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Abstract: The renaissance of neural networks in the scientific community in recent years
has brought new perspectives for improving the computational efficiency of traditional model-
ing techniques. Hamiltonian neural networks leverage the energy-preserving properties of the
Hamiltonian formalism to provide surrogate models with increased interpretability compared to
conventional feed-forward models. In this study, we employ a lumped-mass multibody method
to derive the equations of motion of two highly flexible structures. We perform a model order
reduction via modal decomposition while preserving the nonlinearities with the use of exact
kinematic relations. After validating full- and reduced-order models, we use them to produce
datasets and train the neural networks, which serve as ready-to-use surrogate models. Prelimi-
nary findings show that the surrogate models based on neural networks can significantly reduce
the time necessary to simulate the free response of the structures. Furthermore, we demonstrate
that surrogate models based on Hamiltonian neural networks have energy-preserving capabil-
ities, maintaining accuracy levels even for long simulations. Due to their architecture, when
external loads are considered, the surrogate models require the analytical calculation of the
generalized forces, jeopardizing the efficiency gains obtained by our approach. We also present
initial findings on the use of neural networks for faster aerodynamic models for flexible air-
craft, particularly as surrogate models for the vortex-lattice method. By using a neural network
as the aerodynamic surrogate model in a specific flexible aircraft simulation framework, the
computational costs were reduced by a factor of 100 on average. The outcomes of this study
demonstrate that surrogate models based on neural networks can soon become an efficient and
reliable alternative for modeling arbitrarily flexible aircraft, provided the current limitations are
addressed.

1 INTRODUCTION

As the world faces climate change, the aeronautical industry is developing and improving solu-
tions aimed at reducing the environmental impact of aviation. Since the late 1960s, the aspect
ratio of lifting surfaces has increased and become an important asset for enhancing aerodynamic
performance, as illustrated in Figure 1. New aircraft designs combine the use of modern mate-
rials and structural optimization to improve resistance while reducing structural weight. These
advancements allow for higher aspect ratio lifting surfaces, significantly reducing drag, which
leads to reduced fuel consumption and increased flight range.
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Figure 1: Aspect ratio trends for commercial aircraft
wings since the end of 1960s [1].

Figure 2: X-HALE-BR prototype, a highly flexible air-
craft [2].

Despite their advantages, high aspect ratio lifting surfaces suffer from a serious drawback: high
structural flexibility. In addition to material and geometrical nonlinearities, highly flexible struc-
tures aggravate the coupling between structure and airflow dynamics. Moreover, it is often nec-
essary to consider unsteady aerodynamic models and the effects of high angles of attack [3].
Some mathematical models for highly flexible aircraft (such as the one depicted in Figure 2)
have been derived so far (see [4, 5]), however, these models are computationally demanding
and impractical for real-time simulations, posing challenges in design optimization and control
projects.

The recent resurgence of neural networks, enabled by improvements in computational power,
has recently provided outstanding solutions for benchmark problems in various fields. In exact
sciences, this trend has been fueled by the emergence of scientific machine learning [6], where
traditional machine learning is combined with physically-based modeling techniques to obtain
efficient and reliable surrogate models. Particularly, some interesting scientific machine learn-
ing models leverage energy-preservation principles, such as Lagrangian neural networks [7],
Hamiltonian neural networks [8–10], and port-Hamiltonian neural networks [11].

This study investigates how Hamiltonian neural networks (HNNs) can be used as surrogate
models for two highly flexible structures and how they perform compared to a reduced-order ref-
erence model derived from the modal decomposition of a full-order model based on a lumped-
mass multibody approach. We examine whether incorporating the underlying physics provided
by HNNs offers improvements over a baseline surrogate model obtained from a conventional
feed-forward neural network, also known as a multi-layer perceptron (MLP). As our future goal
is to model flexible and highly flexible aircraft, we also offer preliminary insights into employ-
ing neural networks to accelerate low-fidelity aerodynamic models, particularly those based on
the vortex-lattice method.

The text is organized such that in Section 2 we derive the full- and reduced-order reference
models for highly flexible slender beams. In Section 3 we describe the architecture of the
Hamiltonian neural networks and how they differ from conventional feed-forward neural net-
works. We validate our reference models in Section 4, where we also compare the efficiency
and accuracy of the surrogate models by simulating a highly flexible beam and a highly flexible
beam-like wing under various free and forced conditions. Section 5 presents perspectives and
preliminary outcomes of using neural networks as replacements for the vortex-lattice method.
Finally, in Section 6, we conclude our work, summarizing the main outcomes and limitations
found, and presenting interesting perspectives for future research.
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The following conventions are assumed throughout this text: matrices are written in uppercase
bold letters (e.g. A), vectors in lowercase bold letters (e.g. a), scalars in italic uppercase or
lowercase letters (e.g. A or a), time derivatives are represented using Newton’s notation (e.g.
ȧ), and functions are denoted by the symbolic letter f .

