial response functions for

pitching moment in angle of attack and pitch rate respectively. In Ref [17], it is stated that this
complex eigenvalue corresponds to a torsional mode coupled with the unsteady aerodynamics.

5.2 Flutter Search
A flutter search of the linear system is also performed by analysis of the eigenspectrum over
varying Mach number. The flutter search is executed at a fixed altitude of 9, 843 ft with local
speed of sound and air density according to the ISA at this altitude. Mach number is varied
in small increments from M = 0.01 to M = 0.90. The flutter search is performed with
the lift curve slope given in Table 2. In reality, as Mach number varies, the lift curve slope and
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aerodynamic centre location will also vary. The lift curve slope and aerodynamic centre location
given in Table 2 are valid only atM = 0.85. These values were based on the results of transonic
small disturbance codes discussed briefly in Ref. [17]. The Prandtl–Glauert correction may be
used to account for the variation of lift curve slope with Mach number. Experimental methods
or CFD analyses as discussed in Ref. [17] are required for the variation of aerodynamic centre
location with Mach number. For simplicity, this work keeps Mach number and the aerodynamic
centre fixed at the value appropriate for M = 0.85 according to Ref. [17].

Figure 6: Eigenvalues over Mach range.

It is seen in Figure 6 that the mode originating as bending in the decoupled structural system
becomes the flutter mode, and crosses the imaginary axis at approximately M = 0.833. The
dynamics of the linear system at Mach numbers greater than M = 0.833 will diverge. The
dynamics of the structurally nonlinear system are however not so predictable. Depending on
the type of structural nonlinearity, the dynamic response may settle into small amplitude stable
limit cycle oscillations, or may diverge more rapidly. An analysis of these nonlinear dynamics
is performed in a subsequent section.

5.3 Full Order Model Dynamic Response

The dynamic response of the FOM is considered for three cases. The first case is for a perturba-
tion in the initial conditions, without gust–excitation. The second case is for the system being
excited from equilibrium by gust disturbance. The third case considers the post–flutter dynamic
response. The nonlinear model, denoted by NFOM uses the nonlinear structural parameters
given in Table 1. The linear model, denoted by LFOM, sets the parameters pertaining to the
quadratic and cubic nonlinearities to zero, thus resulting in a linear structural model.

5.3.1 Initial Condition

The system is perturbed from equilibrium with a non–zero pitch displacement in the initial
conditions. A small perturbation in pitch of 0.1 degrees is considered first. It is seen in Figure 7
that for this small perturbation the dynamics in pitch for the linear and nonlinear systems are
nearly identical. Differences are observable in the plunge dynamics, however these differences
are small. The dynamics of the linear and nonlinear systems being very similar is due to the
initial perturbation being small enough that structural nonlinearities in the spring restoring force
are not dominant over the linear spring restoring force.

A larger perturbation of 15.0 degrees is now considered. This perturbation is chosen as it is
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(a) Non–dimensional plunge (b) Pitch

Figure 7: Linear and nonlinear FOM dynamics for a 0.1 degree pitch initial condition.

sufficiently large to ensure the dynamics of the structure are nonlinear, while still being within
the region of validity of the linear indicial aerodynamic model used (< 20.0 degrees). Results
for the 15.0 degree perturbation are shown in Figure 8. The differences between the linear
and nonlinear dynamics are more apparent. With respect to the pitch degree of freedom, it is
noticeable that the nonlinear dynamics are more restrained than the linear dynamics in negative
pitch displacement. This is consistent with the pitch nonlinearity shown in Figure 3, which has
a spring hardening effect in negative pitch displacement. With respect to the plunge degree of
freedom, it is seen that initially the nonlinear model displaces negatively, while the linear model
displaces positively. This behaviour follows the plunge nonlinearity shown in Figure 3, which
for negative plunge displacement, the restoring force of the spring plateaus in comparison to the
linear spring restoring force.

