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Abstract: This paper investigates the use of a neural network based reduced order model
to solve the nonlinear gust response of a regional aircraft wing characterised by high angle of
attack and gust intensity. Dynamic aerodynamic stall is generally able to provide a natural load
mitigation, which is generally not considered in aircraft design. The neural network is combined
with strip theory, thus requiring the training of a single airfoil model. Given the difficulties
in obtaining CFD based aerodynamic data due to the excessive time consuming simulations,
the approach has started the training phase with data obtained from the Beddoes-Leishman
unsteady aerodynamic model. The wing response is then evaluated by a reduced-order model
implemented in the Simulink environment, based on Nastran structural data and strip theory,
enhanced by a number of neural networks in parallel describing the nonlinear transient behavior.

NOMENCLATURE

S loads integration matrix

α0 trim angle of attack

q̄(j) non-dimensional j-th strip pitch rate

w̄
(j)
3/4 non dimensional velocity at 3/4 chord

χ modified normalwash vector

u displacement field

x position vector

ω angular frequency

ωn n-th modal angular frequency

ψψψn n-th mode shape

A0,A1 non-circulatory contributions of the inverse of influence matrix

B0,C,P,B matrices providing the circulatory contribution of the inverse of influence matrix

c aerodynamic coefficient vector
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Cα matrix enabling the description of 3D finite wing effect

D(1),D(2) real and imaginary parts of differentiation matrix

dg static angle of attack and gust input vector

e generalized force vector

K modal stiffness matrix

M modal mass matrix

q generalized coordinate vector

r aerodynamic state vector

σ standard deviation of the power spectral density

τ reduced time

Ah, Aα variance of the power spectral densities of pitch and plunge

b semi-chord

c
(j)
n lift coefficient of the j-th strip

c
(j)
m moment coefficient of the j-th strip

k reduced frequency

Lg gust lenght

M∞ Mach number

N number of modes

P number of strips

qD dynamic pressure

qn(t) n-th generalized coordinate

Sα, Sh power spectral density for pitch and plunge

t time

U∞ free stream velocity

wga gust velocity amplitude
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1 INTRODUCTION

Climate change and the increasing scarcity of resources necessitate a significant reduction in
aviation impact on both citizens and the environment. Reducing greenhouse gas emissions
is one of the most important challenges currently facing the aviation industry, where even a
relatively modest reduction in aircraft weight can result in a significant reduction in fuel con-
sumption. Thus, the reduction of weight is critic not only to lower CO2 emissions but also to
decrease the costs associated with the aircraft operations [1]. Aircraft manufacturers are striving
to develop aircraft that are more efficient and at the same time have a reduced structural weight,
with the aim of reducing their environmental impact on the one hand and their manufacturing
and operating costs on the other.

However, the use of standard methods for determining structural loads based on linear aeroe-
lastic models can result in the over-sizing of structural elements in order to ensure a sufficient
safety margin. Specifically, There are several physics within the aeroelastic dynamics of the
wing that are likely to reduce wing loads during very intense (design) gusts, which are ne-
glected due to modeling complexity and treated by extremely conservative approaches. These
include sloshing within the wing tanks, which has the ability to increase the structural damping
of the wing, and dynamic stall, which can occur in flight conditions characterized by high angle
of attack and intense gust inputs. Among the most commonly employed aerodynamic models
is the doublet lattice method [2]. This method has been used to construct a three-dimensional
aerodynamic model, offering enhanced accuracy in the evaluation of lift for low angles of at-
tack. Consequently, this approach is suitable for aeroelastic analysis and accounting for finite
wake effects. However, as a potential aerodynamic model, the model lacks the capacity to rep-
resent both static and dynamic stall effects. This limitation restricts the model ability to assess
loads in the points of the flight envelope that are close to the stall curve.