2 THE REFERENCE HIGHLY FLEXIBLE BEAM MODEL

We derive the reference structural model used in this study from a straightforward methodology
presented in [12] and [13]. Using the principles of rigid multibody dynamics combined with a
lumped mass distribution and Hamiltonian mechanics, a highly flexible cantilever beam can be
discretized into a number N of rigid elements. These elements are connected to the clamping
point through ideal joints: rotary joints are used for out-of-plane bending, in-plane bending, and
torsion deformations, while linear joints are used for axial deformation.

Figure 3 illustrates how the discretization scheme works for out-of-plane bending deforma-
tion. The discretization of the other deformation modes follows analogously. The discretization
mentioned implies that any joint i can be associated with the generalized coordinate qi.

The number of degrees-of-freedom n of the system is given by the number of elements of the
discretized beam multiplied by the number of deformation modes nd = {nd ∈ N : nd ≤ 4}
considered. In this study, we assume that only out-of-plane bending and torsion deformation
modes are relevant, therefore n = 2N .

The kinematic relations of the structure require 2N+1 orthonormal reference frames defined in
Cartesian coordinate systems: (i) one global reference frame G, inertial and with origin at the
clamping point; (ii) N local undeformed frames Ui, inertial and defining at the origin of each
i-th undeformed element; and (iii) N local deformed frames Di, defined at the origin of each
i-th deformed element. Figure 4 illustrates the different reference frames used.

Figure 3: Beam discretization for out-of-plane bending
deformation.

Figure 4: The reference frames used to describe the po-
sition of the elements in the structure.

The position vector r of an arbitrary point P at element i in the global frame is given by:

rP,i = CG/Ui
CUi/Di

rP,i,Di
, (1)

where CG/Ui
:= f(q1,1, q1,2, ..., qk,i) is a function of all generalized coordinates associated with

all k degrees-of-freedom from the first until the i-th element. In other words, it is the rotation
matrix from the local undeformed frame to the global inertial frame. CUi/Di

:= f(ψ, θ, ϕ) is the
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rotation matrix from the local deformed frame to the local undeformed frame, and it is defined
by the angles of rotation ψ, θ and ϕ of the undeformed structure relative to the global reference
frame, assuming the 3-2-1 Euler angles convention.

In the Hamiltonian formalism, the equations of motion for the k-th degree-of-freedom of a
holonomic system subjected to conservative, nonconservative, and dissipative forces, assume
the following form:

q̇k =
∂H
∂pk

,

ṗk =− ∂H
∂qk

− ∂R
∂q̇k

+Qk,

(2)

where qk and pk are the generalized coordinate and momentum of the k-th degree-of-freedom,
respectively. H := f(q,p) is the Hamiltonian function, R := f(q̇) is the Rayleigh dissipation
function, and Qk := f(t,q) corresponds to the generalized forces caused by external forces
acting upon the k-th degree-of-freedom.

2.1 Full-Order Model

The Hamiltonian function can be obtained by the sum of kinetic and potential energies, as it is
in our system. Luckily, in our system the kinetic energy T is not explicitly dependent on time,
being given simply by a quadratic term on the generalized velocities, i.e.,

T =
1

2
q̇⊤ (J⊤M J + I

)
q̇, (3)

where M is the mass matrix and J := f(q) is the Jacobian matrix relative to the center of mass
position of each element with respect to the generalized coordinates. The Jacobian matrix can be
calculated using a numerical differentiation scheme, for instance, the complex step method [14].
The mass moment of inertia matrix I is non-zero only if we assume torsion deformations.

Even though the gravitational forces arise from a conservative potential, we decided to include
its contribution in the generalized forces term. Therefore, the potential energy of the system is
simply due to the elastic potential of the joints. Hence, the potential energy U of the system can
be expressed by:

U =
1

2
q⊤K q, (4)

where K represents the stiffness matrix composed of the stiffness coefficients of the joints as-
sociated with each degree of freedom.

The Rayleigh dissipation function R represents velocity-dependent dissipative forces in a gen-
eralized form, convenient to the Hamiltonian formalism. It can be written as:

R =
1

2
q̇⊤C q̇, (5)

where C defines the damping matrix. In this study, we assume damping coefficients proportional
to the structural stiffness by factors βk, therefore C = Kβ.

After some manipulation, Equation 2 can be arranged in the following matrix form:

q̇ =
(
J⊤M J + I

)−1 p,

ṗ =− K q − C q̇ − ∂

∂q

[
p⊤ (J⊤M J + I

)−1 p
]
+ Q.

