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Abstract: This paper presents the theoretical development of a novel approach to solving
potential-based lifting pressures for aeroelastic analysis that circumvents the need to perturb or
remesh the analysis domain. Inspired by feature-mapping approaches used in structural topol-
ogy optimization, the method maps lifting surfaces and their wakes to a fixed, non-conforming
grid wherein an efficient multi-grid solver resolves the lifting pressures. The coupled aeroe-
lastic state is resolved by a consistent and conservative transfer of loads and displacements
between disciplines. To facilitate efficient gradient-based optimization, all of the employed
mappings are differentiable, thus enabling efficient adjoint computation of design-sensitivities
for quantities dependent on the coupled aeroelastic state. The computational efficiency gained
by circumventing the need to rebuild or perturb the mesh for each analysis, the topological
design flexibility achieved by mapping to an implicit representation, and the efficient adjoint
computation of design sensitivities make the proposed aeroelastic solver an attractive alternative
to the conventional approach.

1 INTRODUCTION

The conventional approach to medium/high-fidelity aeroelastic analysis involves constructing a
surface or fluid-domain mesh to estimate lifting pressures, constructing a finite-element mesh
of the substructure to estimate deformations, and performing a consistent and conservative
interpolation scheme to simultaneously resolve the coupled state equations [1–4]. Both the
structural and the aero meshes are generally constructed from an explicit geometric representation
that does not readily accommodate topological changes. When used in design optimization, the
conventional approach requires the costly re-evaluation of topological operations like geometric
intersections, unions and subtractions to re-build the geometry, followed by an expensive re-
meshing step for each analysis.

For decades, topology optimization methods [5] have circumvented the need to remesh upon
design changes when solving structural displacements on a fixed mesh by employing a field rep-
resentation of the geometry. In more recent years, feature-mapping methods [6] have enabled
topology optimization with high-level, parameterized geometry by mapping the design to an
implicit field representation and solving the displacements on a fixed mesh. This implicit rep-
resentation naturally and robustly transforms topological operations into inexpensive arithmetic
operations. In this work, we leverage the feature-mapping paradigm to circumvent the the need
to rebuild or perturb analysis meshes in an aeroelastic analysis.
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Panel methods are some of the earliest examples of boundary element methods [7]. Although
their main attraction is to restrict the solution space to the the boundary of the domain, boundary
element methods are, for many problems, significantly less efficient than volumetric approaches
(e.g., the finite element method). This is because the boundary element method employs singular
Green’s functions (fundamental solutions for given boundary conditions) that generally do not
have local support, instead requiring each singularity to be integrated over the entire discretiza-
tion. This gives rise to dense, fully-populated matrices that have storage and computational
costs that grow asymptotically as 𝑂 (𝑛2).

The asymptotic time complexity of boundary element methods can be improved by using
multipole expansions of the truncated Taylor series approximations of the Green’s function. For
example, the tree algorithm of Barnes and Hut [8] results in 𝑂 (𝑛 log 𝑛), and the fast-multipole
method [9] in 𝑂 (𝑛) time complexity. However, the trade-off between truncation error and
solution speed is often significant.

This work forgoes the conventional boundary element approach of panel methods, instead using
the extended finite element method (XFEM). XFEM originated to minimize the re-meshing of
cracks in fracture mechanics [10]. In this work, XFEM enables using a fixed, non-conforming
grid to solve a perturbation potential that is discontinuous across the immersed boundary and
its wake. The analysis grid is invariant to design changes and elastic deformations that would
normally require mesh perturbation or even complete re-meshing.

The local support of the finite-element basis functions results in𝑂 (𝑛) computational and storage
requirements, where 𝑛 is the number of unknowns. Although the number of unknowns in the
volumetric discretization is larger than that of the surface discretization, the sparsity of the
resulting equations results in better scaling. Moreover, an efficient multigrid-preconditioned
solver enables the iterative solution of the problem in a fixed number of iterations regardless
of grid resolution. Although outside the scope of this work, we also mention that 𝑛 can be
significantly reduced by employing adaptive octree meshes [11].

2 METHODOLOGY
2.1 Geometric representations
The design variables are high level geometric parameters that map to a different geometric view
for each discipline.

For the aero discipline, the solid-fluid interface surface Γ�̂� that bounds the interior region Ω�̂�

of the reference configuration is deformed by the structural displacements u to the deformed
interface surface Γ𝐵 = {ŷ + u(ŷ) : ŷ ∈ Γ�̂�} that bounds the deformed interior region Ω𝐵.