To explore more complex aerodynamic scenarios, CFD methods based on the Navier-Stokes
equations can be utilized, as they offer high precision in analysis. Previously computationally
intensive, advancements in computational capabilities have significantly reduced the required
effort, making these analyses increasingly common in aircraft design [3]. However, their ap-
plication in a coupled fluid-structure interaction (FSI) loop at high angles of attack remains
computationally prohibitive during the preliminary design phase. The complexity of dynamic
stall further complicates its prediction, often necessitating specific wind tunnel experiments to
assess its effects accurately. Moreover, for modern flexible aircraft withstanding atmospheric
perturbation like vertical gust means both elastic and rigid body modes are exited, inducing un-
expected additive structural loads and reduce structural fatigue life. To the end of alleviate gust
loads and reduce wing root bending moment, there is increasing interest in designing nonlinear
controllers, [4], [5] based on aerodynamic models accounting for nonlinearities that activate at
high angle of attack [6].

The objective of this study is to demonstrate the viability of training neural network reduced-
order models for estimating aerodynamic forces at high angles of attack, considering both static
and dynamic stall effects. This approach potentially enables a more accurate evaluation of aero-
dynamic loads at the points of the flight envelope featured by high angle of attack, facilitating
the design of lighter structures. The numerical testbed consists of a typical 42-seat regional
aircraft. The present approach aims at comparing the load-relieving effects of dynamic stall
with the prediction provided by the linear aeroelastic model based on the strip theory. Due to
the time constraints associated with CFD data, aerodynamic data derived from the more practi-
cal Beddoes-Leishman model were employed. However, the medium term goal is to apply the
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developed methodology training the surrogate aerodynamic model based on neural networks
using CFD-derived data.

In recent years, reduced-order models leveraging neural networks have been employed to pre-
dict nonlinear, unsteady aerodynamics with notable accuracy and computational efficiency. This
need has emerged from the necessity to balance precision and computational resource consump-
tion, addressing the inefficiencies inherent in CFD-based techniques. The advent of architec-
tures such as long-short term memory (LSTM) networks has enabled the effective modeling of
time-delay phenomena characteristic of aeroelasticity, making this domain a prime candidate
for such approaches. Various neural network models have been developed with this objective,
although the need to accurately characterize both linear and nonlinear dynamics results in vary-
ing performance across different architectures. For instance, recurrent neural networks (RNNs)
have been applied to predict limit-cycle oscillations (LCO) at specific Mach numbers [7]. Ad-
ditionally, LSTM networks have demonstrated good performance in applications involving 2D
airfoils in the transonic regime at varying Mach numbers, successfully adapting to different
problem parameters [8]. On the other hand, the authors employed a methodology exploiting
neural network for sloshing to obtain the aeroelastic response of a wing prototype to gusts
when stowing sloshing fuel [9]. The neural network was trained by experimental data to return
vertical force at the tank location based on the vertical velocity of the tank. When accounting for
several compartments along the wing span this results in a sort of strip theory for sloshing with
neural network model. This approach enabled the optimization of fuel consumption strategy to
minimize gust-induced internal loads [10].

As mentioned before, in this inital phase of the methodology development, the aerodynamic
data were obtained using Beddoes-Leishman model [11], originally developed for helicopter
blade applications. It is a semi-empirical approach specifically designed to address a particular
aerodynamic phenomena such as dynamic stall featuring the separation of the flow at the lead-
ing and trailing edges and the dynamic vortex. Over the years, a manifold of variants of the
Beddoes-Leishman model have been introduced for different applications, typically involving
parameter tuning to fit with experimental data [12]. These models are used across various engi-
neering fields where dynamic stall is a critical design factor, such as in helicopter rotor blades
and wind turbine blades [13]. In this work, a recursive model of Beddoes-Leishman [14] is em-
ployed were the description of the attached flow is described via an indicial formulation [15].
In order to assess the dynamic loads exerted on a wing subjected to intense gusts, an approach
combining neural networks and strip theory was employed. More specifically, the approach
starts from the generation of a proper dataset using unsteady response of a 2D airfoil to random
input with spectral characteristics specifically addressing the gust load response. The dataset,
obtained using Beddoes-Leishman nonlinear aerodynamic model is subsequently used to train a
long short term memory model. Both Beddoes-Leishman model and the neural-network based
ROM are then integrated within a strip theory approach in order to provide the response of air-
craft to intense gust loads and quantify the natural alleviation of loads that this model is able to
retrieve.