(6)
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A derivative term concerning q appears in Equation 6 and is related to gyroscopic effects. This
term is computationally demanding and its effect on the solution is usually irrelevant, as demon-
strated by [12] for a similar system. Henceforth, when mentioned, the term reference full-order
model (or simply full-order model - FOM) refers to the following set of equations:

q̇ =
(
J⊤M J + I

)−1 p,
ṗ =− K q − C q̇ + Q.

(7)

It is important to mention that the nonlinearities in the equations of motion 7 are present since
the Jacobian is a function of the generalized coordinates and computed using the exact kinematic
relations demonstrated by Equation 1.

2.2 Reduced-Order Model

To derive a reduced-order model, we linearize the equations of motion 7 around an equilibrium
position. The equilibrium solution can be calculated by setting all time-dependent terms to zero,
as follows:

Kq − Q = 0. (8)

The solution of the system of equations 8 can be found using an iterative scheme such as the
Newton-Raphson method.

Once the equilibrium solution qeq is known, we can calculate the eigenvalues λ and modal
matrix Φ from the following equation:[

K − λ
(
J⊤

eq M Jeq + I
)]

Φ = 0, (9)

where Jeq is the Jacobian matrix at equilibrium condition, i.e. for q = qeq.

The eigenvectors (columns) of the modal matrix Φ ∈ Cn×n calculated in Equation 9 can be
reordered for a convenient arrangement of the eigenvalues, e.g. in descending order if we are
interested in the low-frequency modes. We can truncate the modal matrix, such that the reduced
modal matrix is Φr ∈ Cn×r, in which only the first r modes (lowest frequencies) are considered.
Since usually r ≪ n, we have a reduced-order model.

The reduced-order reference model (or simply reduced-order model - ROM) can be assembled
by substituting the generalized coordinates with the modal coordinates in the full-order model
given by Equation 7, considering the variable transformation q = Φrη and yielding:

η̇ =
[
Φ⊤

r

(
J⊤ M J + I

)
Φr

]−1 pr,

ṗr =−Φ⊤
r KΦr η −Φ⊤

r CΦr η̇ +Φ⊤
r Q,

(10)

where pr is referred to as modal momenta and is consistent with the variable transformation
applied to the generalized coordinates. Moreover, the Jacobian matrix in this case is a function
of the modal coordinates, J = f(η).

3 HAMILTONIAN NEURAL NETWORKS

Conventional feed-forward neural networks, also known as multi-layer perceptrons (MLPs),
learn and generalize directly from data, not relying on any physical constraint. For a Hamil-
tonian system, a well-trained MLP model can predict the time derivatives of the generalized
coordinates and momenta, as depicted in Figure 5.
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MLP models, however, tend to cause energy to drift with time, not adhering to the energy
conservation principle. A solution to this problem has been proposed by [8]: to parameterize the
Hamiltonian function with a neural network, learning it directly from data, instead of crafting it
by hand using domain-specific knowledge. This architecture was called the Hamiltonian neural
network (HNN).

In their forward pass, Hamiltonian neural networks receive generalized coordinates and mo-
menta as inputs and, using an MLP as a subnetwork, parameterize an energy-like scalar Ĥ. The
gradients of this scalar are taken with respect to the inputs using automatic differentiation, as
illustrated in Figure 6. Finally, we compute and optimize the following L2 loss function:

Figure 5: Multi-layer perceptron (MLP) architecture. Figure 6: Hamiltonian neural network architecture.

For HNN models, the following L2 loss function has to be minimized:

L =

∥∥∥∥∥∂Ĥ∂p
− ∂q
∂t

∥∥∥∥∥
2

+

∥∥∥∥∥∂Ĥ∂q
+
∂p
∂t

∥∥∥∥∥
2

. (11)

With this strategy, HNNs learn conserved quantities analogous to the total energy directly from
data and in an unsupervised manner. Ref. [8] has found other interesting properties of HNNs
besides the conservation laws: HNNs are perfectly reversible in time - the mapping of the gener-
alized variables at one time to another time is bijective - and the conserved quantity (analogous
to the total energy) can be manipulated by integrating it along the gradient of the Hamiltonian.

A slightly different neural network architecture, named dissipative-Hamiltonian neural network
(D-HNN), was proposed in [9]. The idea is to extend the HNNs by including a second MLP
subnetwork to separately learn a scalar D̂, analogous to a dissipative function, as depicted in
Figure 7. In the D-HNN framework, an implicit Helmholtz decomposition of the vector field
is performed, separately extracting its conservative (rotational) and dissipative (irrotational)
components.