(a) Non–dimensional plunge (b) Pitch

Figure 8: Linear and nonlinear FOM dynamics for a 15.0 degree pitch initial condition.
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5.3.2 Gust Excitation
An analysis of the dynamic response due to gust disturbance is performed in this section. This
work considers the discrete one–minus cosine shaped gust of the form

wg (τ) =
1

2
W0

(
1 − cos

(
2π h−1

g (τ − τ0)
))

for τ0 ≤ τ ≤ τ0 + hgnc, (56)

where W0 is the gust peak intensity, hg is the gust wavelength, nc is the number of cycles
and τ0 is the time at which the gust input is applied. The discrete one–minus–cosine gust is
defined according to the FAA AC 25.341–1 [20]. These discrete gust forms are used to represent
single extreme turbulence events, such as those at the edges of thermals and downdrafts, in the
wakes of structures or mountains, or at temperature inversions [4]. Such extremes are not
considered in standard continuous random turbulence models. In the interest of studying the
dynamic response for a worst-case gust search, or for control design for gust-load alleviation, it
is appropriate then to use the one-minus-cosine gust profile.

The gust intensity is defined according to the FAA AC 25.341–1 [20], using parameters that are
dependent on the aircraft and its configuration, flight conditions, and the gust gradient. As this
work considers a test–case not specific to a whole aircraft, those relevant parameters have been
set to a value to maximise the gust intensity. The gust gradient is the distance over which the
gust velocity increases to a maximum value. The gust gradient is specified as ranging from 30 ft
to 350 ft in the FAA AC–25.34–1 [20]. The range of gust profiles used is given in Figure 9.

Figure 9: One–minus cosine gust profiles.

In the following, a study is performed to assess the dynamic response of the linear and nonlinear
systems to the range of gust profiles given in Figure 9. Such an analysis is typically performed
to determine the worst case dynamic response of the system to gust excitation. In this case the
objective is to compare the linear and nonlinear dynamics, and, to determine the gust excitation
causing ”interesting” dynamics. A specific gust excitation will be chosen based on the search
performed here for the ROM generation study in the subsequent section.

The dynamics of the linear and nonlinear systems in response to excitation by the range of gust
profiles is given in Figure 10. In the left column the linear dynamics are shown. In the right
column, the nonlinear dynamics are shown. The colours of the curves in Figure 10 align with
the gust gradient colour bar in Figure 9.

With respect to non–dimensional plunge, it is seen that the peak displacement in the linear and
nonlinear dynamical systems both occur at the maximum gust gradient of 350 ft. There is a
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(a) Linear non–dimensional plunge. (b) Nonlinear non–dimensional plunge.

(c) Linear pitch. (d) Nonlinear pitch.

Figure 10: Linear system (left column) and nonlinear system (right column) dynamic responses
to gusts of varying gradient.

clear difference between the linear and nonlinear dynamics in plunge, with the peak negative
displacement for the nonlinear dynamics being nearly three times larger than the linear system.
With respect to pitch, the peak positive and negative displacement of both the linear and non-
linear systems do not occur at the maximum gust gradient. For the linear dynamical system,
the peak positive and negative pitch displacements are at gust gradients of 170 ft and 150 ft
respectively. For the nonlinear dynamical system, the peak positive pitch displacement occurs
at 60 ft and the peak negative pitch displacement occurs at 150 ft.

The peak positive and negative displacements in plunge and pitch are plotted across the gust
gradient range in Figure 11. The difference between the linear and nonlinear dynamics in terms
of maximum displacement is more clear here. It is seen in Figure 11 that in terms of plunge
displacement, the nonlinear system exhibits the most extreme dynamics, while in terms of pitch
displacement the nonlinear system is more restrained compared to the linear system.

It is clear that at the larger gust gradients, the plunge dynamics become dominated by the gust.
Further increasing the gust gradient would see the dynamics tend towards the shape of the gust
excitation. These dynamics would otherwise be ”uninteresting”, however, observing the curve
corresponding to the 350 ft gust gradient in the nonlinear pitch dynamics in Figure 10 reveals
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(a) Non–dimensional plunge (b) Pitch

Figure 11: Maximum and minimum displacements of the linear and nonlinear dynamical sys-
tems over increasing gust gradient.

the dynamic response to be highly nonlinear. Thus, the gust gradient of 350 ft is used as the
benchmark excitation for future nonlinear ROM generation. The 150 ft gust gradient is used
as the benchmark excitation for linear ROM generation. These gust excitations are physical
and not beyond what may be encountered in the given flight conditions. It is important for
later comparison with the ROM dynamics that the excitation used is both physical and results
in sufficiently interesting dynamics. Using a non–physical excitation may result in the ROM
never being able to perform adequately, while an excitation that is too small may overstate the
capability of the ROM.