The paper is organized as it follows. The aeroelastic formulation is introduced in Sec. 2 whereas
the collection of data via Beddoes-Leishman model as well as the training are provided in Secs.
3 and 4, respectively. The results are illustrated in Sec. 5 and finally a concluding remarks
section ends the paper.
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2 AEROELASTIC FORMULATION

The aeroelastic wing is modeled in this work using a hybrid model that combines a linear
differential problem with a data-driven model for dynamic stall. More in details, the numerical
testbed is represented by a regional aircraft wing model represented in Fig. 1 through its finite
element model and aerodynamic strips.

Figure 1: Regional aircraft wing model.

On the other hand, Fig. 2 shows the first six modes of vibration of the wing structure. Therefore,
the wing structural displacements u(x, t) can be expressed by the following spectral decompo-
sition:

u(x, t) ≃
N∑

n=1

ψψψn(x)qn(t) (1)

where ψψψn(x) are the modes of vibrations of the structure and qn(t) are the generalized coordi-
nates describing the body deformation in time. Note that a space-discretization for the structure
is assumed by including a finite number N of modes in the analysis, i.e., a frequency-band-
limited unsteady process. Considering this representation for aircraft wing dynamics, one has
the following Lagrange equations of motion in terms of N modal coordinates qn(t)

Mq̈+ Kq = e (2)

where q = [q1, q2, . . . , qN ]
T is the modal coordinates vector, M and K are, respectively, the

modal mass and stiffness (diagonal) matrices provided by the finite element solver, whereas
e = [e1, e2, . . . , eN ]

T is the vector of the generalized aerodynamic forces. The generalized aero-
dynamic forces are generally computed as a function of the reduced frequency k = ωb/U∞
(with b semi-chord and U∞ free stream velocity) and Mach M∞ domain. This methodology
exploits the strip theory that, defining as c = [c

(1)
n , c

(1)
m , c

(2)
n , c

(2)
m , . . . , c

(P )
n , c

(P )
m ]T the vector col-

lecting the aerodynamic lift and moment coefficients at 1/4 of the chord for the P strips as a
function of time, provides in Fourier domain:

ẽ = qD S c̃ (3)

where S is a matrix that projects the strip loads onto the generalized modes. On the other hand,
it is defined the modified normalwash vector χ = [w̄

(1)
3/4, q̄

(1), w̄
(2)
3/4, q̄

(2), . . . , w̄
(P )
3/4 , q̄

(P )]T used to
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list the non-dimensional velocity at 3/4 of the chord and the non-dimensional pitch rate of the
P strips such that:

χ̃ = Cα

((
D(1) + ikD(2)

)
q̃+ dg(α0 +

wg

U∞
)
)

(4)

where α0 is trim angle of attack and wg is the gust velocity and the matrix Cα allows to approx-
imate the 3D finite-wing aerodynamics effect. Specifically, the latter is obtained via the Prandtl
lifting line theory.

(a) 1st O-P-B (b) 2nd O-P-B , ω2/ω1 = 3.35

(c) 2nd O-P-B / 1st T, ω3/ω1 = 6.06 (d) 3rd O-P-B / 1st T, ω4/ω1 = 9.94

(e) 4rd O-P-B / 1st T, ω5/ω1 = 16.26 (f) 1st T, ω6/ω1 = 19.93

Figure 2: Mode shapes of the wing model with their natural frequencies. O-P-B = Out-of-plane bending mode,
I-P-B = In plane bending mode, T = torsional mode.