Figure 7: Dissipative-Hamiltonian neural network architecture.
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For D-HNNs, the L2 loss function in this case assumes the following form:

L =

∥∥∥∥∥
(
∂Ĥ
∂p

+
∂D̂
∂q

)
− ∂q
∂t

∥∥∥∥∥
2

+

∥∥∥∥∥
(
−∂Ĥ
∂q

+
∂D̂
∂p

)
− ∂p
∂t

∥∥∥∥∥
2

. (12)

The minimization of the loss function for HNN and D-HNNs follows the same procedure as
for an MLP model and can be achieved by using an optimization algorithm, such as stochastic
gradient descent.

4 RESULTS

In this section, the main findings of this study are presented. First, we show validation results
for the reference models derived in Section 2. Next, we describe the datasets and training hy-
perparameters chosen for the neural network models. And, finally, we explore the performance
of the surrogate models based on Hamiltonian neural networks when applied to highly flexi-
ble beams. We simulate free and forced responses for a highly flexible cantilever beam and a
highly flexible beam-like wing, comparing the computational cost (wall-clock simulation time)
and accuracy relative to reference and baseline models.

4.1 Validation of Reference Models

We investigate how well the full- and reduced-order reference models derived in Section 2 can
represent the dynamics of a highly flexible cantilever beam considered in [15,16]. The relevant
properties of the structure are summarized in Table 1. We simulated the out-of-plane bending

Table 1: Properties of the highly flexible cantilever beam.

Linear mass density 0.2 kg/m
Length 1 m
Out-of-plane bending stiffness 50 N·m2

response of the structure acted upon the same load conditions investigated by [16], assuming
their results as our ground truth. Unfortunately, since the actual numerical data was unavailable,
we estimated it from the graphs presented in their work. Hence, only a qualitative analysis was
possible.

Setting a full-order model with N = 10 and a reduced-order model with r = 1, we created a
simulation framework in Python using an implicit Runge-Kutta integration method of the Radau
IIA family of 5th-order (Radau method of the SciPy library) considering default tolerances.

For the static analysis, we compared the tip position under different upward load magnitudes
Fz acting at the free tip of the beam. In the dynamic analysis, we compared the time history of
the tip position considering a time-dependent vertical tip load Fz = 10 sin (50t), intentionally
exciting the beat effect over the structure. Figures 8 and 9 depict validation examples in which
both numerical models succeeded in representing static and dynamic behaviors of the structure,
respectively.

The shown examples showcase the ability of the proposed models to accurately represent ge-
ometrical nonlinearities, which can be seen by out-of-plane deflections (z-axis) equivalent to
more than 50% of the length of the beam.
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Figure 8: Equilibrium tip position under different static vertical tip load conditions.

Figure 9: Tip position time history for the structure under the dynamic load condition.

The second structure we consider in this study is the highly flexible beam-like wing proposed
by [17] for aeroelastic analyses. Unlike the original structure, however, we modified some
properties and included an offset between the elastic axis and center of gravity, allowing torsion
deformations to develop. The main properties of the highly flexible wing are summarized in
Table 2.

Table 2: Properties of the highly flexible wing.

Linear density 0.75 kg/m
Length 16 m
Chord (c) 1 m
Mass moment of inertia 0.75 kg·m2

Chordwise elastic-axis 0.5c m
Chordwise center of gravity 0.267c m
Out-of-plane bending stiffness 2× 104 N·m2

Torsion stiffness 1× 103 N·m2

To validate the full- and reduced-order models derived for the wing, we compare the frequencies
of the first 9 modes of vibration considering the results obtained by [12] as reference. A FOM
with n = 16 and a ROM with r = 3 are assumed in this analysis.
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Table 3: Comparison of natural frequencies (in rad/s) of the system using different models.

Mode 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

FOM 2.21 9.55 13.78 27.39 36.38 46.69 63.14 65.05 80.53
ROM 2.21 9.59 13.83 27.63 37.02 47.14 64.28 67.54 84.65

Reference 2.21 9.55 13.78 27.39 36.38 46.69 63.14 65.05 80.53

The results shown in Table 3 emphasize the capability of both models in representing the dy-
namics of the wing when bending and torsion are coupled, especially for the reduced-order
model. However, it can be noted that as frequencies increase, the ROM solution diverges from
the reference values. The full-order modeling technique used in this study is the same one
that produced the reference values in [12], thus the matching values seen in the table were
predictable.

4.2 Datasets and Training

The neural network models described in Section 3, namely MLP, HNN, and D-HNN, were
trained, generating the respective surrogate models for the systems we assumed as subjects of
our study. The artificial datasets used for training the neural networks were based on simula-
tions of the validated reduced-order models. While we considered a ROM with r = 1 for the
cantilever beam (obtained from a FOM with 10 elements), r = 3 was assumed for the highly
flexible wing (obtained from a FOM with 16 elements), analogously to the previous subsection.

