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Abstract: There is much current emphasis on the development of alternative aircraft propulsion 

technologies to enable much reduced, and eventually, net-zero in-flight commercial aircraft 

emissions. The success of this goal is not simply dependent upon the advancements in electric or 

hydrogen-powered propulsion systems, but also on how to integrate them into the aircraft 

structures. It is likely that distributed electric propulsion (DEP) configurations featuring small 

engines spaced across the wing will be the most viable solution. However, the adoption of these 

novel aircraft wing configurations might initiate the early onset of two potential aeroelastic 

instabilities: wing flutter and whirl flutter, which must be addressed in the early design stages of 

DEP aircraft wings. The main aim of this study is to create and evaluate a representative low-order 

aeroelastic coupled wing-propeller model for parametric aeroelastic studies that can be used in the 

flutter analysis at the early design stages. An aeroelastic numerical model was developed in 

MATLAB to analyse the aeroelastic behaviour of a coupled flexible cantilever wing with a variable 

number of flexibly mounted propellers/rotors. Reed’s model is employed to model the propeller 

dynamics, with the structural model of the wing being derived through the assumed-mode 

Rayleigh-Ritz method. The aerodynamic model of the wing was obtained from a combination of 

the modified strip theory and Theodorsen’s unsteady aerodynamic theory. The proposed coupled 

aeroelastic model can successfully estimate both wing and whirl flutter in DEP wings through 

validations with results from the literature. The model was then used for several parametric 

analyses investigating the effects of propeller spanwise position, advance ratio and rotor radius on 

the stability of the integrated wing-propeller system. The parametric studies demonstrated that 

advance ratio and rotor radius have a significant effect on the stability of the coupled wing-

propeller model. It was found that increasing the advance ratio has a destabilizing effect, whereas 

increasing the rotor radius has a stabilizing effect.  
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1 INTRODUCTION 

To decrease in-flight emissions in commercial aviation, there has been a significant focus on the 

idea of hybrid or fully electric aircraft in recent times [1, 2]. Unlike conventional aircraft powered 

by gas turbine engines, electric aircraft generate the necessary lift and thrust using propellers 

distributed along the wingspan, known as Distributed Electric Propulsion (DEP). Such a 

configuration enables zero-emission propulsion using multiple electric motors. Recent examples 

include the NASA X-57 Maxwell and DLR electric regional aircraft concepts, as seen in Figure 1. 

Owing to the current constraints in battery technologies, DEP aircraft typically feature high aspect 

ratio wings to enhance the aerodynamic efficiency and minimize the weight of the aircraft [3].   

 

Figure 1: Examples of Distributed Electric Propulsion Aircraft                                                     

a) NASA X-57 Maxwell [4], b) DLR EXACT [5] 

These novel aircraft wing configurations bring about the possibility of aeroelastic instabilities. 

Whirl flutter in particular occurs on aircraft with a flexibly attached propeller, and is defined by a 

diverging spiral motion caused by the precession of the propeller. Unlike classical wing flutter, 

which is caused by the interaction of aerodynamic, elastic, and inertial forces, whirl flutter is a 

result of the interplay between aerodynamic and gyroscopic forces acting on the propeller [6]. The 

onset of wing flutter or propeller whirl flutter can result in serious damage to aircraft structures 

and even fatal accidents. Hence, it is crucial to account for these aeroelastic instabilities during the 

initial design stages of DEP aircraft wings. 

Dynamic aeroelastic instabilities have been extensively studied in the context of classical wing 

flutter and propeller whirl flutter. For classical wing flutter, a structural model of a flexible wing 

is employed, coupled with an aerodynamic model being represented by suitable unsteady 

aerodynamics theories, such as the strip theory or Doublet-Lattice-Method (DLM). The classical 

whirl flutter theory is presented for a flexibly mounted rigid propeller in pitch and yaw in [7-10]. 

Additionally, the aerodynamics of the propeller is established based on the blade geometry for 

propellers operating under windmilling conditions in both pitch and yaw motions [11, 12]. For a 

coupled wing-propeller model, Bennett and Bland [10] delivered an analytical approach and 

compared it with experimental data.  

However, a limited number of investigations on the aeroelastic behaviour of DEP wings have been 

conducted, yet there is still potential for additional investigations. To understand the effect of 

propellers on the aeroelastic behaviour of the wing, a general methodology is also described in 

a) b) 
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[13]. Amoozgar et al. [14] devised a method to incorporate the influence of propellers on wing 

aeroelastic characteristics by representing the electric propeller as a concentrated mass on the wing 

and included the thrust force generated by the propeller as a follower force when formulating the 

aeroelastic governing equations. Heeg et al. [15] extensively investigated the stability of propeller 

whirl flutter during the development of the NASA X-57 Maxwell aircraft through multibody 

dynamics simulation tools. Böhnisch et al. [16-18] introduced an aeroelastic model to examine the 

whirl flutter of DEP wings and conducted various parametric studies on DEP wings. In their model, 

the propellers are attached to a flexible wing through rigid pylons that can move in both pitch and 

yaw directions. Recently, Tamer and Tatar [19] proposed a minimum complexity model for the 

aeroelastic analysis of wing-propeller systems. Their study primarily shows how rapidly the model 

can be updated during various parametric studies on DEP wings. Although the majority of these 

studies are based on finite element and finite element volume methods, which have advantages 

such as more accurate representation of the wing, lower-order models can still be useful for rapid 

analysis, optimization purposes, or real-time simulations.  

None of the aforementioned studies addressed the aeroelastic analysis of an electric aircraft wing 

featuring a DEP configuration using the Rayleigh-Ritz approach, which can offer several 

advantages due to its easy usage and reduced computational time. It maintains a large portion of 

accuracy, especially if enough assumed modes are used. Therefore, this study aims to create and 

evaluate a representative low-order aeroelastic coupled wing-propeller model in parametric 

aeroelastic studies that can be used in flutter analysis at the early design stages. The analysis is 

then used to examine the aeroelastic stability of a DEP aircraft wing. A systematic parameter 

analysis is conducted by changing the propeller position and propeller parameters such as advance 

ratio and rotor radius, identifying their impact on the stability of a representative DEP wing. The 

propeller parameters above are some of the major parameters that can influence whirl flutter. Their 

impact on an isolated propeller on a rigid wing has been well understood, whereas less research 

has considered the case of a propeller flexibly attached to a flexible wing and the resulting 

aeroelastic instabilities of DEP wings. This study presents a coupled aeroelastic model, which can 

be used in the preliminary design stages of DEP wings and discusses the results of several 

parametric analyses conducted on the stability of DEP wings.  