5.4 Post–Flutter Dynamics

The dynamics of the linear and nonlinear systems are compared here in the post–flutter regime.
In Section 5.2, the linear flutter boundary of the dynamical system with altitude fixed at 9, 843 ft
was found to occur at M = 0.833. This analysis will use M = 0.850, which is past the
linear flutter boundary. The dynamic response to a 15–degree pitch displacement in the initial
conditions is shown in Figure 12.

It is seen in Figure 12 that the linear dynamics diverge over time, which is the expected be-
haviour. The nonlinear dynamics settle into stable, small amplitude limit cycle oscillations.
The amplitude of these limit cycle oscillations is initially larger than the amplitude of the oscil-
lations in the linear dynamic model.

6 REDUCED ORDER MODEL DYNAMIC RESPONSE

In this section, linear and nonlinear ROMs are created according to the methodology described
in Section 3. The dynamic response of the ROMs to perturbations in the initial conditions,
and, gust disturbance is compared against the equivalent linear FOM and nonlinear FOM. The
analyses consider ROMs constructed using varying combinations of the modeshapes in Table 3.
This results in linear and nonlinear ROMs of varying size and computational complexity. For a
FOM of higher dimension, it would be beneficial to provide comparison between the computa-
tional cost of the FOM and constructed ROMs. As the dimension of the FOM system is already
small and that it is computationally inexpensive to evaluate, no comparison of computational
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(a) Non–dimensional plunge (b) Pitch

Figure 12: Post–flutter linear and nonlinear FOM dynamics in response to a 15 degree pertur-
bation in pitch displacement in the initial conditions.

performance is made. This study demonstrates only ROM construction, capability to capture
the physics of the FOM and, the form and structure of the constructed ROMs.

6.1 Linear Aeroelastic Reduced Order Modelling

Analysis begins with the model reduction of the linear aeroelastic system. The modal bases
of these linear ROMs are given in Table 4. These linear ROMs are referred to as LROMs
from hereon. The dynamics of LROM2 are studied first. LROM2 contains only the two modes
pertaining to the decoupled structural system in bending and torsion. As it is desired to observe
the dynamics in plunge and pitch, the selection of the bending and torsional modes is a sensible
and physical first guess.

Table 4: Modal Bases for Reduced Order Models

Index Mode Frequency [Hz] ROM2 ROM3 ROM4 ROM6 ROM7

1 ϕC
wg

0.4918 ✓ ✓ ✓ ✓
2 ϕC

α 0.6042 ✓ ✓
3 ϕC

qM∗ 1.5297 ✓ ✓
4 Bending 2.2540 ✓ ✓ ✓ ✓ ✓
5 ϕC

α 2.3594
6 Torsion* 5.8621 ✓ ✓ ✓
7 ϕC

wg
6.7229

8 ϕI
α 6.9412 ✓

9 Torsion 9.9777 ✓ ✓ ✓ ✓ ✓
10 ϕI

q 11.7621
11 ϕI

αM∗ 16.3313

The dynamics of the linear FOM and LROM2 due to a perturbation in the initial conditions is
shown in Figure 13. A non–dimensional plunge displacement of 1 semi–chord and a pitch–
displacement of 15–degrees is used as the initial condition. It is seen in Figure 13 that LROM2

is able to adequately capture the shape of the free–response of the linear FOM. The dynamic
response in pitch displacement is approximated very well by LROM2. There is however a
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noticeable difference in the approximation of the initial condition in non–dimensional plunge
displacement. This exists due to the approximation x0 ≈ Φz0 + Φ̄z̄0, where z0 = Ψ̄Tx0,
thus omission of any of the modes in the modal basis will result in a difference in the initial
conditions. The effect of the absence of modes on the initial condition can be accounted for
by quasi–static correction or, mode acceleration, which is implemented in Ref. [21]. This work
does not implement the quasi–static correction as the main interest is in excitation by external
disturbance where the initial conditions will be zero.

(a) Non–dimensional plunge (b) Pitch

Figure 13: Linear ROM dynamics due to initial condition perturbation.