The dataset for the highly flexible beam consists of the generalized coordinates and momenta as
input features and their time derivatives as outputs, which were obtained from 50 free-response
simulations considering pseudo-random initial conditions such that −π/9 ≤ qk ≤ π/9 rad and
0 ≤ pk ≤ 1.5 kg·m2/s. The simulation framework described in the previous subsection was
employed to run the simulations for 0 ≤ t ≤ 0.2 s using a timestep of 0.001 s. We used 80% of
the samples for training and the remaining for validation. Moreover, since the cantilever beam
is not subjected to structural damping, the D-HNN model would unnecessarily try to estimate a
dissipation function, therefore we did not consider it when analyzing this structure.

We aimed to compare the differences in performance of the different neural networks not only
relative to the reference model but also to the baseline MLP model, hence we decided all neural
network models would be set with the same hyperparameters. The hyperparameters were cho-
sen after testing different combinations of the number of neurons, activation functions, batch
size, and so on, in a tedious and perhaps the most challenging procedure of this study. We
defined the MLP and HNN models as having a single fully-connected layer with 128 neurons
and ELU activation function, which were trained for 5, 000 epochs in batches of size 64 using
the Adam algorithm with an initial learning rate of 1 × 10−5. At the end of the training, both
training and validation losses converged such that L ∝ 10−7.

Analogously to the procedure for the cantilever beam, the dataset for the highly flexible wing
was created but considering simulations for 0 ≤ t ≤ 1 s. We assumed structural damping in
the form described in Equation (5), such that βk = 0.1 and βk = 10 for the out-of-plane and
torsion degrees-of-freedom. The HNN model would not be adequate for this analysis since it
does not account for dissipation effects, therefore we only considered the baseline MLP and the
D-HNN models. After repeating the procedure for choosing the hyperparameters mentioned
previously, we defined both models as having a single fully-connected layer with 256 neurons
and ELU activation function, which were trained for 20, 000 epochs in batches of size 64 using
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the Adam algorithm with an initial learning rate of 1× 10−4. This time, training and validation
losses converged such that L ∝ 10−6.

4.3 Surrogate Models Using Hamiltonian Neural Networks
The surrogate models obtained by training the different neural networks mentioned in the last
subsection were used to simulate the two structures considered under different free and forced
response conditions.

We simulated the free response of the highly flexible cantilever beam for 30 seconds considering
10 different pseudo-random initial conditions. The mean and standard deviation of the compu-
tational cost (wall-clock time) relative to the reference model (ROM) was 1.29%±0.07% for the
HNN model and 0.78% ± 0.06% for the baseline MLP model. The simpler architecture of the
MLP certainly makes it faster to infer, explaining its better computational performance. Figure
10 shows the first 2 s of a simulation considering an arbitrary initial condition. The accuracy
achieved by both surrogate models is remarkable, at least for short-term simulation.

Figure 10: Tip position of the structure for an arbitrary free response simulation.

The neural network-based models were trained on datasets generated from free response sim-
ulations. Therefore, if we aim to use the surrogate models for cases involving external loads
applied to the system, an additional function call is required to calculate the corresponding gen-
eralized forces analytically and add them to the predicted time derivatives of the generalized
momenta. Figure 11 illustrates the modified structure of this surrogate model, which we refer
to as the augmented surrogate model.

Figure 11: Augmented surrogate model to account for external loads.

Using the augmented structure, we conducted 10 forced response simulations of 30 s consider-
ing the same dynamic load condition used during the validation of the reference model, however,
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the load was applied for an arbitrary period such that t ≤ 5 s.

The mean and standard deviation of the computational costs relative to the reference model for
the forced response simulations were 83.60%±4.63% for the HNN models and 82.72%±4.34%
for the MLP model. The surrogate models are still more efficient than the reference model,
however, the performance gains were much lower due to the need for the external function calls
to compute the generalized forces term.

Figure 12 depicts the simulation of the structure acted by the dynamic load condition for 2 s,
analogously to the conditions considered to produce the results during the validation step.

Figure 12: Tip position time history for the structure under a dynamic load condition.

The solution produced by the MLP seems to be not as accurate as it was for the free response.
We investigated this behavior and found that for all simulations tested the MLP tends to diverge
if we consider longer simulations. Unlike the HNN model, the MLP model does not preserve
the total energy of the system for long simulations, as depicted in Figure 13 for a simulation
considering the dynamic load acting for an arbitrary period. On the other hand, the HNN
solution fluctuates (possibly caused by the integration error) around the ground truth for the
whole simulation.

Figure 13: Total energy of the system as a function of time.