A surface discretization may be obtained by tessellating the trimmed parametric surfaces in a
boundary representation (B-rep), or by solving the zero level set of an implicit representation such
as the field obtained by deforming the signed distance to the reference configuration (negative
inside Ω𝐵) as defined in equation (1b).

𝑠Ω�̂�
(x) = sgnΩ�̂�

(x) min
ŷ∈𝜕Ω�̂�

∥x − ŷ∥, for x ∈ Ω ⊃ Ω�̂� (1a)

𝑠Ω𝐵
(x) = 𝑠Ω�̂�

(x − u(x)), for x ∈ Ω ⊃ Ω𝐵 (1b)

After deformation, 𝑠Ω𝐵
no longer has a unit gradient, but its zero level set corresponds to

𝜕Ω𝐵 ≡ Γ𝐵, and thus the direction of its gradient at the boundary is the outward surface normal
of the deformed configuration.
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Although a surface discretization tracks the deformed interface, it is independent of the grid
used in each solver; it merely serves as a common interface to compute surface integrals, to
transfer displacements loads, and to map design sensitivities. Thus, its resolution should match
or exceed the grid resolution of each discipline, but element quality is of little concern.

The geometric view for the structural discipline is given by unioning a set of components
{Ω𝑐}𝑛𝑐𝑐=1, intersecting the union with the interior region Ω�̂� and subsequently unioning with the
skin Ω𝑆. In set notation, the set of points in the elastic structural volume is defined as

Ω𝐸 = Ω𝑆 ∪ (Ω�̂� ∩ (∪𝑐Ω𝑐)) (2)

In a typical B-rep geometry kernel, these Boolean operations are expensive to compute and
can fail to represent multiple disconnected regions. Implicit functions can represent open sets
like the elastic structural region as Ω𝐸 = {x : 𝜒Ω𝐸

(x) > 0}, where the Boolean operations of
equation (2) become the robust and inexpensive min/max operations of equation (3)

𝜒Ω𝐸
(x) = max(𝜒Ω𝑆

(x),min(𝜒Ω�̂�
(x),max

𝑐
𝜒Ω𝑐
(x))) (3)

In the geometry projection method [12], the implicit functions 𝜒Ω𝑐
(x) ∈ [0, 1] are volume

fractions (densities). The use of volume-fraction fields enables fractional membership of com-
plete geometric components in the design, facilitating topological changes as in density based
topology optimization. When used in gradient-based optimization, the characteristic functions
are smooth across the zero level set, and the min/max functions are replaced with smooth
approximations.

The geometry is passed to the structural solver implicity as the volume-fraction (density) function
of equation (3) where, as in [13], the density function for each component is computed as the
smooth Heaviside of the signed distance function as

𝜒Ω𝑐
(x) = �̃� (−𝑠Ω𝑐

(x)/𝑟) (4)

where 𝑟 is the radius of the region where 𝜒Ω𝑐
smoothly transitions from 0 to 1.

Although the signed distance to certain reference shapes can be expressed analytically, this
becomes impossible for general shapes. An approximate solution of equation (1a) is given by
discretizing the reference configuration and computing the signed distance to the discretization.
The closest-point search on the surface discretization is accelerated by building a bounding
volume hierarchy of the surface elements [14].

2.2 Aero load computation

As mentioned in the introduction, this work forgoes the conventional boundary-element ap-
proach of panel methods, instead using the volume-based extended finite element method
(XFEM). XFEM enables modeling fields with discontinuities across immersed boundaries
without remeshing the analysis domain. In the case of lifting perturbation potential, XFEM
naturally models jump discontinuities across the boundary of the deformed configuration and/or
its wake. Discontinuities are modeled by extending the standard finite element approximation
with enrichment functions. Figure 1 illustrates an XFEM approximation of a jump discontinuity
across the boundary of an airfoil on a 2d grid.
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Figure 1: XFEM model of a jump discontinuity (left) represented by extending the standard shape functions
(middle) with enrichment shape functions (right).

2.2.1 The strong form
To simplify the presentation, we discuss only incompressible potential-flow governed by the
Laplace equation, noting that linearized compressible potential flow may also be considered by
applying the Prandtl–Glauert transformation [15] and Göthert’s inverse transformation [16] as
additional pre- and post-processing steps.

The perturbation potential about an immersed body with boundary Γ𝐵 and a wake surface Γ𝑊
extending from a sharp trailing edge 𝛾𝐸 is governed on a domainΩ ⊃ (Γ𝐵∪Γ𝑊 ) with a boundary
𝜕Ω at infinity by equations (5a–f).