The results shown in Figure 13 indicate that the free–response of the linear system may be
adequately captured with a small subset of aeroelastic eigenvectors. Selecting only the modes
relating to the decoupled structural system yields a respectably accurate approximation.

Analysis proceeds with a study of the linear dynamic response due to gust disturbance. As it
is of interest to capture the dynamic response due to gust disturbance, the lowest frequency
gust mode is added to the LROM2 modal basis. This LROM is referred to as LROM3. A
discrete one–minus–cosine gust with gust gradient of 150 ft is used to excite the dynamics of
the linear FOM, LROM2 and LROM3. The effect of the introduction of this gust mode is seen in
Figure 14. LROM2 poorly captures the dynamics in non–dimensional plunge during the period
of gust excitation. LROM3 provides a better approximation of these dynamics, correcting the
response during the period of excitation.

The aeroelastic system has two gust modes. Each gust mode corresponds to a state responsible
for the aerodynamic contributions due to gust disturbances. It is found that the exact prediction
of each gust state in the aeroelastic system is possible using only each state’s corresponding
gust mode. Therefore, by including both gust modes, one can obtain the exact contribution in
lift coefficient due to gust disturbance. It is found though that introducing the highest frequency
gust mode to the basis does not yield noticeable improvements in the quality of the dynamic
response prediction. Analysis proceeds using only the lowest frequency gust mode.

Introduction of further aeroelastic modes provides incremental improvements to the quality of
the approximation. Adding the highly damped torsional mode (Torsion*) to the modal basis
provides some correction to the dynamics in pitch displacement during the period of gust exci-
tation. This is shown as LROM4 in Figure 14.
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(a) Non–dimensional plunge (b) Pitch

Figure 14: Linear ROM and FOM dynamics in response to gust excitation.

Two further linear ROMs are considered and their dynamics shown in Figure 15. LROM6

adds the two least damped aerodynamic modes to the basis. These are the lowest frequency
circulatory indicial lift mode, and the circulatory indicial pitching moment due to step changes
in pitch rate mode. It is seen in Figure 15 that introducing these two low frequency circulatory
aerodynamic modes corrects the dynamic response in non–dimensional plunge, giving a near
exact match with the linear FOM. The final LROM considered is LROM7. This 7–mode LROM
adds the instantaneous indicial lift due to step changes in angle of attack mode to the LROM6

modal basis. LROM7 captures the near exact dynamic response of the linear FOM in both
non–dimensional plunge and pitch.

(a) Non–dimensional plunge (b) Pitch

Figure 15: Linear ROM and FOM dynamics in response to gust excitation.

The LROM7 basis represents a truncation of high frequency aerodynamic content where it is
noted those modes with frequency greater than 10Hz have been omitted. Furthermore, it is
found that for aerodynamic contributions represented by a two–pole exponential, only the mode
relating to the lowest frequency of the two poles is required. Specifically, only the lowest
frequency circulatory indicial lift mode, and only the lowest frequency gust mode were required.
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A worst–case gust search is now performed using the linear FOM and two linear ROMs.
LROM3 and LROM7 are selected. These linear ROMs represent opposite extremes in terms
of mode selection. At one extreme, minimisation of the modal basis to result in LROM dynam-
ics which are at most characteristic of the LFOM, and at the other extreme, a more balanced
minimisation of point by point error and modal basis size.

(a) Non–dimensional plunge (b) Pitch

Figure 16: Maximum and minimum displacements of the linear FOM and ROM dynamical
systems over increasing gust gradient.

It is seen in Figure 16 that across the entire range of gust gradients LROM7 maintains a good
match with the maximum and minimum displacements of plunge and pitch. LROM3 however, is
not as capable as LROM7, and does not capture well the shape of the displacement profile across
the gust gradient envelope. It is noted though that LROM3 provides an adequate prediction of
the peak maximum and minimum displacements, for example, at a gust gradient of 150 ft.

6.2 Nonlinear Aeroelastic Reduced Order Modelling

This work continues with discussion of nonlinear reduced order models of the dynamic aeroe-
lastic system. Before proceeding, some commentary is provided on the form of the reduced
order models.