For this study, a baseline wing and propeller model are defined and used for  creating a coupled 

propeller-wing model. An aeroelastic numerical model is developed in MATLAB to analyse the 

aeroelastic behaviour of the coupled system with no aerodynamic interference effects between the 

wing and propeller for a freestream velocity range. Reed’s model is used to represent the propeller 

dynamics, while the wing's structural model is derived using the assumed-mode Rayleigh-Ritz 

method. The aerodynamic model of the wing is obtained by combining the modified strip theory 

with Theodorsen’s unsteady aerodynamics theory. The developed coupled aeroelastic model is 

subsequently used for several parametric analyses. The key findings are summarised in section 4. 

2 MATHEMATICAL MODELLING 

2.1 Derivation of Aeroelastic Equations of Motion of Standalone Wing  

The simple rectangular cantilever wing with semi-span 𝑠 and chord 𝑐 considered to derive the 

aeroelastic equations of motion has bending rigidity 𝐸𝐼 and torsional rigidity 𝐺𝐽. The equations of 

motion of a wing are composed of the structural model and the aerodynamic model. In this study, 

the structural model of the wing is represented by the Rayleigh-Ritz method, which is applied to 
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model the deformation of the two-dimensional wing system. At any point along the wing, the 

deformation 𝑧(𝑥,𝑦,𝑡) caused by bending and twisting is expressed by the following series [20] 

𝑧(𝑥, 𝑦, 𝑡) = ∑𝜓𝑖(𝑥, 𝑦)𝑞𝑖(𝑡)

𝑁

𝑖=1

  (1) 

In this series, 𝜓𝑖(𝑥, 𝑦) represents one of N assumed deformation shapes, while 𝑞𝑖(𝑡)  denotes the 

coefficients of generalized coordinates of the unknown magnitude. As the cantilever wing is 

clamped at the root, the following fixed boundary conditions are imposed. 

𝑧 = �̇� = 0  𝑎𝑡  𝑦 = 0 (2) 

Two mode shapes (one bending and one torsion) are assumed. For bending and twisting about an 

elastic axis, 

𝑧(𝑥, 𝑦, 𝑡) = ℎ + (𝑥 − 𝑥𝑓)𝛼 (3) 

where 𝑥𝑓 is the chord-wise position of the elastic axis from the leading edge. The bending ℎ and 

torsion 𝛼 deflections are expressed through the Rayleigh-Ritz in terms of mode shapes and 

generalized coordinates by 

ℎ(𝑦, 𝑡) =  (
𝑦

𝑠
)
2

𝑞ℎ                              𝛼(𝑦, 𝑡) = (
𝑦

𝑠
) 𝑞𝛼 (4)                                           

Using these generalized coordinates 𝑞𝑖(𝑡) and omitting the damping term, Lagrange's equations 

can be then expressed as 

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕�̇�𝑖
) −

𝜕𝑇

𝜕𝑞𝑖
+

𝜕𝑈

𝜕𝑞𝑖
+

𝜕𝐷

𝜕�̇�𝑖
= 𝑄𝑖              𝑖 = ℎ, 𝛼  (5) 

where 𝑄𝑖 denotes the generalized forces. T is the kinetic energy, U is the potential energy, and D 

is the dissipation or damping function.  The equations of motion of the wing can be derived through 

Lagrange’s equations. The kinetic energy of the wing is  

 

𝑇 =
𝑚

2
∫ ∫ (𝑧)̇ 2

𝑐

0

𝑠

0

𝑑𝑥 𝑑𝑦  

 

𝑇 =
𝑚

2
∫ ∫ ((

𝑦

𝑠
)
2

�̇�ℎ + (
𝑦

𝑠
) (𝑥 − 𝑥𝑓)�̇�𝑎)

2𝑐

0

𝑠

0

𝑑𝑥 𝑑𝑦  

 

where 𝑚 is mass per unit area. 

 

(
𝜕𝑇

𝜕�̇�ℎ
) = 𝑚 ∫ ∫ ((

𝑦

𝑠
)
4

�̇�ℎ + (
𝑦

𝑠
)
3

(𝑥 − 𝑥𝑓)�̇�𝑎) 𝑑𝑥 𝑑𝑦
𝑐

0

𝑠

0

 (6) 

 

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�ℎ
) = 𝑚 [

𝑠𝑐

5
�̈�ℎ +

𝑠

4
(
𝑐2

2
− 𝑐𝑥𝑓) �̈�𝑎]  

 

(
𝜕𝑇

𝜕�̇�𝑎
) = 𝑚 ∫ ∫ ((

𝑦

𝑠
)
3

(𝑥 − 𝑥𝑓)�̇�ℎ + (
𝑦

𝑠
)
2

(𝑥 − 𝑥𝑓)
2
�̇�𝑎) 𝑑𝑥 𝑑𝑦

𝑐

0

𝑠

0

  



IFASD-2024-129 

 5 

 

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�𝑎
) = 𝑚 [

𝑠

4
(
𝑐2

2
− 𝑐𝑥𝑓) �̈�ℎ +

𝑠

3
(
𝑐3

3
− 𝑐2𝑥𝑓 + 𝑐𝑥𝑓

2) �̈�𝑎]  

 

The potential energy caused by the strain energy effect over the wing is expressed as 

𝑈 =
1

2
∫ 𝐸𝐼 (

𝜕2𝑧

𝜕𝑦2
)

2𝑠

0

𝑑𝑦 +
1

2
∫ 𝐺𝐽 (

𝜕𝑎

𝜕𝑦
)
2𝑠

0

𝑑𝑦  

 

𝑈 =
1

2
∫ 𝐸𝐼 (

2

𝑠2
𝑞ℎ)

2𝑠

0

𝑑𝑦 +
1

2
∫ 𝐺𝐽 (

1

𝑠
𝑞𝑎)

2𝑠

0

𝑑𝑦 (7) 

 

(
𝜕𝑈

𝜕𝑞ℎ
) =

4𝐸𝐼

𝑠3
𝑞ℎ                     (

𝜕𝑈

𝜕𝑞𝑎
) =

𝐺𝐽

𝑠
𝑞𝑎  

Therefore, structural equations become 

𝑡𝑡𝑡𝑡𝑡

 𝑚

[
 
 
 
 

𝑠𝑐

5

𝑠

4
(
𝑐2

2
− 𝑐𝑥𝑓)