−Δ𝜙 = 0 on Ω \ (Γ𝐵 ∪ Γ𝑊 ) (5a)
𝜙 = 0 on 𝜕Ω (5b)

𝜕𝑛𝜙 = −𝑉∞𝑛 on Γ+𝐵 (5c)
𝜙 = 0 on Γ−𝐵 (5d)

𝜕𝑛𝜙 = −𝑉∞𝑛 on 𝛾+𝐸 (5e)
𝜙 |Γ−

𝑊
− 𝜙|Γ+

𝑊
= 𝑤(y(x)) where y(x) maps x ∈ Γ𝑊 to y(x) ∈ 𝛾𝐸 (5f)

The unknowns are the perturbation potential 𝜙 and its jump 𝑤 across the wake at the trailing
edge. The symbol Δ denotes the Laplacian, 𝜕𝑛 denotes the directional derivative along the
normal direction,𝑉∞𝑛 is the normal component of the free stream velocity, the superscripts + and
− applied to a surface indicate the upper and lower sides respectively, with the surface normal
pointing from the lower to the upper side. The + applied to the trailing edge 𝛾𝐸 indicates the
constraint applies outside the body (in the flow) near 𝛾𝐸 .

Equation (5c) corresponds to the tangential flow condition, and equation (5d) corresponds to
an arbitrary value of zero perturbation potential everywhere inside the closed body. Equation
(5e) corresponds to a linear (velocity) Kutta condition where the normal at the trailing edge is
determined by the geometry and the flow direction such that the flow does not recirculate about
the sharp trailing edge. We choose the normal on the trailing edge 𝛾𝐸 to be perpendicular to
both 𝛾𝐸 and the adjacent surface that is more aligned with the flow direction. Notably this
choice is made for simplicity. The physically-based nonlinear (pressure) Kutta condition could
alternatively be imposed, but Hess [7] admits that a simpler linear condition works well to
estimate lift. We defer consideration of the pressure-based Kutta condition to future work. In
equation (5f), the wake jump is extended from points on the trailing edge 𝛾𝐸 to points on the
wake Γ𝑊 .

2.2.2 Isolating the wake potential
Instead of meshing a large finite volumetric domain and integrating over a large finite wake, we
analytically integrate the fundamental solutions over a semi-infinite wake and compute a wake
potential 𝜙𝑊 for a given jump distribution 𝑤 at the trailing edge. Thus, the perturbation potential
is given by the superposition 𝜙 = 𝜙𝑊 + 𝜓 where 𝜓 is a potential that is continuous across the
wake and is added to the wake potential to obtain the perturbation potential. By construction,
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the Laplacian of the wake potential vanishes everywhere outside the wake, thus we only need to
evaluate its directional derivative to impose the immersed boundary conditions. By isolating the
wake potential, we can approximate the equations governing the curl-free 𝜓 on a much smaller
finite domain Ω ⊃ Γ𝐵. We approximate an infinite domain with the Robin boundary condition
in equation (6b) that averages the reflective Neumann (𝜕𝑛𝜓 = 0) and an absorptive Dirichlet
(𝜓 = 0) conditions. With these changes, the governing equations become

− Δ𝜓 = 0 on Ω \ (Γ𝐵 ∪ Γ𝑊 ) (6a)
𝜕𝑛𝜓 + 𝜓 = 0 on 𝜕Ω (6b)
𝜕𝑛𝜓 = −𝑉∞𝑛 − 𝜕𝑛𝜙𝑊 on Γ+𝐵 (6c)
𝜓 = 0 on Γ−𝐵 (6d)
𝜕𝑛𝜓 = −𝑉∞𝑛 − 𝜕𝑛𝜙𝑊 on 𝛾+𝐸 (6e)

𝜙𝑊 (x) =
∫
𝛾𝐸

𝑤(x̃(𝑠))𝐺𝑦 (x − x̃(𝑠))𝑑𝑠 ∀x (6f)

where 𝐺𝑦, the integral of a unit dipole along an infinite ray, is defined by equation (22) in
the appendix. In 2d, the integral over the trailing edge simplifies to the identity. In 3d, the
integral can be computed by a weighted sum of values at quadrature points. However, the
singular integrand renders standard Gauss quadrature insufficient, instead requiring specialized
quadrature rules designed to deal with the singularities. Since 𝐺𝑦 can be integrated analytically
over a rectangle of finite width, cf. equation (23), we can take a simpler approach described in
the following paragraph.