The dynamics of the linear ROMs in the Section 6.1 were contained in the diagonal matrix,
Λ ∈ Cm×m. This matrix contained a subset of eigenvalues, which were obtained by solution
of the eigenvalue problem of the aeroelastic system Jacobian matrix. Formation of the linear
ROM systems does not require application of AD, and may be performed using commercially
available eigenvalue solvers.

The aeroelastic system considered here contains second and third order nonlinearities in the
structural system equations. Constructing a nonlinear reduced order model form then requires
these second and third order nonlinearities expressed in the reduced order coordinate system.
These nonlinear terms are obtained by use of source–transformation AD as discussed in Sec-
tion 3.3. Reduced order nonlinear derivative functions for the second and third order terms
are generated once from the full order source code, and parameterised with respect to the sys-
tem properties given in Table 2, and the basis functions (eigenvectors). These reduced order
higher derivative functions can be evaluated for any numerical value of those properties given
in Table 2, and any given set of eigenvectors, at a fraction of the cost of generating the deriva-
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tive functions. Evaluation of the higher derivative functions results in reduced order second
derivative terms of dimension nm2 and reduced order third derivative terms of dimension nm3.
Pre–multiplication of these derivatives by the conjugate transpose of the set of right eigen-
vectors results in the derivative dimensions being reduced to m3 and m4 respectively. This
pre–multiplication is done outside of time–integration, which ensures computations using the
nonlinear ROM system are performed only in the reduced dimension m.

The parameterisation of the reduced higher derivatives with respect to the basis functions is
useful for a FOM of large dimension. Where it may be impractical by memory requirements
to compute the full order third derivative of dimension n4, providing a sufficiently small subset
m of eigenvectors is chosen, the reduced order third derivative of dimension nm3 will be less
demanding by memory requirement. This work considers an already low dimensional FOM,
where n = 14. Therefore the second and third reduced order derivative functions have been
parameterised to retain all modes. The tensors resultant from evaluating these derivative func-
tions are spliced where necessary to select a modal subset.

Discussion now proceeds with the analysis of the dynamics of the nonlinear reduced order
model forms. The same modal bases as given in Table 4 are used for the nonlinear ROMs.
These nonlinear ROMs are referred to as NROMs from hereon.

Figure 17 shows the dynamic response of NROM2 compared with the NFOM. A pitch displace-
ment of 15–degrees is used as the initial condition. It is seen that the effect of the structural
nonlinearity on the dynamic response is captured by the ROM system. Specifically noting the
nonlinear dynamics in non–dimensional plunge tending in the negative direction between 0 and
25 time units, while the linear dynamics tend in the positive direction as seen in Figure 8.

(a) Non–dimensional plunge (b) Pitch

Figure 17: Nonlinear ROM dynamics due to initial condition perturbation.

NROM2 uses only the modes relating to bending and torsion in the decoupled fluid–structural
system. As the FOM nonlinearity exists in the structural system, there is justification that the
nonlinear ROM retaining only structural modes is able to capture some of this effect.

The nonlinear dynamic response due to gust disturbance is now considered. The dynamics
are excited by a one–minus–cosine shaped gust, with gust gradient of 350 ft. This larger gust
gradient is chosen as it ensures the dynamic response is sufficiently nonlinear, while being a
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physically feasible gust excitation. The dynamic response of NROM3 and NROM4 are com-
pared with the NFOM in Figure 18. It is seen that while both NROMs are able to capture the
characteristic shape of the nonlinear dynamic response, neither are able to capture the peak dis-
placements. It is noted though that the same trends in response prediction improvement are seen
with NROM3 and NROM4 as were seen with LROM3 and LROM4. The addition of the highly
damped torsional mode (Torsion*) provides some correction to the dynamic response during
the period of gust disturbance.

(a) Pitch

Figure 18: Nonlinear ROM and FOM dynamics in response to gust excitation.

The dynamics of NROM6 and NROM7 are shown in Figure 19. The addition of the two least
damped circulatory aerodynamic modes in NROM6 results in a significant improvement to the
prediction quality. The dynamics of non–dimensional plunge displacement of NROM6 are
a near exact match with the nonlinear FOM. The addition of the instantaneous lift mode in
NROM7 finally results in the correction of the pitch dynamics. It is noted that the trends in the
dynamic response corrections on adding modes to the nonlinear ROM bases are the same as
with the linear ROM bases. This is a positive result, as it indicates that information obtained
during the assembly of a linear ROM can be used to guide the assembly of a nonlinear ROM.