The relationship between the linear (attached flow) aerodynamic coefficients c̃(lin) and the wing
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velocity field χ can be expressed via the functions introduced in Refs. [15, 16] and hereafter
recast in rational-polynomial matrix form:

c̃(lin) =
(
A0 + B0 + ikA1 + C

(
ikI+ P

)−1
B
)
χ̃ (5)

where A0 and A1 are non-circulatory terms whereas B0 and C
(
ikI+P

)−1
B allow to describe the

circulatory aerodynamics. The previous equation can be recast in time domain by introducing
the vector of aerodynamic states r as:

c(lin) = (A0 + B0)χ+
b

U∞
A1 χ̇+ C r (6)

ṙ =
U∞

b
P r +

U∞

b
Bχ (7)

The linear aeroelastic modeling is implemented in Simulink® as illustrated in Fig. 3. The
structure block translates Eq. 2, whereas the aerodynamic block is deepened in the bottom part
of the figure detailing the circulatory and non-circulatory aerodynamics.

Figure 3: Linear aeroelastic modeling in Simulink®.

To represent the aerodynamic nonlinear effects resulting from dynamic stall, this approach
makes use of the semi-empirical Beddoes-Leishman model. This model facilitates the represen-
tation of vortex onset at the leading edge due to dynamic stall and enables empirical evaluation
of its impact on aerodynamic coefficients. Furthermore, nonlinear effects resulting from vor-
tex detachment at the trailing edge can be incorporated using Kirchhoff’s theory. This theory
introduces a correction to the aerodynamic coefficients associated with the flow detachment
point from the trailing edge, a condition contingent on the behavior of the profile. For these
reasons, the Beddoes-Leishman model can be employed as a replacement of CFD simulations
for obtaining datasets to be used for the neural-network training. While this approach results in
lower accuracy, it offers a significant reduction in computational cost at this stage of method-
ological development. So it is possible to obtain data to train the neural-network model and for
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the implementation of a reference nonlinear aeroelastic model to assess the performance of the
hybrid modeling including neural-network. Neglecting for the sake of conciseness the details
about the formulation, the BL model allows to update c(j)n and c(j)m in cascade with respect to the
evaluation of the linear (attached flow) c(lin)jn and c(lin)jm and local angle of attack αj such that
for the j-th profile, one has: {

c
(j)
n

c
(j)
m

}
= f

(
c(lin)jn , c(lin)jm , αj

)
(8)

This can be noticed from the green block in Fig. 4, that is detailed in the bottom part of the
figure. Note that a programmatic Simulink compiler allows the nonlinear aerodynamic response
to be replicated for as many dynamics as the number of strips.

Figure 4: Beddoes-Leishman-based non-linear aerodynamic implementation in Simulink®.

On the other hand, the nonlinear aerodynamic contribution can be provided by neural-network
reduced order model that provides a correction of the lift and moment coefficient vectors ∆c(j)n

and ∆c
(j)
m as a function of the velocities on each profile w̄(j)

3/4 and q̄(j).{
c
(j)
n

c
(j)
m

}
=

{
c
(lin)j
n

c
(lin)j
m

}
+

{
∆c

(j)
n

∆c
(j)
m

}
(9)

This operation is performed in parallel with the evaluation of the linear aerodynamic coefficient
vector c, as provided by Fig. 5. Again, a programmatic Simulink compiler enables to replicate
the neural network for each strip. Moreover, since the model is trained in reduced time domain,
rate transition blocks enable to adapt the time step of each strip in order to account for the local
chord length (see Fig. 6). The description of such approach based on neural network to describe
∆cn and ∆cm is covered in Sec. 4.
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Figure 5: Neural-network based non-linear aerodynamic implementation in Simulink®.

Figure 6: Rate transition blocks enabling the dilation of time in Simulink®.

3 DATA COLLECTION FROM BEDDOES-LEISHMAN MODELING

This section provides a description of the dataset used for training a neural network-based model
for describing nonlinear airfoil behavior due to dynamic stall. The dataset was obtained by
means of the Beddoes-Leishman aerodynamic model, although a CFD model can be used if
sufficient computing resources are available.