We discretize trailing edges with linear (line segment) elements in 3d and with a finite set of
points in 2d. Then, at the center x𝑒 of the 𝑒th element, we linearly interpolate the edge normal,
project it into the plane orthogonal to the free stream direction û∞ and normalize it to obtain a
unit vector n̂𝑒. In 3d, we also project the segment into the plane orthogonal to the free stream
direction to compute a width ℎ𝑒. Then we compute a local coordinate system for each line
segment as

𝑥𝑒 (x) = û∞ · (x − x𝑒) (7a)
𝑦𝑒 (x) = n̂𝑒 · (x − x𝑒) (7b)
𝑧𝑒 (x) = û∞ × n̂𝑒 · (x − x𝑒) (7c)

so that we can apply equation (23) to each element as

𝐵𝑒 (x) = 𝐺𝑦 (𝑥𝑒 (x), 𝑦𝑒 (x), 𝑧𝑒 (x); ℎ𝑒) (8)

which renders an elemental basis for a discontinuous wake with constant-strength, semi-infinite
rectangular strips extending from each line segment 𝛾𝑒

𝐸
. We obtain a 𝐶0 basis by averaging the

elemental basis to the nodes. For node 𝑖, this basis is

𝐵𝑖 (x) =

∑
𝑒 𝐵

𝑒 (x)
∫
𝛾𝑒
𝐸

�̃�𝑖𝑑𝑠∑
𝑒

∫
𝛾𝑒
𝐸

�̃�𝑖𝑑𝑠
(9)

where �̃�𝑖 is the basis function for node 𝑖 in the discretization of 𝛾𝐸 . Let 𝐿 denote the set of
indices for all nodes discretizing 𝛾𝐸 . In what follows, index sets in the place of indices denote
arrays of coefficients. With this notation, �̃�𝐿 = {�̃�𝑖}𝑖∈𝐿 is a column vector. In the absence of
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an index set, we denote matrices and vectors with enclosing square brackets. The vector of
coefficients parameterizing the wake jump is 𝑤𝐿 , and the wake potential at a point x is given by
the linear combination of equation (10).

𝜙𝑊 (x) = 𝐵𝐿 (x)⊤𝑤𝐿 (10)

Figure 2 shows contours of the wake potential 𝜙𝑊 for a jump of 𝑤 = 1 extending from the sharp
trailing edges of a 2d airfoil and a 3d forward-swept configuration.

Figure 2: Contours of the wake potential 𝜙𝑊 for a unit jump trailing from a 2d airfoil (left) and a 3d forward-swept
configuration (right).

The gradient of the wake potential corresponds to the portion of the flow velocity due to the
wake. The directional derivative 𝜕𝑛𝐺𝑦 defined by equation (24) in the appendix is used to
compute this gradient. Figure 3 depicts streamlines of ∇𝜙𝑊 for 𝑤 = 1 which clearly illustrate
vortices trailing from the wing tips.

Figure 3: Streamlines of the wake potential gradient ∇𝜙𝑊 for a unit jump across the trailing edge.

2.2.3 Trailing Edge Detection
Sharp trailing edges are detected automatically on the deformed surface configuration. A
threshold on the dihedral angle characterizes sharp edges, and a threshold on the angle from the
flow direction characterizes sharp edges as trailing. The default values for both angle thresholds
are 90◦. Figure 4 illustrates the detected sharp and trailing edges, and the infinite wake that
implicitly extends from any sharp trailing edges along the free-stream direction.
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Figure 4: Sharp (red and green) and trailing (green) edges are detected and the wake (light blue) implicitly extends
to infinity from the sharp trailing edges.

2.2.4 The weak form
To employ XFEM, we first convert the strong form the the governing equations given in (6a–f)
to the weak form. In XFEM, a prescribed jump across a discontinuity becomes a Dirichlet
boundary condition. For now, we consider the trailing edge jump distribution 𝑤 to be known
such that 𝜕𝑛𝜙𝑊 may be directly computed as the directional derivative of equation (6f). Then
the Dirichlet boundary is Γ−

𝐵
, the Neumman boundary is Γ+

𝐵
and the Robin boundary is 𝜕Ω. Let

𝑣 denote a virtual function that vanishes on the Dirichlet boundary, then the weak form is∫
Ω

∇𝑣 · ∇𝜓 𝑑Ω +
∫
𝜕Ω

𝑣𝜓 𝑑Γ = −
∫
Γ+
𝐵

𝑣 (𝑉∞𝑛 + 𝜕𝑛𝜙𝑊 ) 𝑑Γ (11)

The weak form incorporates the Neumann and Robin boundary conditions, while the Dirichlet
condition (6d) must still be imposed. For now, we ignore the Kutta condition (6e) since we have
assumed a distribution for 𝑤. Later, we will resolve 𝑤 such that the Kutta condition is satisfied.