𝑠

4
(
𝑐2

2
− 𝑐𝑥𝑓)

𝑠

3
(
𝑐3

3
− 𝑐2𝑥𝑓 + 𝑐𝑥𝑓

2)
]
 
 
 
 

[
�̈�ℎ

�̈�𝑎
] + [

4𝐸𝐼

𝑠3
0

0
𝐺𝐽

𝑠

] [
𝑞ℎ

𝑞𝑎
] = [

0
0
] (8) 

 

In this study, the aerodynamic model is represented by a combination of the simplified Theodorsen 

method with the aerodynamic strip theory, incorporating unsteady aerodynamic derivative 𝑀�̇� to 

account for pitch damping. 𝑀�̇� = −1.2 is incorporated into the moment equation to enhance the 

model's flutter behaviour predictions [20]. To determine the total lift and moment, the lift (𝑑𝐿) 

and moment (𝑑𝑀) for each strip 𝑑𝑦 are provided in Equation (9). With the assumption of constant 

𝑀�̇�, this model remains unaffected by changes in the reduced frequency and thus  

 

𝑑𝐿 =
1

2
𝜌𝑉2𝑐𝑎𝑤 (𝑎 +

�̇�

𝑉
)                𝑑𝑀 =

1

2
𝜌𝑉2𝑐2 [𝑒𝑎𝑤 (𝑎 +

�̇�

𝑉
) + 𝑀�̇�𝑐

�̇�

4𝑉
] (9) 

where 𝑎𝑤 is the two-dimensional lift curve slope and 𝑒 denotes the eccentricity ratio between the 

elastic axis and the aerodynamic centre. The incremental work (𝑊) done by these forces and 

moments can be written as  

𝛿𝑊 = ∫ [𝑑𝐿 (− (
𝑦

𝑠
)
2

𝛿𝑞ℎ) + 𝑑𝑀 ((
𝑦

𝑠
) 𝛿𝑞𝑎)]

𝑠

0

 (10) 

 

With the addition of the incremental work done (𝑊) by the aerodynamic forces, the generalised 

forces are specified as  

𝑄𝑞ℎ
=

𝜕(𝛿𝑊)

𝜕(𝛿𝑞ℎ)
= −∫𝑦2𝑑𝐿 =

𝑠

0

−
1

2
𝜌𝑉2𝑐𝑎𝑤 ∫ ((

𝑦

𝑠
)
4 �̇�ℎ

𝑉
+ (

𝑦

𝑠
)
3

𝑞𝑎)
𝑠

0

𝑑𝑦  
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𝑄𝑞ℎ
= −

1

2
𝜌𝑉2𝑐𝑎𝑤 (

𝑠

5𝑉
�̇�ℎ +

𝑠

4
𝑞𝑎) (11) 

 

𝑄𝑞𝑎
=

𝜕(𝛿𝑊)

𝜕(𝛿𝑞𝑎)
= ∫(

𝑦

𝑠
)𝑑𝑀 =

𝑠

0

1

2
𝜌𝑉2𝑐2 ∫ [𝑒𝑎𝑤 ((

𝑦

𝑠
)
3 �̇�ℎ

𝑉
+ (

𝑦

𝑠
)
2

𝑞𝑎) + 𝑀�̇�𝑐 (
𝑦

𝑠
)
2 �̇�𝑎

4𝑉
]

𝑠

0

𝑑𝑦  

 

𝑄𝑞𝑎
=

1

2
𝜌𝑉2𝑐2 [𝑒𝑎𝑤 (

𝑠

4𝑉
�̇�ℎ +

𝑠

3
𝑞𝑎) + 𝑀�̇�𝑐 (

𝑠

12𝑉
�̇�𝑎)]  

Hence, aerodynamic equations become 

 

𝜌𝑉 [

−
𝑐𝑠𝑎𝑤

10
0

𝑐2𝑠𝑒𝑎𝑤

8

𝑐3𝑠𝑀�̇�

24

] [
�̇�ℎ

�̇�𝑎
] + 𝜌𝑉2 [

0 −
𝑐𝑠𝑎𝑤

8

0
𝑐2𝑠𝑒𝑎𝑤

6

] [
𝑞ℎ

𝑞𝑎
] (12) 

 

Implementing Lagrange’s equations to the expressions derived for the kinetic and potential energy 

of the wing yields the aeroelastic equations of motion of the wing given in Equation (13). 

𝑀�̈� + (𝜌𝑉𝐶𝑎𝑒𝑟𝑜 + 𝐶𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙)�̇� + (𝜌𝑉2𝐾𝑎𝑒𝑟𝑜 + 𝐾𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙)𝑞 = 0 (13) 

where 𝑞 is the vector of generalized coordinates, 𝑀 is the mass matrix, 𝐶𝑎𝑒𝑟𝑜 is the aerodynamic 

damping matrix, 𝐶𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 is the structural damping matrix, 𝐾𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 is the structural stiffness 

matrix and 𝐾𝑎𝑒𝑟𝑜 is the aerodynamic stiffness matrix. Equation (13) can be written in matrix form 

as 

𝑚

[
 
 
 
 

𝑠𝑐

5

𝑠

4
(
𝑐2

2
− 𝑐𝑥𝑓)

𝑠

4
(
𝑐2

2
− 𝑐𝑥𝑓)

𝑠

3
(
𝑐3

3
− 𝑐2𝑥𝑓 + 𝑐𝑥𝑓

2)
]
 
 
 
 

[
�̈�ℎ

�̈�𝑎
] + 𝜌𝑉 [

𝑐𝑠𝑎𝑤

10
0

−
𝑐2𝑠𝑒𝑎𝑤

8
−

𝑐3𝑠𝑀�̇�

24

] [
�̇�ℎ

�̇�𝑎
]  

+ {𝜌𝑉2 [

0
𝑐𝑠𝑎𝑤

8

0 −
𝑐2𝑠𝑒𝑎𝑤

6

] + [

4𝐸𝐼

𝑠3
0

0
𝐺𝐽

𝑠

]} [
𝑞ℎ

𝑞𝑎
] = [

0
0
] (14) 

  
Equation (14) is now in state-space form, which can be rearranged as 

[
�̇�
�̈�
] = [

0 𝐼
−𝑀−1(𝐾𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 − 𝐾𝑎𝑒𝑟𝑜) −𝑀−1(𝐶𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 − 𝐶𝑎𝑒𝑟𝑜)

] [
𝑞
�̇�] (15) 

where 𝟎 and 𝑰 denote two by two zero and identity matrices, respectively. The structural damping 

of the wing is neglected since 𝐶𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 is set to zero. 