The training dataset must consist of randomly generated data that reflects the specific applica-
tion case being studied. In this study, the application involves simulating intensive vertical gusts
encountered during the landing approach or initial phase of climb for a generic regional airplane.
In this work, the training process involved creating a dataset composed of forty random inputs
for the single-airfoil model, with twenty inputs allocated for the training phase and twenty for
the validation. The input data are organized in terms of normalwash χ(j) as a function of the
reduced time τ = t U∞/b where the superscript (j) is avoid when expressing training dataset.
The random signals representing w̄3/4 and q̄ are generated using the more familiar variables of
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pitch α and plunge h/b used through the following relation:{
w̄3/4(τ)
q̄(τ)

}
=

{
α0

0

}
+

{
α(τ) + d

dτ
h
b

2 d
dτ
α

}
(10)

where α(τ) and h(τ)/b are obtained as a realization of their respective Power Spectral Density
(PSD) Gaussian-like function Sh(k) and Sα(k):

Sα(k) = 2
Aα

σ
√
2π

e−
k2

σ2 Sh(k) = 2
Ah

σ
√
2π

e−
k2

σ2 (11)

that encompasses a frequency band that includes the first bending modal frequency of the wing,
through its standard deviation imposed equal to σ = 0.1885.

Figure 7: Power Spectral Density of pitch and plunge in the case of Ah = 4.5 · 10−2 and Aα = 2.3 · 10−2.

Figure 8: Stall curve of the airfoil NACA 0012.
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(a) α(τ), h(τ)/b

(b) w̄3/4(τ), q̄(τ)

(c) cn, c(linear)n , cm, c(linear)m

(d) ∆cn, ∆cm

Figure 9: Example of dataset generation for α0 = 10 deg, Ah = 4.5 · 10−2 and Aα = 2.3 · 10−3.
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α0[deg] Aα Ah

0 1.0 · 10−5 2.0 · 10−4

5 6.25 · 10−5 1.3 · 10−3

10 2.5 · 10−4 5.0 · 10−3

15 1.0 · 10−3 2.0 · 10−2

2.3 · 10−3 4.5 · 10−2

Table 1: Values of α0 and amplitudes of PSD used for creating dataset for training.

In this specific study, our primary interest lies in the plunge motion influenced by the wing
response to gusts. The amplitude of the PSD signal for the plunge motion and the initial airfoil
trim angle (denoted as α0) were used for the realization of the time histories. To construct
the dataset, five different amplitudes of the PSD were employed for the plunge signal and four
distinct values of the trim angle α0, as it is possible to see in table [1]. For each initial angle
of attack, five timeseries of the plunge and pitch are made, respectively, one for each amplitude
of the PSD. The amplitude relationship between the PSD for plunge and pitch is governed by a
scale factor, indicating that the plunge signal PSD amplitude is ten times greater than that of the
pitch signal, as it can be noticed in Fig. 7 and from the second and third column of table [1].

The realization of the signals for α and h ensures their mutual uncorrelation. On the other
hand, the values of α0 are evaluated on the basis of a stall curve of the airfoil considering the
nonlinear effect provided by Beddoes-Leishman model, as it can be noticed from Fig. 8. The
chosen values explore different flow regimes around the profile. Lower values, even under
gust conditions, allow the generation of datasets for the network that adequately explore the
linear behavior of the aerodynamics, while higher angle of attack values, thus closer to a stall
condition, allow, depending on the intensity of the gust, the generation of a dataset that contains
information on the nonlinear corrections obtained using the Beddoes-Leishman model. Figure
9 resumes the workflow for the generation of the dataset. The time series of α and h/b are
generated from their respective variance in Fig. 9(a). These signals, along with the steady angle
of attack α0 provides the normalwash in terms of w̄3/4 and q̄ in Fig. 9(b), that is, the input
dataset for the neural network model training. Afterwards, the simulations provide the resulting
cn and cm in Fig. 9(c) that finally allows the computation of ∆cn and ∆cm in Fig. 9(d) that
consists of the output dataset for the training.