2.2.5 Extended finite element discretization
We extend the finite element basis to support jump discontinuities across the boundary of the
immersed body. The extended finite element approximation is

𝜓 =
∑︁
𝑖∈𝐼

𝜑𝑖𝜓
𝑖 +

∑︁
𝑗∈𝐽

sgn𝐵𝜑𝑖 𝑗𝜓
𝑗 (12)

where 𝜑𝑖 is the finite element basis function of grid-node 𝑖, 𝐼 is the set of all grid node numbers,
𝐽 is the set of extended degrees of freedom numbers supporting the immersed boundary Γ𝐵, 𝑖 𝑗
is the grid-node number of extended degree of freedom 𝑗 , sgn𝐵 is −1 below and +1 above Γ𝐵,
and 𝜓𝑖 is the curl-free perturbation-potential coefficient of the 𝑖th degree of freedom.

Let [�̃�] = [𝜑⊤
𝐼
, sgn𝐵𝜑⊤𝑖𝐽 ]

⊤ be the vector of shape functions for all degrees of freedom. Then the
unconstrained discrete equations can be written as [ �̃�] [�̃�] = [�̃�] where the coefficients [�̃�] are
unknown and

[ �̃�] =
∫
Ω

∇[�̃�] · ∇[�̃�]⊤ 𝑑Ω +
∫
𝜕Ω

[�̃�] [�̃�]⊤ 𝑑Γ (13a)

[�̃�] =
∫
Γ+
𝐵

[�̃�] (−𝑉∞𝑛 − 𝜕𝑛𝜙𝑊 ) 𝑑Γ (13b)

The Dirichlet constraint on Γ−
𝐵

is

𝜓 |Γ−
𝐵
= 𝜑𝐼𝜓

𝐼 − 𝜑𝐽𝜓𝐽 = 0 (14)
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for which 𝜓𝐽 can be solved by directly assigning the the grid-node coefficients to the corre-
sponding jump coefficients.

𝜓𝐽 = 𝜓𝑖𝐽 = 𝐶𝐽 𝐼𝜓
𝐼 (15)

The constraint equation (15) is then condensed into the unconstrained linear system (13a,b) to
obtain the constrained system [𝐴] [𝜓] = [𝑏] in which [𝜓] = 𝜓 𝐼 are the unknown coefficients on
the grid nodes 𝐼:

[𝐴] = �̃�𝐼 𝐼 + (𝐶𝐽 𝐼)⊤ �̃�𝐽𝐼 + �̃�𝐼𝐽𝐶𝐽 𝐼 + (𝐶𝐽 𝐼)⊤ �̃�𝐽𝐽𝐶𝐽 𝐼 (16a)
[𝑏] = �̃�𝐼 + (𝐶𝐽 𝐼)⊤�̃�𝐽 (16b)

The Kutta condition of equation (6e) can be imposed on the nodes discretizing the trailing edge
as

0 = (𝜕𝑛𝜑𝐼 (x𝐿) + (𝐶𝐽 𝐼)⊤(𝜕𝑛𝜑𝐽 (x𝐿))⊤︸                                     ︷︷                                     ︸
𝐸𝐿

𝐼

)𝜓 𝐼 + (𝜕𝑛𝐵𝐿 (x𝐿))⊤︸          ︷︷          ︸
𝐸𝐿

𝐿

𝑤𝐿 +𝑉∞𝑛 (x𝐿)︸   ︷︷   ︸
𝑒𝐿

(16c)

where x𝐿 are shifted from the edge node positions by a small distance along the projection of u∞
orthogonal to the edge normal to avoid the singularity at the trailing edge. This affine equation
can be directly solved as

𝑤𝐿 = (−𝐸𝐿𝐿)−1𝐸𝐿 𝐼︸           ︷︷           ︸
�̃�𝐿

𝐼

𝜓 𝐼 + (−𝐸𝐿𝐿)−1𝑒𝐿︸         ︷︷         ︸
𝑒𝐿

(16d)

It is possible to solve the matrix �̃�𝐿
𝐼
and condense the Kutta condition into a single linear system

in which the grid-node coefficients 𝜓 𝐼 are the only unknowns. Admittedly, the computational
and storage costs of this dense matrix scale poorly. An alternative approach that scales better
and also easily extends to the nonlinear Kutta condition is to resolve 𝑤𝐿 with a Newton iteration
as described in algorithm 1.