The Jacobian matrix is then written as  

𝐽 = [
0 𝐼

−𝑀−1(𝐾𝑠𝑡𝑟𝑢𝑐𝑢𝑡𝑎𝑙 − 𝐾𝑎𝑒𝑟𝑜) −𝑀−1(𝐶𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 − 𝐶𝑎𝑒𝑟𝑜)
] (16) 
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The frequency and damping of the system can be calculated from the eigenvalues of the Jacobian 

matrix, while the mode shapes can be obtained from the corresponding eigenvectors. The 

undamped natural frequency ω and damping ratio ζ for a given mode are derived through the real 

and imaginary parts of its eigenvalue λ, as given in Equation (17). 

𝜔 = √𝑅𝑒(𝜆)2 + 𝐼𝑚(𝜆)2                        𝜁 =
−𝑅𝑒(𝜆)

𝜔
 (17) 

Increasing the number of terms incorporated into the model enhances the accuracy of the results. 

For two bending and two torsion assumed modes, the deflection can be represented as 

𝑧 =  (
𝑦

𝑠
)
2

𝑞ℎ1 + (
𝑦

𝑠
)
3

𝑞ℎ2 + (
𝑦

𝑠
) (𝑥 − 𝑥𝑓)𝑞𝑎1 + (

𝑦

𝑠
)
2

(𝑥 − 𝑥𝑓)𝑞𝑎2 (18) 

 

2.2 Derivation of Aeroelastic Equations of Motion of Standalone Propeller  

The references [12, 21, 22] describe a basic model of an isolated propeller with two degrees of 

freedom. In this model, a rotor with radius 𝑅 and angular velocity Ω, possessing a moment of 

inertia 𝐼𝑥 about its rotational axis, is allowed to move in both pitch 𝜃 and yaw 𝜓 about an effective 

pivot point with a moment of inertia 𝐼𝑛. The dynamics of the wing structure are represented by 

structural stiffnesses (𝐾𝜃, 𝐾𝜓) and structural damping (𝐶𝜃 , 𝐶𝜓) in both pitch and yaw directions at 

the pivot point. The rotor is attached to the pivot point at a distance of 𝑎𝑅. The schematic of the 

model is presented in Figure 2. Aerodynamic loads are calculated using the strip theory. 

 

 

Figure 2: Schematic of Rotor-Nacelle Dynamic System [21] 

The basic equations of motion for this rotor-nacelle dynamic system, as presented by Bielawa [21], 

can be expressed as 

𝐼𝑛�̈� + 𝐶𝜃�̇� − 𝐼𝑥Ω�̇� + 𝐾𝜃𝜃 = 𝑀𝜃 

𝐼𝑛�̈� + 𝐶𝜓�̇� + 𝐼𝑥Ω�̇� + 𝐾𝜓𝜓 = 𝑀𝜓 (19) 



IFASD-2024-129 

 8 

where 𝑀𝜃 and 𝑀𝜓 denote aerodynamic moments in pitch and yaw directions, respectively. The 

aeromechanical model of this dynamic system in matrix form can thus be defined as 

[
𝐼𝑛 0
0 𝐼𝑛

] [
�̈�
�̈�

] + [
𝐶𝜃 −𝐼𝑥Ω
𝐼𝑥Ω 𝐶𝜓

] [
�̇�
�̇�

] + [
𝐾𝜃 0
0 𝐾𝜓

] [
𝜃
𝜓

] = [
𝑀𝜃

𝑀𝜓
] (20) 

There are two aerodynamic forces and moments acting on the propeller hub, which are formulated 

as 

𝐿𝑦 =
𝑁𝐵

2
𝐾𝛼 (𝐴1

′ 𝜓 − 𝑎𝐴1

�̇�

Ω
+ 𝐴2

�̇�

Ω
)  

𝐿𝑧 =
𝑁𝐵

2
𝐾𝛼 (𝐴1

′ 𝜃 − 𝑎𝐴1

�̇�

Ω
− 𝐴2

�̇�

Ω
) (21) 

𝑀𝑦 =
𝑁𝐵

2
𝐾𝛼𝑅 (𝐴2

′ 𝜓 − 𝑎𝐴2

�̇�

Ω
+ 𝐴3

�̇�

Ω
)  

𝑀𝑧 =
𝑁𝐵

2
𝐾𝛼𝑅 (𝐴2

′ 𝜃 − 𝑎𝐴2

�̇�

Ω
− 𝐴3

�̇�

Ω
)  

where 𝑁𝐵 and 𝑎 are the number of blades and pivot length to rotor radius ratio.  

𝐾𝑎 =
1

2
𝜌𝐶𝑙𝛼𝑅4Ω2 (22) 

where 𝜌 and 𝐶𝑙𝛼 denote the density of air and blade lift slope, respectively.  The 𝐴𝑖 terms are 

written as 

𝐴1 = ∫
𝑐

𝑅

1

0

𝜇2

√𝜇2+𝜂2
𝑑𝜂               𝐴1

′ = 𝜇𝐴1               

𝐴2 = ∫
𝑐

𝑅

1

0

𝜇𝜂2

√𝜇2+𝜂2
𝑑𝜂               𝐴2

′ = 𝜇𝐴2 (23)               

𝐴3 = ∫
𝑐

𝑅

1

0

𝜂4

√𝜇2+𝜂2
𝑑𝜂               𝐴3

′ = 𝜇𝐴3                

where 𝜇 =
𝐽

𝜋
=

𝑉

Ω𝑅
  is the advance ratio and 𝜂 =

𝑟

𝑅
 .  𝑐 denotes the blade chord. The propeller 

pitching and yawing moments around the pivot point can be defined such that 

𝑀𝜃 = −𝑀𝑦 +  𝑎𝑅𝐿𝑧 

𝑀𝜓 = 𝑀𝑧 +  𝑎𝑅𝐿𝑦 (24) 

which leads to 

𝑀𝜃 =
𝑁𝐵

2
𝐾𝛼𝑅 [−(𝐴3 + 𝑎2𝐴1)

�̇�

Ω
− 𝐴2

′ 𝜓 + 𝑎𝐴1
′ 𝜃] 

𝑀𝜓 =
𝑁𝐵

2
𝐾𝛼𝑅 [−(𝐴3 + 𝑎2𝐴1)