(a) Non–dimensional plunge (b) Pitch

Figure 19: Nonlinear ROM and FOM dynamics in response to gust excitation.

27



IFASD-2024-168

A worst–case gust search is performed with NROM3, NROM7 and the nonlinear FOM. The
maximum and minimum displacements across a range of gust gradients is given in Figure 20.
It is seen that while NROM3 is able to capture the effect of the structural nonlinearity in plunge
and pitch over the range of gust gradients, large errors are seen, specifically at the extremes of
the gust gradient range. NROM7 however performs well with near coincident results with the
NFOM. NROM7 maintains a small near constant error over a range of excitations, which is a
desirable trait in a ROM.

(a) Non–dimensional plunge (b) Pitch

Figure 20: Maximum and minimum displacements of the nonlinear FOM and ROM dynamical
systems over increasing gust gradient.

The final case considered in this work is the prediction of the nonlinear dynamic response in the
post–flutter regime. The system is in equilibrium at 9, 843 ft at M = 0.85, which are the same
conditions as the FOM post–flutter dynamics study in Section 5.4. It is found that a nonlinear
ROM using a basis of only three modes is able to sufficiently capture the characteristic shape of
the nonlinear dynamic response in the post flutter regime. These three modes include the two
modes relating to the decoupled structural system in bending and torsion, and the least damped
aerodynamic mode – which corresponds to circulatory indicial lift. Results for this three mode
nonlinear ROM are shown in Figure 21, where a 15–degree perturbation in pitch displacement
is used as the initial condition. It can be seen that the amplitude and period of the stable LCOs
is captured well by the three mode nonlinear ROM.

7 CONCLUSIONS
This work has presented efforts towards the application of a parametric nonlinear model reduc-
tion architecture to aeroelastic dynamical systems. The present work has seen this architecture
applied to a two–dimensional aerofoil system with up to cubic nonlinearities in the structural
equations. Analysis of the nonlinear dynamics of the full model revealed that sufficient predic-
tion of these dynamics is not possible using the linearised system, thus motivating the need for
a nonlinear reduced model form.

The nonlinear model reduction method projects a Taylor series expansion of the full model onto
a subset of eigenvectors which are representative of the dynamics of the full model. These
eigenvectors were derived from the solution of the eigenvalue problem of the aeroelastic system
Jacobian matrix. Aeroelastic mode tracking techniques were used to assist in assigning meaning
to the aeroelastic modes. The basis of eigenvectors were identified as those that originated in
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(a) Non–dimensional plunge (b) Pitch

Figure 21: Post–flutter nonlinear ROM and FOM dynamics in response to a 15 degree pertur-
bation in pitch displacement in the initial conditions.

the decoupled structural system, and those that originated in the decoupled fluid system. Due
to the form of the unsteady aerodynamic model, it was further possible to identify the physical
aerodynamic state that specific aeroelastic modes corresponded to.

A linear ROM constructed using only 3 aeroelastic modes of the 14–state FOM was found to
have adequate predictive capability of the linear dynamics due to gust disturbance. 7 modes
were required to capture the near exact dynamic response of the FOM. The 7–mode ROM
represented a truncation of high–frequency aerodynamic content.

Nonlinearities were retained by taking higher derivatives of the FOM dynamical system with
respect to the ROM coordinate system. This was made possible by use of source–transformation
automatic differentiation. Parametric, reduced order second and third derivative codes of the
FOM code were generated. These codes could be evaluated for any set of system parameters at
a fraction of the cost of the ROM code generation. Computing the second and third derivative
ROM terms using the 7–mode basis resulted in a nonlinear ROM dynamical system able to
capture the near exact dynamics of the nonlinear FOM over a range of gust disturbances. A
smaller subset of 3 modes was found sufficient to predict LCOs in the post–flutter regime.

Future work will see to the application of this method in control law design for nonlinear aeroe-
lastic systems. The form and structure of these nonlinear ROMs is highly applicable to control
law design where computational complexity and model size should be minimal.
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