Algorithm 1: Newton’s method for the Kutta condition
𝑤𝐿 ← 0
while not converged do
[�̃�] ← equation (13b)
[𝑏] ← equation (16b)
𝜓 𝐼 ← [𝐴]−1 [𝑏]
𝑤𝐿 ← (−𝐸𝐿𝐿)−1(𝐸𝐿 𝐼𝜓 𝐼 + 𝑒𝐿)

2.2.6 Pressure forces
The pressure coefficient is computed from the gradient of the perturbation potential as

𝐶𝑝 = −
2∇𝜙 · 𝑉∞
|𝑉∞ |2

−
(
|∇𝜙 |
|𝑉∞ |

)2
(17)

from which the static pressure is computed as

𝑝 = 𝑝∞ +
1
2
𝜌∞𝑉

2
∞𝐶𝑝 (18)
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The pressure forces are integrated over the surface in the deformed configuration Γ𝐵 ∋ x and
mapped to the nodes, 𝐼, in the structural analysis grid that support the reference configuration
Γ�̂� ∋ x̂ as

f𝐼 =
∫
Γ𝐵

𝜑𝐼 (x̂(x))𝑝n 𝑑Γ (19)

where, the displacements deform the reference configuration as

x = x̂ + u𝐼𝜑𝐼 (x̂) (20)

Although unlike in [3] the structural geometry in this work contains the interface Γ�̂�, the same
arguments hold to show this transfer scheme is consistent and conservative.

2.3 Elastic deformation

We solve the linear (small-strain) elasticity equations with the standard finite element method.
The geometry is discretized by an element-uniform density field on a fixed non-conforming grid.
The elastic stiffness tensor in each element is interpolated as

𝐶𝑒𝑖 𝑗 𝑘𝑙 = 𝐶
void
𝑖 𝑗 𝑘𝑙 + 𝜒(x

𝑒) (𝐶solid
𝑖 𝑗 𝑘𝑙 − 𝐶

void
𝑖 𝑗 𝑘𝑙 )

where x𝑒 is the centroid of element 𝑒, 𝜒(x) is the element volume fraction function given in
equation (3), 𝐶void

𝑖 𝑗 𝑘𝑙
is a small isotropic elastic stiffness assigned to void regions to avoid an

ill-posed analysis and 𝐶solid
𝑖 𝑗 𝑘𝑙

is the elastic stiffness tensor of the solid material.

The resulting system of equations is

[𝐾] [𝑢] = [ 𝑓 ] (21)

where [𝐾] is the stiffness matrix, [𝑢] is the vector of nodal displacements, and [ 𝑓 ] is the vector
of nodal forces corresponding to equation (19). To obtain a well-posed system, we simply
prescribe zero displacement to the root chord and defer consideration of inertia relief to future
work.

2.4 Coupled solution

The symmetric positive definite system for each independent discipline can be solved by a
highly efficient multigrid-preconditioned conjugate gradient method. However, the coupling is
nonlinear and the tangent Jacobian matrix for the coupled residual is not symmetric. We solve
the Newton iteration for coupled residual by the block-Jacobi method, resulting in the following
iteration to update each Newton step


𝛿𝜓

𝛿𝑤

𝛿𝑢

 ←

𝐴−1(𝑏 + D(𝛿𝑤,𝛿𝑢) (𝑏(𝑤, 𝑢) − 𝐴(𝑢) · 𝜓))
𝐴
−1(𝑏 + D(𝛿𝜓,𝛿𝑢) (𝑏(𝜓, 𝑢) − 𝐴(𝑢) · 𝑤))

𝐾−1( 𝑓 + D𝛿𝜓 ( 𝑓 (𝜓)))