�̇�

Ω
+ 𝐴2

′ 𝜃 + 𝑎𝐴1
′ 𝜓] (25) 
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The aerodynamic damping (𝐶𝑎𝑒𝑟𝑜) and aerodynamic stiffness (𝐾𝑎𝑒𝑟𝑜) matrices derived from the 

above two aerodynamic moments about the pivot point are given as 

𝐶𝑎𝑒𝑟𝑜1 = −
𝑁𝐵

2
𝐾𝛼𝑅

(𝐴3 + 𝑎2𝐴1)

Ω
 

𝐾𝑎𝑒𝑟𝑜1 =
𝑁𝐵

2
𝐾𝛼𝑅𝑎𝐴1

′                   𝐾𝑎𝑒𝑟𝑜2 =
𝑁𝐵

2
𝐾𝛼𝑅𝐴2

′  (26)                  

and hence the general aerodynamic model of the rotor-nacelle dynamic system is 

[
𝐶𝑎𝑒𝑟𝑜1 0

0 𝐶𝑎𝑒𝑟𝑜1
] [

�̇�
�̇�

] + [
𝐾𝑎𝑒𝑟𝑜1 −𝐾𝑎𝑒𝑟𝑜2

𝐾𝑎𝑒𝑟𝑜2 𝐾𝑎𝑒𝑟𝑜1
] [

𝜃
𝜓

] = [
𝑀𝜃

𝑀𝜓
] (27) 

Following the determination of the structural and aerodynamic models separately, the aeroelastic 

model of this dynamic system can be written as 

[
𝐼𝑛 0
0 𝐼𝑛

] [
�̈�
�̈�

] + [
𝐶𝜃 −𝐼𝑥Ω
𝐼𝑥Ω 𝐶𝜓

] [
�̇�
�̇�

] + [
𝐾𝜃 0
0 𝐾𝜓

] [
𝜃
𝜓

] = [
𝐶𝑎𝑒𝑟𝑜1 0

0 𝐶𝑎𝑒𝑟𝑜1
] [

�̇�
�̇�

] + [
𝐾𝑎𝑒𝑟𝑜1 −𝐾𝑎𝑒𝑟𝑜2

𝐾𝑎𝑒𝑟𝑜2 𝐾𝑎𝑒𝑟𝑜1
] [

𝜃
𝜓

] (28) 

The stability of the linear system is evaluated by calculating its frequency and damping through 

eigenvalue analysis. For a mechanical system with damping and gyroscopic terms, solving the 

eigenvalue problem is more sophisticated because these terms bring the first derivatives of the 

generalized coordinates to the equations of motion. Therefore, the eigenvalue problem converts 

into a quadratic eigenvalue problem, which can be reduced to a first-order state-space model.  

2.3 Derivation of Aeroelastic Equations of Motion of Wing with Single Propeller 

The propeller-wing model integrates the previous two models by including relevant structural and 

aerodynamic coupling terms. The rotor and nacelle system that is discussed in subsection 2.2 

assumes flexibly mounted engines on rigid wings. This assumption can be useful when 

investigating the influences of particular parameters on the whirl flutter. However, in general, the 

flexibility of the wing influences the dynamic characteristics of the entire system, which 

consequently influences the whirl flutter characteristics. Therefore, the effect of the wing 

flexibility is included in the equations of motion.  

 

Lagrange’s equations for the coupled wing-propeller model are provided in Equation (29). This 

model considers propeller pitch 𝜃, propeller yaw 𝜓, propeller-wing attachment point displacement 

ℎ𝑝 and propeller-wing attachment point twist 𝑎𝑝 which becomes  

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�𝑖
) −

𝜕𝑇

𝜕𝑞𝑖
+

𝜕𝑈

𝜕𝑞𝑖
+

𝜕𝐷

𝜕�̇�𝑖
= 𝑄𝑖               𝑖 = 𝜃, 𝜓, ℎ𝑝, 𝑎𝑝 (29)             

The equations of motion of the coupled wing-propeller model obtained through Lagrange’s 

equations are given in Equation (30) and the terms in the equations of motion of the coupled model 

[23] are explained in [13, 23]. 

𝐼𝜃,𝑝�̈� + 𝐾𝜃𝜃 + 𝐶𝜃�̇� + 𝐼ΩΩ�̇� + 𝑆𝜃,𝑝ℎ̈𝑝 + 𝐼𝜃𝛼,𝑝�̈�𝑝 = 𝑄𝜃,𝑝  

−𝐼ΩΩ�̇� + 𝐼𝜓,𝑝�̈� + 𝐾𝜓𝜓 + 𝐶𝜓�̇� − 𝐼ΩΩ�̇�𝑝 = 𝑄𝜓,𝑝 (30) 

𝑀𝑤ℎ̈ + 𝑆𝜃,𝑝�̈� + 𝑀𝑝ℎ̈𝑝 + 𝑆𝛼,𝑝�̈�𝑝 + 𝑆𝛼,𝑤�̈� = 𝑄ℎ,𝑤 + 𝑄ℎ,𝑝  

𝐼𝛼,𝑤�̈� + 𝑆𝛼,𝑤ℎ̈ + 𝐼𝜃𝛼,𝑝�̈� + 𝐼ΩΩ�̇� + 𝑆𝛼,𝑝ℎ̈𝑝 + 𝐼𝛼,𝑝�̈�𝑝 = 𝑄𝛼,𝑤 + 𝑄𝛼,𝑝  
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The propeller aerodynamic moments about the pivot point are given as 

𝑄𝜃,𝑃 = 𝑀𝑌 + 𝑒𝜃𝐹𝑍 

𝑄𝜓,𝑃 = 𝑀𝑍 − 𝑒𝜓𝐹𝑌 (31) 

where 𝑒𝜃 and 𝑒𝜓 are the distance between the propeller hub and elastic centres in pitch and yaw, 

respectively. The aerodynamic effect of propellers on the wing is considered by applying propeller 

aerodynamic loads onto the wing structural model so that 

𝑄ℎ,𝑃 = 𝐹𝑍 

𝑄𝛼,𝑃 = 𝑀𝑌 + 𝑒𝛼𝐹𝑍 (32)  

where 𝑒𝛼 denotes the distance between the propeller hub and the propeller pivoting point and 𝐹𝑌, 
𝐹𝑍, 𝑀𝑌 and 𝑀𝑍 are the aerodynamic forces and moments produced by the propeller. 