4 NEURAL-NETWORK TRAINING

Scope of the neural-network based reduced order model is to provide the nonlinear contribution
to the lift and moment coefficients of each strip. These two outputs of the model are obtained
by considering the reduced time τ history of the non-dimensional down-wash at 3/4 chord and
the pitch rate of the profile, as well as the Reynolds number, providing the following relation:{

∆cn
∆cm

}
= ϕ

(
w̄3/4, q̄, τ,M∞, Re

)
(12)

Under the assumption that the Reynolds number plays a negligible role and that the analyses
are conducted in incompressible conditions (M∞ = 0), the model can be trained with w̄3/4(τ)
and q̄(τ) as unique inputs.

This framework exploits the Long-Short-Term Memory (LSTM) network to provide the rela-
tion in Eq. 12. The LSTM network is a prominent deep learning method designed for time
sequence data, showing significant potential for addressing unsteady time-delayed effects in
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system identification problems (see Ref. [17]). As a specialized variant of Recurrent Neural
Networks (RNNs), the LSTM network overcomes the stability issues commonly faced by tra-
ditional RNNs, such as the vanishing gradient problem (see Ref. [18]). Unlike conventional
unsteady aerodynamic modeling based on RNNs, where delay orders must be specified by the
user, the LSTM network inherently considers time-delayed effects, simplifying the model train-
ing process considerably. Its architecture includes memory cells, input, output, and forget gates,
which regulate the flow of information, enabling the network to maintain and update relevant
information over extended time periods. This makes the proposed approach a promising tool for
unsteady aerodynamic modeling. As evidence, Ref. [19] demonstrates that an LSTM network
can effectively serve as a tool for defining a ROM capable of predicting aerodynamic loads and
aeroelastic responses across various flight Mach numbers. In this paper, the LSTM network
is trained using a regression model implemented with MATLAB® Deep Learning Toolbox™
functions (see Ref. [20]). The same toolbox allows the definition of the Stateful Predict block
in Simulink® (highlighted in Fig. 6) that enables the integration of the neural network into
the simulation framework shown in Fig. 5. Through this block, the LSTM network is able to
dynamically generate output estimates as the input varies over time. Figure 10 provides the
architecture of the trained LSTM neural network for sequence-to-sequence regression. It com-
prises two input features and two output features and includes two hidden LSTM layers, each
containing 350 neurons. The training process utilized the Adam optimization algorithm (see
Ref. [21]), a variant of stochastic gradient descent known for its adaptive learning rate proper-
ties, which effectively updates the network weights and biases based on the mean squared error
(MSE) loss function calculated on the training data. To prevent overfitting, a validation check
was incorporated into the training process. As detailed in Sec. 3, a portion of the collected data
is reserved for validation purposes. The validation loss, calculated using the same MSE metric,
is monitored alongside the training loss. Training is stopped if the validation loss increases
relative to the training loss, indicating potential overfitting. This approach ensures the model
maintained generalizability and robust performance on unseen data.

Figure 10: Architecture of the trained LSTM neural network.

In the present case, network training stopped after about 800 epochs, requiring approximately
40 minutes to complete. This duration was achieved utilizing the computational power of an
average graphics card, specifically a mid-range GPU from the NVIDIA® GTX series. The
efficiency of the process underscores the feasibility of conducting complex computations within
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a reasonable timeframe, even without access to high-end, specialized hardware.

Figure 11: Inputs of the validation data set generated with α0 = 5 deg, Ah = 2.0 · 10−2 and Aα = 1.0 · 10−3.

(a) Lift coefficient correction ∆cn

(b) Moment coefficient correction ∆cm

Figure 12: Comparison between the lift and moment coefficients predicted by the identified LSTM neural network
and the validation output data corresponding to the inputs generated with α0 = 5 deg, Ah = 2.0 · 10−2

and Aα = 1.0 · 10−3 (see Fig. 11).
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Figure 13: Inputs of the validation data set generated with α0 = 15 deg, Ah = 4.5 · 10−2 and Aα = 2.3 · 10−3.