 −

𝜓

𝑤

𝑢


where D(𝛿𝑎,𝛿𝑏) = 𝛿𝑎 · 𝜕𝑎 + 𝛿𝑏 · 𝜕𝑏 denotes a multi-variable directional derivative, and we
have dropped the convention of enclosing unindexed matrices in brackets for clarity. Notably,
the function 𝐴(𝑢) = −𝐸𝐿𝐿 on the configuration perturbed by displacement 𝑢, and 𝑏(𝜓, 𝑢) =
(𝐸𝐿 𝐼𝜓 𝐼 + 𝑒𝐿) on the configuration perturbed by 𝑢.
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2.4.1 Adjoint Design Sensitivities
The design sensitivity of quantities 𝑄 that depend on the coupled state 𝑆 can be efficiently
computed by the adjoint method. In general, the design variables 𝑋 define the geometry, flow
conditions and material properties (collectively referred to as the input, 𝐼). The chain rule maps
input sensitivities, 𝜕𝐼 , to design sensitivities, 𝜕𝑋 , as a directional derivative with respect to the
design sensitivity of the input, 𝜕𝑋 = 𝜕𝑋 𝐼 · 𝜕𝐼 .

We overload the symbol 𝑄 to also represent the map 𝑄(𝑋) : 𝑋 ↦→ 𝑄 that abstracts away the
dependence on the coupled state. To avoid a collision of symbols, we denote by Q the map
Q(𝑆) : 𝑆 ↦→ 𝑄 that describes the dependence on the coupled state. With this notation, we have
the following identity

𝑄(𝑋) = Q(𝑆(𝐼 (𝑋)))
𝜕𝑋𝑄 = 𝜕𝑋 𝐼 · 𝜕𝐼𝑆 · 𝜕𝑆Q = 𝜕𝑋𝑆 · 𝜕𝑆Q

In general, 𝜕𝑆Q is easily computed, but directly computing 𝜕𝑋𝑆 requires a coupled solution for
each design variable 𝑋 . When 𝑄 is smaller than 𝑋 , the adjoint approach is preferred because a
coupled adjoint solution is required for each 𝑄.

In the adjoint approach, we differentiate the state equation to eliminate 𝜕𝑋𝑆. Let 𝑅 + 𝑆 · 𝜕𝑆𝑅 = 0
denote the linearized vector residual equation of the coupled state, then

𝜕𝑋 (𝑅 + 𝑆 · 𝜕𝑆𝑅) = 0
𝜕𝑋𝑅 + 𝜕𝑋 (𝜕𝑆𝑅)⊤ · 𝑆 = 𝜕𝑋𝑆 · (−𝜕𝑆𝑅)

[𝜕𝑋𝑅 + 𝜕𝑋 (𝜕𝑆𝑅)⊤ · 𝑆] · (−𝜕𝑆𝑅)−1 = 𝜕𝑋𝑆

Thus, eliminating 𝜕𝑋𝑆 yields

𝜕𝑋𝑄 = [𝜕𝑋𝑅 + 𝜕𝑋 (𝜕𝑆𝑅)⊤ · 𝑆]︸                       ︷︷                       ︸
𝑋𝑆

· (−𝜕𝑆𝑅)−1 · 𝜕𝑆Q︸              ︷︷              ︸
𝑆𝑄

where 𝑆𝑄 is the adjoint solution and 𝑆 is the primal solution. Although the primal state 𝑆 is
governed by a nonlinear system, the system of equations governing the adjoint state 𝑆𝑄 is linear.
The matrix 𝑋𝑆 is the design sensitivity of the linearized residual holding the state 𝑆 constant. In
the case 𝑋 is small, 𝑋𝑆 can be computed quite efficiently via finite differences, and accurately by
employing a complex step. However, the sparsity of the input sensitivity of the linearized residual
holding 𝑆 constant, 𝐼𝑆 = 𝜕𝐼𝑅 + 𝜕𝐼 (𝜕𝑆𝑅)⊤ · 𝑆, often renders the design sensitivity computed as
𝜕𝑋𝑄 = 𝜕𝑋 𝐼 · 𝐼𝑆 · 𝑆𝑄 for an analytical 𝐼𝑆 more efficient than finite differencing the residual.
Moreover, a very memory-efficient computation is achieved with a matrix-free implementation
which we denote as (𝜕𝑋 𝐼, 𝑆𝑄)𝐼𝑆 ≡ 𝜕𝑋 𝐼 · 𝐼𝑆 · 𝑆𝑄 .

To be generic, the adjoint solver accepts the state sensitivity of arbitrary quantities 𝜕𝑆Q and the
design sensitivity of inputs for arbitrary designs 𝜕𝑋 𝐼, internally stores the state variables 𝑆 from
the primal solution, and computes design sensitivities 𝜕𝑋𝑄 according to algorithm 2.