𝐹𝑌 =
1

2
𝜌𝑉2𝑆′ (𝐶𝑌𝜃

𝜃 + 𝐶𝑌𝜓
𝜓 + 𝐶𝑌𝑞

�̇�𝑅

𝑉
+ 𝐶𝑌𝑟

�̇�𝑅

𝑉
)  

𝐹𝑍 =
1

2
𝜌𝑉2𝑆′ (𝐶𝑍𝜃

𝜃 + 𝐶𝑍𝜓
𝜓 + 𝐶𝑍𝑞

�̇�𝑅

𝑉
+ 𝐶𝑍𝑟

�̇�𝑅

𝑉
) (33) 

𝑀𝑌 = 𝜌𝑉2𝑆′𝑅 (𝐶𝑚𝜃
𝜃 + 𝐶𝑚𝜓

𝜓 + 𝐶𝑚𝑞

�̇�𝑅

𝑉
+ 𝐶𝑚𝑟

�̇�𝑅

𝑉
)  

𝑀𝑍 = 𝜌𝑉2𝑆′𝑅 (𝐶𝑛𝜃
𝜃 + 𝐶𝑛𝜓

𝜓 + 𝐶𝑛𝑞

�̇�𝑅

𝑉
+ 𝐶𝑛𝑟

�̇�𝑅

𝑉
)  

The propeller forces and moments given above are determined employing the sixteen propeller 

stability derivatives, provided in [8, 10, 11], which are applicable under windmilling conditions. 

These derivatives explain how the forces and moments vary with the effective pitch and yaw 

angles. Due to the interaction with the wing, these effective pitch and yaw angles for the coupled 

model are specified as     

𝜃 = 𝜃 + 𝛼𝑝 +
𝑒𝜃

𝑉
�̇� +

𝑒𝛼

𝑉
�̇�𝑝 + 

1

𝑉
ℎ̇𝑝                          𝜓 = 𝜓 +

𝑒𝜓

𝑉
�̇� (34) 

and the generalized aerodynamic forces of the coupled model can be defined as 

𝑄𝜃 = 𝑄𝜃,𝑃  

𝑄𝜓 = 𝑄𝜓,𝑃 (35) 

𝑄ℎ = 𝑄ℎ,𝑃 + 𝑄ℎ,𝑊  

𝑄𝛼 = 𝑄𝛼,𝑃 + 𝑄𝛼,𝑊  

With the combination of the expressions in the obtained generalized aerodynamic forces, a coupled 

aeroelastic wing-propeller model can be derived in matrix form, as provided in [13].  
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3 NUMERICAL ANALYSIS 

3.1 Baseline Wing 

The schematic of a baseline wing from [13] is illustrated in Figure 2 with the main parameters of 

the tapered wing outlined in Table 1. The elastic axis (EA) and centre of gravity (CG) are 

coincident and located at the wing mid-chord.  

 

 
Figure 3: Schematic of baseline wing 

 

 

 

Table 1: Baseline wing parameters 

Wing Parameter Value 

Wing span [m] 11.4 

Root chord [m] 1.25 

Tip chord [m] 0.8 

Mass per unit length [kg/m] 25 

Aerodynamic centre [-] 25% chord 

Elastic axis [-] 50% chord 

Centre of gravity [-] 50% chord 

Radius of Gyration about CG [-] 25% chord 

Bending rigidity [Nm2] 7E5 

Torsional rigidity [Nm2] 2E5 

Lift curve slope [-] 2π 

Density of air [kg∕m3] 0.96287 

 

The structural model of the wing is based on the methodology presented in subsection 2.1. Table 

2 compares the natural frequencies of the baseline wing. It is seen that there is a good agreement 

between the present study and the results achieved in the reference paper [13] in terms of natural 

frequencies. 
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Table 2: Comparison of natural frequencies of baseline wing 

Mode Present Study 

[Hz] 

Reference Study [13] 

[Hz] 

Deviation 

 [%] 

First Bending 2.88 2.88 0 

First Torsion 16.68 16.68 0 

Second Bending 18.06 18.06 0 

Second Torsion 46.49 46.59 0.21 

Third Bending  50.58 50.57 0.04 

 

The first four wind-off mode shapes of the wing are also given in Figure 4. Since the mass axis 

and the elastic axis are coincident at the wing mid-chord axis, the wind-off mode shapes are 

composed of pure bending and pure torsion without coupling. 

 

 
Figure 4: Wind-off mode shapes of baseline wing 

 

The flutter speed and frequency of the wing are predicted by the methodology provided in 

subsection 2.1 and are tabulated in Table 3. The velocity-frequency and velocity-damping curves 

illustrated in Figure 5 demonstrate that the first torsional mode (flutter mode) is unstable due to 

interaction between the first torsion mode and the first bending mode, whereas divergence mode 

is the first bending mode.  
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Table 3: Comparison of aeroelastic results of baseline wing 

Parameter Present Study 
 

Reference Study [13] 
 

Deviation [%] 

Flutter Speed 151.4 m/s 152 m/s 0.91 

Flutter Frequency 8.41 Hz 8.08 Hz 4.08 

 

 
Figure 5: Variation of modal frequency and damping with freestream velocity of baseline wing  

 

3.2 Baseline Propeller 

A baseline propeller from [13] is represented by two concentrated masses: Rotor mass and motor-

nacelle mass. The main parameters of this cruise propeller used in the NASA X-57 Maxwell 

electric aircraft are summarized in Table 4. It is assumed that the baseline propeller analysed in 

this study have fixed-pitch blades and operate under windmilling conditions. Hence, the propeller 

advance ratio remains constant and is determined based on the specified geometric collective pitch 

angle. The rotational speed of the propeller changes with the freestream velocity to sustain this 

advance ratio. The pitch and yaw motions of the isolated propeller are considered to be symmetric. 

In the current 2-DOF propeller model, the frequency and damping coefficient for propeller pitch 

and yaw motions are used for analysing the propeller’s structural dynamics. The uncoupled pitch 

and yaw frequencies ensure to determine the pitch stiffness (𝐾𝜃 = 7𝐸4 𝑁𝑚𝑟𝑎𝑑−1) and yaw 

stiffness (𝐾𝜓 = 7𝐸4 𝑁𝑚𝑟𝑎𝑑−1). Additionally, the pitch and yaw damping coefficients are utilized 

to assess the structural damping of the nacelle. 
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Table 4: Baseline propeller parameters 

Propeller Parameter Value 

Number of blades [-] 3 

Rotor radius [m] 0.762 

Rotor mass [kg] 8 

Rotor position [m] 1.16 

Motor & nacelle mass [kg] 35 

Motor position [m] 0.86 

Blade chord [m] 0.094 

Advance ratio [-] 1.96 

Pitch and yaw stiffness [Hz] 7 

Pitch and yaw damping coefficient [-] 0.005 

 

With the assumption that the baseline propeller is flexibly attached to a rigid wing, whirl flutter 

analysis is conducted using Reed’s model in line with the methodology given in subsection 2.2. 