(a) Lift coefficient correction ∆cn

(b) Moment coefficient correction ∆cm

Figure 14: Comparison between the lift and moment coefficients predicted by the identified LSTM neural network
and the validation output data corresponding to the inputs generated with α0 = 15 deg, Ah = 4.5 ·10−2

and Aα = 2.3 · 10−3 (see Fig. 13).

Since the validation dataset is not used to update the neural network parameters during training,
it allows for an unbiased evaluation of the model predictive capabilities. Therefore, comparisons
are presented below to assess the performance of the identified network using the validation
data. Feeding the LSTM network with the input signals from the validation dataset shown in
Fig. 11 (generated with α0 = 5 deg, Ah = 2.0 · 10−2 and Aα = 1.0 · 10−3) results in the
responses shown in red in Fig. 12. The lift and moment coefficient corrections estimated by the
network are compared with the validation outputs (black solid lines). In this case, the network is
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able to estimate the nonlinear corrections with good efficiency, given the good overlap between
the curves except for the first time instants. The model performance is generally good, with
predictions in close agreement with reference results for most validation data. As the amplitudes
considered increase, however, there is a slight deterioration in predictive accuracy. This can be
seen in Fig. 14, which shows the responses estimated by the network based on the inputs shown
in Fig. 11, generated with the values α0 = 5 deg, Ah = 2.0 · 10−2 and Aα = 1.0 · 10−3.
Comparison with the dataset outputs reveals that the LSTM network tends to underestimate the
coefficient corrections, particularly the moment correction.

5 RESULTS

This section presents the results of the methodology comparing the gust response of a wing
with strip theory using three different models: linear, Beddoes-Leishman, and neural network.
In particular, the results are presented for a number of flight points at which the combination of
trim angle of attack and maximum gust amplitude is triggers the onset of dynamic stall resulting
in loads reduction. Subsequently, a sensitivity analysis is conducted to assess the structural loads
at various combinations of angle of attack and gust, with the results being compared with those
obtained with the linear model. The analyses are conducted using a discrete gust as:

wg(t) =
1

2
wga

[
1− cos

(
2πU∞t

Lg

)]
(13)

in which the gust length is such to maximize the gust load for the range of velocity considered
in this study, that is Lg = 35broot. Table 2 provides the reference analyses used to display the
effect of the dynamic stall and the capability of the neural network based ROM to predict the
load reduction. The three cases are featured by the same product qD α0. Figures 15, 16 and
17 show the dynamic response of the wing for the three different flight conditions. Prior to
initiating the simulations, the initial conditions are set to the previously evaluated linear trim
solution. The steady stall curve of the airfoil in Fig. 8 indicates that nonlinear models should be
initiated with a different angle of attack to ensure consistent overall lift. To simply address this
issue, the plots only show the difference with respect to the steady state, i.e. the perturbation
of the first modal coordinate with respect to its steady state value either linear or nonlinear
∆q1 = q1 − q1s , the second modal coordinate ∆q2 = q2 − q2s , the vertical tip displacement
∆uz(xtip) and the wing root bending moment ∆Mx(xroot).

The results demonstrate that at low values of the angle of attack at the trim (case 1 in Fig. 15),
the outcomes align with the linear attached flow model, regardless of the gust velocity value.
This outcome is reflected in all three models (linear, Beddoes-Leishman, and LSTM network)
for both modal response and derived quantities such as displacement at the tip and bending
moment.