3 CONCLUSIONS

The proposed approach to static aeroelastic analysis avoids mesh perturbation and remeshing
by solving potential-based lifting pressures coupled to structural displacements by mapping the
geometry to a fixed grid for analysis. By avoiding the conventional boundary element method, the
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Algorithm 2: Adjoint computation of design sensitivities
inputs: 𝜕𝑋 𝐼, 𝜕𝑆Q, output: 𝜕𝑋𝑄
𝑆𝑄 ← (−𝜕𝑆𝑅)−1 · 𝜕𝑆Q
𝜕𝑋𝑄 ← (𝜕𝑋 𝐼, 𝑆𝑄)𝐼𝑆

resulting coupled equations are sparse and can be resolved accurately by an efficient multi-grid
preconditioned solver. Since all of the mappings to the analysis grid are differentiable, the method
supports the efficient adjoint computation of design-sensitivities for quantities dependent on the
coupled aeroelastic state. By circumventing the need to rebuild or deform the analysis mesh,
our proposed solver eliminates a costly step required in conventional approaches. Moreover,
by mapping geometric features to an implicit representation, topological operations defining
the structural geometry are substantially more robust and efficient compared to B-rep Boolean
operations. Although presented in the context of static aeroelasticity with a potential-based
fluid model and small-strain linear elasticity, the proposed approach could also be extended
to higher fidelity flow solvers based on the Euler or Navier-Stokes equations, and to nonlinear
(finite-strain) elasticity.
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APPENDIX

Here we derive the integrals of the Green’s functions for a semi-infinite dipole strip in 2d and
3d. Let x̂, ŷ, ẑ be orthogonal unit vectors. The ray along x̂ emitting from the origin is

𝑈 = {𝑡 x̂ : 𝑡 ∈ [0,∞)} .

The Green’s functions that satisfy Δ𝐺 = 𝛿 with 𝐺 = 0 as 𝑟 → ∞ where 𝑟 is the distance from
the origin are

𝐺 (𝑟) =
{

log(𝑟)
2𝜋 , in 2d
− 1

4𝜋𝑟 , in 3d .

Integrating the directional derivative of 𝐺 at a point 𝑥x̂ + 𝑦ŷ + 𝑧ẑ with respect to ŷ over𝑈 gives

𝐺𝑦 (𝑥, 𝑦, 𝑧) =
∫ ∞

0
𝜕𝑦 (𝐺 ◦ 𝑟) (𝑥 − 𝑡, 𝑦, 𝑧) 𝑑𝑡 =



1
2𝜋 arctan(𝑦,−𝑥)︷                            ︸︸                            ︷

𝑦

|𝑦 |

[
1
4 +

1
2𝜋

𝑥
|𝑥 | arctan |𝑥/𝑦 |

]
, in 2d

1
4𝜋

𝑦

𝑦2+𝑧2

[
1 + 𝑥√

𝑥2+𝑦2+𝑧2

]
, in 3d .

(22)
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In 3d, the integral over a semi-infinite rectangle of width ℎ is

𝐺𝑦 (𝑥, 𝑦, 𝑧; ℎ) =
∫ ℎ/2

−ℎ/2
𝐺𝑦 (𝑥, 𝑦, 𝑧 − 𝑡)𝑑𝑡

=
1

4𝜋

(
arctan 𝑎+ + arctan 𝑎− + 𝑥𝑦

|𝑥𝑦 | (arctan 𝑏+ + arctan 𝑏−)
)
,

where

𝑎± =
𝑐±

𝑦
, 𝑏± =

|𝑥/𝑦 |𝑐±
√
𝑑±

, 𝑑± = 𝑥2 + 𝑦2 + (𝑐±)2 , 𝑐± = ℎ/2 ± 𝑧 .

(23)

The directional derivative of 𝐺𝑦 along a vector 𝑛𝑥 x̂ + 𝑛𝑦ŷ + 𝑛𝑧ẑ is

𝜕𝑛𝐺𝑦 =
1

4𝜋

∑︁
±

{
𝐴±

(
−
𝑛𝑦

𝑦
± 𝑛𝑧
𝑐±

)
+ 𝐵±

[(
1
𝑥
− 𝑥

𝑑±

)
𝑛𝑥 +

(
− 1
𝑦
− 𝑦

𝑑±

)
𝑛𝑦 ±

(
1
𝑐±
− 𝑐
±

𝑑±

)
𝑛𝑧

]}
,

where

𝐴± =
𝑎±

(𝑎±)2 + 1
, 𝐵± =

𝑏±

(𝑏±)2 + 1
.

(24)
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