Turning our attention to the highly flexible wing structure, we used the MLP and D-HNN sur-
rogate models to simulate the free response of the structure also for 10 different pseudo-random
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initial conditions. An arbitrary solution is shown in Figure 14 in the form of time histories of
the tip position and twist angle.

Figure 14: Tip position and twist angle time histories for an arbitrary initial condition.

The relative computational cost of the D-HNN model was 12.38%± 4.07%, while for the MLP
model, it was 8.99%±4.13%, both relative to the reference model. Therefore, the computational
costs associated with the MLP are slightly advantageous for the test batch considered.

Considering the augmented surrogate model architecture presented previously, we conducted
10 simulations considering the application of the following tip force components:

Fi,y =

∫ L

0

0.5t2

[
1−

√
1−

(x
L

)2]
dx, (13)

Fi,z =

∫ L

0

2t2
√

1−
(x
L

)2
dx. (14)

The proposed forces mimic the lift and drag distributions over the wing and are applied for a
random period such that t ≤ 5. The tip position and twist angle time histories considering the
forces being applied for 5 seconds are depicted in Figure 15.

Both the MLP and D-HNN surrogate models again demonstrate similar accuracy. In this case,
the performance gains were considerably lower than for the free response case due to the need
for the analytical computation of the generalized forces. The relative computational cost of the
D-HNN model was 51.91%± 5.84%, while it was 56.39%± 2.56% for the MLP model.

Because of the structural damping, the energy drifting observed during the cantilever beam
analysis could not be seen for the highly flexible wing case. In such cases, the simpler MLP
architecture is faster than the D-HNN with comparable accuracy. However, it is worth high-
lighting that the Hamiltonian neural networks can be powerful tools for modeling dynamical
systems when energy conservation is a requisite. They provide a level of interpretability that is
not achievable with simple feed-forward models, making them more reliable options for engi-
neering applications.
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Figure 15: Tip position and twist angle time histories for the structure subjected to a dynamic tip load.

In this study, we explored only systems with a small number of degrees of freedom. How-
ever, we noted that when considering more complex systems, choosing the hyperparameters for
the neural networks becomes a challenging task, and the training times increase exponentially.
Therefore, further investigations are necessary to determine the applicability of the proposed
methodology for systems more complex than those we considered.

5 USING NEURAL NETWORKS FOR SURROGATE MODELING THE VORTEX-
LATTICE METHOD

The intricate coupling between aerodynamic forces and structural deformations present in the
dynamics of highly flexible aircraft demand modeling techniques of the highest complexity,
where simplifications are often inappropriate. Regarding aerodynamics modeling, unsteady
models that consider high angles of attack should be preferred [3], which often leads to pro-
hibitive computational costs.

Even for (non-highly) flexible aircraft, only a few methods can produce faster than real-time
simulations. An example can be found in [18] via combined algebraic optimizations of incre-
mental aerodynamic forces and linear reduced-order models for the aeroelastic and aerodynamic
lag state equations.

Preliminary findings from [19] indicate that the aerodynamics subroutine based on the vortex-
lattice method (VLM) is responsible for roughly 99% of the total computational cost to simulate
a flexible aircraft. In this analysis, however, the (linear) Rayleigh-Ritz method was chosen for
the dynamic-structural model, hence mass, stiffness, and aeroelastic transformation matrices are
calculated before the simulation. Despite that, this work introduced how simple feed-forward
neural networks can be used for the aerodynamics surrogate modeling of a fairly complex flex-
ible aircraft developed originally by [20] and called Generic Narrow-Body Airliner (GNBA).

The GNBA has 32.756 m of wing span, a fuselage length of 39.15 m, and a total mass of
55, 764 kg in the design weight (DW) configuration, which includes the operational empty
weight (OEW), payload, and fuel. A 3-dimensional representation of the GNBA and its DW
mass distribution are depicted in Figures 16 and 17, respectively.

13



IFASD-2024-132

Figure 16: The Generic Narrow-Body Airliner [20]. Figure 17: GNBA design weight configuration [20].

In this section, we employ most of the methodology described in [19] regarding the use of
neural networks to surrogate modeling the VLM for the GNBA. Two differences can be noted
in the present approach: (i) instead of using four different neural networks (one for each output
group: drag, longitudinal, lateral-directional, and generalized modal aerodynamic forces), we
concluded only one neural network is necessary; and (ii) instead of using the elegant Sobol
sequence for sampling, we simply assumed a pseudo-random combination of all features to
sample our input data.

Flexibility effects are included in the solution of the semi-steady VLM model by considering
structural displacements and velocities represented via modal coordinates η and velocities η̇
obtained from a reduced-order model assuming the six most influential modes of vibration on
the aerodynamic forces, namely the first, second, and fifth to eighth modes. As investigated
in [19], the third and fourth modes have little influence over the aerodynamic forces, allowing
us to neglect them.