The whirl flutter speed and frequency of the baseline propeller are tabulated and compared with 

the results of the reference paper in Table 5.  

 

Table 5: Comparison of aeroelastic results of baseline propeller 

Parameter Present Study 
 

Reference Study [13] 
 

Deviation [%] 

Whirl Flutter Speed 223 m/s 221 m/s 0.91 

Whirl Flutter Frequency 4.92 Hz 5 Hz 1.63 

 

 

Figure 6: Variation of modal damping ratio and frequency with freestream velocity  
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The corresponding whirl flutter curves illustrated in Figure 6 indicate similar trend with the results 

gained in [13]. The corresponding whirl flutter curves illustrated in Figure 6 indicate similar trend 

with the results gained in [13]. The propeller’s motion is characterized by two modes: a backward 

whirling mode and a forward whirling mode. Since the rigid propeller blades and rigid wings are 

assumed, the forward whirling mode is stable and becomes even more stable with growing 

airspeeds. Whirl flutter only develops in the backward whirling mode. The forward whirling mode 

has higher frequencies compared to the backward whirling mode. Since the advance ratio remains 

constant in this whirl flutter analysis, increased incoming airspeeds result in higher propeller 

rotational speeds. As the propeller’s rotational speed rises, the frequency of the forward whirling 

mode increases, while the frequency of the backward whirling mode falls. This relationship is due 

to the difference in the sign of the gyroscopic term presented in Equation (19). 

 

For further validation of the baseline propeller, a typical stability boundary curve was derived, as 

depicted in Figure 7. The attachment stiffnesses of the propeller pivoting point in pitch (𝐾𝜃) and 

yaw (𝐾𝜓) were changed and the corresponding whirl flutter stability boundary curve was achieved 

for the whirl flutter speed of 223 m/s. As anticipated, the resulting curve, which shows the 

necessary stiffness to maintain stable dynamic behaviour, aligns with existing literature [23]. 

 
Figure 7: Stability boundary for baseline propeller model in the structural pitch stiffness 𝐾𝜃 and 

yaw stiffness 𝐾𝜓 plane for a whirl flutter speed of 223 m/s  

To determine the influence of variations in propeller parameters on stability boundary in the 

structural pitch stiffness 𝐾𝜃 and yaw stiffness 𝐾𝜓 plane, parametric studies on the developed whirl 

flutter model of the baseline propeller are conducted. As can be seen from Figure 8, raising the 

freestream velocity V, the rotor’s moment of inertia 𝐼𝑥, the nacelle’s moment of inertia 𝐼𝑛 and the 

rotor radius 𝑅 expands the unstable region symmetrically. On the other hand, increasing the 

damping in both pitch and yaw (𝐶𝜃, 𝐶𝜓) and the advance ratio J reduces the unstable region 

symmetrically.  
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Figure 8: Effect of changes in some propeller parameters on stability boundary in the structural 

pitch stiffness 𝐾𝜃 and yaw stiffness 𝐾𝜓 plane 

The effect of the mounting stiffness on the whirl flutter velocity and frequency of the standalone 

propeller is investigated. It can be observed from Figure 9 that a higher mounting stiffness leads 

to a higher whirl flutter speed and frequency. As expected, this behaviour is in line with the 

literature [23].  

 

Figure 9: Effect of mounting stiffness of propeller on whirl flutter velocity and frequency 
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3.3 Coupled Wing-Propeller Model 

The coupled wing-propeller model considered in this study consists of the baseline wing and 

propeller described in sections 3.1 and 3.2, respectively. The schematic of this coupled model is 

shown in Figure 10. The propeller is installed at a spanwise location of 31% from the wing root. 

The pivoting point of the propeller is located exactly on the elastic axis of the wing (the wing mid-

chord axis). The propeller hub is situated 0.6 m from the leading edge, while the electric motor is 

positioned 0.3 m behind the propeller hub.   

 

 
Figure 10: Schematic of the wing-propeller model 

 

In the first setup, the effect of adding a non-rotating baseline propeller to the wing on the instability 

of the system is investigated. The non-rotating propeller model serves as a pylon and is rigidly 

attached to the wing, which means that the propeller mounts are assumed to be rigid. Hence, the 

added propeller changes the mass and inertial distributions of the wing. The second setup features 

a rotating propeller flexibly attached to the wing, enabling pitch and yaw movements and thus 

gyroscopic effects are included. Table 6 provides the natural frequencies of the rigidly-mounted 

propeller wing and the flexibly-mounted propeller wing models. It suggests that the whirling 

modes of the propeller are coupled with wing modes and this coupling largely depends on the 

uncoupled pitch and yaw frequencies of the propeller. Moreover, the pitch frequency of the 

propeller decreases as a consequence of the coupling between propeller pitch movement and wing 

torsion. However, the yaw frequency stays constant since the in-plane motions of the wing were 

not taken into account in this study. Additionally, it can be monitored that incorporating flexible 

mounts resulted in higher natural frequencies of the wing modes compared to the application of 

rigid mounts. 

A rotating propeller introduces gyroscopic effects due to the presence of flexible mounts. To focus 

on the gyroscopic effects, propeller aerodynamics are ignored. Propeller rotational speed affects 

the propeller structural damping matrices and the propeller-wing coupling structural matrices. 