An increase in the value of the angle of attack at equilibrium, as seen in case 2 (Figs. 16), reveals
that the dynamic response differs slightly from that of the linear case. The value of the modal
coordinate q1 reaches a lower peak in the simulation with the Beddoes-Leishman model. The
LSTM-based model, despite its inability to perfectly describe the load reduction, does provide
a reduction of the peak value of the first modal coordinate (see Fig. 16(a)). This is also reflected
in the displacement at the tip and the trend of the wing root bending moment (see Fig. 16(c)
and Fig. 16(d), respectively).
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(a) q1(t)

(b) q2(t)

(c) tip displacement

(d) WRBM(t)

Figure 15: Case 1: wing response.
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(a) q1(t)

(b) q2(t)

(c) tip displacement

(d) WRBM(t)

Figure 16: Case 2: wing response.
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(a) q1(t)

(b) q2(t)

(c) tip displacement

(d) WRBM(t)

Figure 17: Case 3: wing response.
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case α0 [deg] U∞ [m/s] ρ [kg/m3] wga [m/s]
1 6.0 164.3 1.225 17.0
2 10.0 127.3 1.225 17.0
3 14.0 107.6 1.225 17.0

Table 2: Considered flight conditions.

Further increasing the angle of attack results in a discernible effect due to dynamic stall, as
illustrated in case 3 in Figs. 17. As depicted in Fig. 17(a), this gives rise to a markedly lower
first modal coordinate response. This effect is partially captured by the model with LSTM,
which nevertheless returns a response of the first modal coordinate that lies somewhere be-
tween the linear case and the case with the Beddoes-Leishman model. This is reflected in the
displacement trends at the tip and wing root bending moment. Furthermore, in the model using
Beddoes-Leishman to describe the dynamic stall, there is synchrony between the dynamics of
the flow separation point inherent in the Beddoes-Leishman modelling of the dynamic stall and
the vibration modes with frequency lying between 3 ω1 and 7 ω1. This leads to a low amplitude
and high frequency limit cycle oscillation as can be seen in Fig. 17(b). However, this type of
behavior is not visible from the neural network model since the nonlinear aerodynamic model
was identified for lower frequency bandwidth.

A response surface was then generated using the neural network model (Fig. 18) to examine
the impact of dynamic stall in reducing the maximum wing root bending moment as a function
of trim angle of attack within the range of 6 to 14 degrees and gust amplitudes between 11 and
19 m/s. Note that, in accordance with the approach presented, a variation in the angle of attack
corresponds to a variation in dynamic pressure in order to ensure the same lift. In particular,
the figure represents the perturbation due to the gust of the wing root bending moment obtained
through the LSTM model, normalized with respect to the linear case. It can be observed that
as both the initial angle of attack and the gust angle increase, the ratio in question decreases.
However, it is evident that the sensitivity with respect to the trim attack angle is greater.

Figure 18: Response surface of load reduction given by dynamic stall.

6 CONCLUDING REMARKS

This study demonstrates the effectiveness of using a neural network-based reduced order model
(ROM) to analyze the nonlinear gust response of a regional aircraft wing at high angles of attack
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and under strong gust conditions. By combining strip theory with the Beddoes-Leishman un-
steady aerodynamic model for initial training, the approach avoids the extensive computational
effort required by traditional CFD simulations. The neural network-based ROM significantly
reduces computational time while accurately predicting the aerodynamic loads and responses
of the wing, making it practical for use in aircraft design. The model was successfully imple-
mentated in the Simulink environment, using Nastran structural data and strip theory. Training
a single airfoil model simplifies the process and makes the method adaptable to different wing
configurations, which is advantageous for applying the model to various aircraft designs without
extensive retraining.

The results indicated that the use of a linear model may result in an overestimation of the root
loads by 20%, which could lead to an overly conservative design phase. Furthermore, the
methodology, although still in its incipient state, offers potential for improvement in several
areas. One such area concerns the use of an aerodynamic dataset derived from computational
fluid dynamics (CFD) simulations. Secondly, the methodology can be extended to consider the
possibility of large displacements of the wing. Additionally, a linear aerodynamic model can be
employed that is more closely aligned with industrial applications, such as the doublet lattice
method, to replace the attached flow part obtained by strip theory.
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