The input data sum up to 25 features: Mach number M , altitude h, angle of attack α, angle of
sideslip β, reduced roll rate p/V , reduced pitch rate q/V , reduced yaw rate r/V (where V is the
aerodynamic speed), horizontal tail incidence angle it, left elevator deflection angle δe,L, right
elevator deflection angle δe,R, left aileron deflection angle δa,L, right aileron deflection angle
δa,R, rudder deflection angle δr, the six modal coordinates η, and the six reduced modal veloci-
ties η̇/V . Such variables were chosen due to their relevance in the VLM code for outputting the
following 12 aerodynamic coefficients: lift CL, drag CD, side force CY , pitching moment Cm,
rolling moment Cl, yawing moment Cn, and the six generalized modal aerodynamic forces Cφ.
The limits considered for each feature and the reasoning behind them can be found in [19].

Our dataset contains 4, 096 samples split in 80% for training and the remaining for validation.
The neural network architecture consists of a single hidden layer with 75 neurons and hyperbolic
tangent as the activation function. The training was carried out for 250 epochs by the Levenberg-
Marquardt algorithm on the Matlab® Deep Learning Toolbox™.

After training, the surrogate model is included in the simulation framework, replacing the VLM
subroutine. Considering the equilibrium state at straight and level flight at M = 0.7 and h =
10, 000 m, we linearized the equations of motion and obtained the eigenvalues corresponding to
the dynamical modes of the system, as depicted in Figure 18, comparing the results with those
from the VLM.

The proposed neural network predicted the dynamical modes with remarkable accuracy, in
which the major numerical discrepancy is seen for the 8th aeroelastic mode. The spiral mode
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Figure 18: Eingevalues of classical (rigid body) and aeroelastic modes around the trimmed condition.

also shows a reasonable distance from its original value, however, it is influenced by the scale
chosen for the graph, since numerically the difference is not expressive. A more in-depth study
would be necessary to investigate how the reported differences might impact, for example, the
design of control laws.

Further assessment of the surrogate model was made in a series of simulations of the nonlinear
equations of motion for different command inputs. We used a 4th-order Runge-Kutta integration
scheme in a Matlab® simulation framework, which was slightly adapted from the work of [19].
Figures 19-21 show the responses of longitudinal, lateral-directional, and aeroelastic states to
an elevator doublet command in which ∆δe,R = ∆δe,L = 5◦ for 0.5 < t ≤ 1.5 s and ∆δe,R =
∆δe,L = −5◦ for 1.5 < t ≤ 2.5 s.

The longitudinal states represented in Figure 19 are x-axis inertial velocity component u, z-axis
inertial velocity component w (both in the body-fixed reference frame), pitch rate q, pitch angle
θ, altitude h, and x-axis position x (in the inertial frame). The response results show a very close
relation between the neural network-based and the original values of the longitudinal states for
the period simulated.

On the other hand, the differences between the two approaches are visible for the lateral-
directional states, namely y-axis inertial velocity component v, roll angle ϕ, roll rate p, yaw
rate r, yaw angle ψ, and y-axis position y (in the inertial frame). Nonetheless, one may note the
variations of the states shown in Figure 20 are orders of magnitude smaller than those observed
for the longitudinal states. Therefore, the differences pointed out are of small relevance for short
simulations in this particular scenario, once the elevator doublet mainly excites the longitudinal
states.

Finally, Figure 21 depicts the response of the modal displacements to the elevator command.
Once again, the significant differences are of small magnitude and observed for the 2nd, 5th, and
8th aeroelastic modes, which are asymmetric and, therefore more sensitive to lateral-directional
excitation. The symmetrical modes (1st, 6th, and 7th) have very similar responses for both
methods, showcasing the good accuracy levels of the solutions produced by the neural network-
based model. It must be noted, however, that the differences observed may lead to compromis-
ing errors if long simulations are performed, such that further investigation is advised.
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Figure 19: Longitudinal states response due to the elevator doublet command.

Figure 20: Lateral-Directional states response due to the elevator doublet command.

The computational costs of simulating the GNBA were investigated by analyzing its response
to elevator, aileron, and rudder doublet commands for random trimmed states and command
deflection angles (within the limits used for the dataset) applied for the same time interval men-
tioned previously. Using an Intel® Core™ i7-11800H @ 2.30GHz×16 CPU and the same sim-
ulation framework described previously, we conducted 90 simulations (30 for each command
type), each lasting 5 s with a time step of 0.005 s.