Figure 11 illustrates how increasing propeller rotational speed affects the natural frequencies of 

the propeller-wing system. The forward whirling mode frequency increases and the backward 

whirling mode reduces with increasing propeller rotational speed. These findings emphasize the 

importance of considering propeller whirling modes in the aeroelastic analysis of the DEP wings. 
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Table 6: Comparison of natural frequencies of the rigidly-mounted propeller wing and the 

flexibly-mounted propeller wing 

 

 

 

Mode 

 

Rigid Mounts  

and Non-rotating [Hz]  

 

Flexible Mounts  

and Non-rotating [Hz] 

  
 

Present 

Study 

Reference Study 

[13 ] 

Present 

Study 

Reference Study 

[13 ] 

First Bending 2.85 2.85 2.85 2.85 

Propeller Pitch Mode - - 5.52 5.48 

Propeller Yaw Mode - - 7 7 

First Torsion 8.32 8.19 17.75 17.75 

Second Bending 17.84 17.84 19.54 19.48 

Second Torsion 26.31 26.23 49.29 49.25 

Third Bending 49.98 49.98 51.34 51.37 

 

 

Figure 11: Influence of gyroscopic effects on natural frequencies of propeller-wing model 
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Table 7 outlines the aeroelastic results of the propeller-wing model with a rigidly attached 

propeller and a flexibly attached propeller. On the one hand, in the coupled propeller-wing 

configuration with a non-rotating propeller and rigid mounts, the propeller, acting as an inertial 

mass, decreased the flutter velocity compared to the baseline wing. On the other hand, in the case 

of the coupled propeller-wing configuration with a non-rotating propeller and rigid mounts, the 

propeller increased the flutter velocity compared to the baseline wing. Also, whirl flutter occurs in 

the forward whirling mode. 

Table 7: Aeroelastic results of the rigidly and the flexibly-mounted propeller wings 

Parameter Rigid Mounts  Flexible Mounts  

Wing Flutter Speed 125 m/s 202 m/s 

Wing Flutter Frequency 6.40 Hz 2.79 Hz 

Whirl Flutter Speed - 302 m/s 

Whirl Flutter Frequency - 7.41 Hz 

 

The velocity-damping and velocity-frequency curves of the propeller-wing model with both a 

rigidly mounted propeller and a flexibly mounted propeller are depicted in Figures 12 and 13.  

 

Figure 12: Variations of modal frequency and damping with freestream velocity for the coupled 

wing-propeller model with rigid mounts 
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Figure 13: Variations of modal frequency and damping with freestream velocity for the coupled 

wing-propeller model with flexible mounts 

 

3.4 Parametric Analyses 

Several parametric analyses are carried out by changing the propeller’s spanwise position, advance 

ratio and rotor radius, determining their impact on the stability of the coupled wing-propeller 

model defined in subsection 3.3. The first parametric analysis is undertaken by attaching the 

propeller to three different spanwise positions (a spanwise position of %31, a spanwise position of 

%70, and a spanwise position of %100). For this analysis, the same baseline wing and propeller 

are employed. The effect of each spanwise position of the propeller is evaluated on the stability of 

the coupled wing-propeller model. As shown in Figure 14, installing the propeller at the wingtip 

slightly affects the stability of the coupled model, decreasing the unstable region. 

The second parametric analysis focuses on investigating the effect of three different advance ratios 

of the propeller on the stability of the coupled model. This study uses fixed-pitch propellers, where, 

under windmilling conditions, the propeller's rotational speed changes according to the incoming 

airspeed to maintain the advance ratio determined by the collective pitch angle. For the baseline 

isolated propeller, increasing the advance ratio has a stabilizing effect. This trend is illustrated in 

Figure 8 for the isolated propeller. However, for the coupled propeller-wing model, the variation 

of the advance ratio primarily affects the aerodynamics of the propeller and its gyroscopic 
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coupling. Increasing the advance ratio is destabilizing. This effect is depicted in Figure 15 for the 

coupled propeller-wing model.  

The last parametric study is undertaken by varying the rotor radius in the coupled wing-propeller 

model. On the one hand, for the baseline isolated propeller, raising the rotor radius has a 

destabilizing effect, as depicted in Figure 8. On the other hand, it is observed from Figure 16 that 

raising the rotor radius has a stabilizing effect on the coupled model.  

 

Figure 14: Effect of propeller spanwise position on the stability of coupled model 

 

Figure 15: Effect of advance ratio on the stability of coupled propeller-wing model 
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Figure 16: Effect of rotor radius on stability of coupled propeller-wing model 

4 CONCLUSIONS 

This paper focuses on developing a representative low-order aeroelastic coupled wing-propeller 

model that can be used during the preliminary design stages of DEP wings. A numerical aeroelastic 

model was created in MATLAB to investigate the aeroelastic behavior of a coupled flexible 

cantilever wing with a varying number of flexibly mounted propellers/rotors. Propeller dynamics 

are modeled using Reed’s model, while the wing's structural model is derived using the assumed-

mode Rayleigh-Ritz method. The wing's aerodynamic model is obtained by combining the 

modified strip theory and Theodorsen’s unsteady aerodynamic theory. The proposed coupled 

aeroelastic model successfully predicted both wing and whirl flutter in DEP wings. 

The baseline propeller used in this study involves fixed-pitch blades operating under windmilling 

conditions. Therefore, the propeller advance ratio remains constant and is determined by the 

specified geometric collective pitch angle. To maintain this advance ratio, the propeller's rotational 

speed varies with the freestream velocity. As expected, the gyroscopic effects cause the propeller 

hub to exhibit backward whirling motion at lower frequency modes and forward whirling motion 

at higher frequency modes. In the coupled propeller-wing configuration with a non-rotating 

propeller and rigid mounts, incorporating a non-rotating propeller decreased the critical speed in 

comparison to the baseline wing. In the case of involving a rotating propeller and flexible mounts, 

wing flutter increased compared to the baseline wing. The forward whirling mode led to a critical 

speed. Compared to the baseline isolated propeller, the backward whirling mode remains stable. 

However, the forward whirling mode, which is always stable in the baseline isolated propeller, 

becomes unstable due to wing aerodynamics.  
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The developed coupled model was subsequently applied onto parametric analyses identifying the 

impact of propeller spanwise position, advance ratio and rotor radius on the stability of the coupled 

wing-propeller system. The results of parametric studies indicated that advance ratio and rotor 

radius have a significant impact on the stability of the coupled wing-propeller model, whereas the 

spanwise position of the attached propeller has a slight effect. As the advance ratio of the attached 

propeller rises, a destabilizing effect on the stability of the coupled model is monitored. It was also 

observed that increasing rotor radius has a stabilizing effect on the stability of the coupled wing-

propeller model.    

The presented study shows how rapidly the proposed coupled aeroelastic model can be modified 

in various parametric studies that can be performed during the preliminary design stages of the 

DEP wings. The current investigations are limited to a wing-propeller model with one inboard 

propeller. Future studies should focus on a DEP aircraft wing configuration with multiple 

propellers and additional parameters, such as their chordwise position and mounting stiffness. 

Furthermore, the physical model should be enhanced to account for aerodynamic interference 

effects between the propeller and wing aerodynamics. 
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