During preliminary analyses, we found that the surrogate aerodynamic models could achieve
a reduction in simulation time of approximately 45%, which was lower than we expected. To
accelerate the neural network inference, we converted the neural network into a regular Matlab
function using the genFunction function. By doing this, we could finally see the expected
performance improvement at the cost of some accuracy loss. After some tests, we found that
the accuracy loss is proportional to 10−12, therefore negligible.
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Figure 21: Aeroelastic states response due to the elevator doublet command.

After running the 90 proposed simulations, the relative computational cost (ratio of wall-clock
time) between the surrogate model and the original VLM was 0.995% ± 0.025%. This means
an increase in computational performance by a factor of 100, on average. For instance, it can
take as little as 0.56 s in our CPU to simulate 5 s of the aircraft response by using the surrogate
aerodynamic model, instead of 56.7 s by using the VLM. This remarkable achievement opens up
a series of perspectives on the use of neural network-based models where real-time simulations
are necessary.

The work of [19] extends to more elaborate uses of neural networks by considering the lin-
earization of the VLM with respect to modal coordinates and the inclusion of second-order
terms present in the equations of motion as features of the neural network model, which proved
to be beneficial when the flexibility of the structure is increased.

Future research perspectives in this area are aimed at taking a step further and investigating
how arbitrarily (highly) flexible aircraft can leverage the benefits of surrogate modeling based
on neural networks. A promising area of investigation is the combination of dynamic-structural
surrogate models suitable for geometrically nonlinear structures, such as the one showcased in
Section 4, to more intricate aerodynamic models, for instance, the double-lattice method (DLM)
and stall models, which may be modeled using physics-informed neural networks (PINNs).

6 CONCLUSIONS AND FURTHER WORK

The increasing concerns about climate change are fueling disruptive technologies in the aero-
nautical industry. Higher aspect ratio lifting surfaces can lead to significant improvements in
aerodynamic performance, however, such structures have become more and more flexible, pos-
ing challenges for traditional modeling techniques and requiring the use of computationally
demanding solutions. To reduce the computational costs associated with the simulation of
highly flexible structures, we proposed to use Hamiltonian neural networks (HNNs) as sur-
rogate models, leveraging the energy-preserving character of the Hamiltonian formalism into
the framework of neural networks. We modeled two highly flexible beam-like structures us-
ing a lumped-mass multibody approach and derived a reduced-order model based on modal
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decomposition while preserving the geometrical nonlinearities with the use of exact kinematic
relations. After validating the reduced-order models, we assumed them as the reference models
used to create the dataset and train the neural network models. We compared the surrogate
models in terms of efficiency and accuracy against the reference model and a baseline surrogate
model based on a feed-forward (multi-layer perception - MLP) neural network.

The results indicate that the HNN surrogate models can drastically reduce the computational
costs associated with free response simulations: up to approximately 98% for the highly flexible
beam structure and up to 87% for the highly flexible beam structure. Even though the MLP
models can provide an additional 1 − 6% reduction in the computational cost, they are not
able to preserve energy, being unreliable for long-term simulations. On the other hand, a well-
trained HNN learns the energy conservation laws directly from data and delivers solutions of the
same order of accuracy as the reference model, even for long simulations. For forced-response
simulations, the architectures used for the surrogate models demand the computation of the
generalized forces in an external function, which ends up compromising the efficiency gains
obtained by the proposed approach.

We also investigated how neural networks can be used to surrogate modeling the aerodynamics
of flexible aircraft, particularly substituting the vortex-lattice method (VLM). Using a flexible
aircraft simulation framework available, we trained a neural network to predict the aerodynamic
coefficients, including the generalized modal aerodynamic forces caused by structural flexibil-
ity. Employing the neural network model we simulated the aircraft under 90 different trim
conditions and command inputs. The results show that not only did the neural networks provide
reasonably accurate solutions but can also improve the simulation framework efficiency by an
impressive factor of 100, on average.

In this study, we presented some interesting perspectives on the use of neural networks in the
context of flexible and highly flexible aircraft. We hope these perspectives enable deeper ad-
vancements in the area. Some topics for future investigation include removing the necessity of
analytically computing the generalized forces for the surrogate models, the use of data-free su-
pervised learning models, and finally, the combination of dynamic-structural and aerodynamic
surrogate models based on neural networks. Given the current state of the art, physics-informed
neural networks seem good candidates to produce interpretable and generalizable surrogate
models.
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Aeronáutica, São José dos Campos, São Paulo, Brazil.

[13] Rempel, M., Cardoso-Ribeiro, F. L., and Moreira, F. (2020). Lumped element multi-
body modeling approach for very flexible aircraft. In Proceedings of the XLI Ibero-Latin-
American Congress on Computational Methods in Engineering. Foz do Iguaçu, Paraná,
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