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Abstract: The paper presents a methodology to estimate the in-flight elastic and rigid-body
dynamics of a slender flexible body using multiple data and an approximate aeroelastic model.
It is intended to overcome the inherent shortcoming of flight control systems that typically rely
on a rigid-body model whereas the measured response includes both the rigid-body dynamics
and the elastic dynamic response. The study presents a Kalman state estimation approach based
on an approximated aeroelastic model of the vehicle dynamics and a combination of measured
data from different sensors, to estimate structural modal deformations, rates, and accelerations.
The estimated states can then be used to reconstruct the elastic response at the IMU location,
from which the rigid body dynamics can be computed. The paper presents the test case of
a simple slender-body vehicle under random time-varying loading. Numerical results show
that the proposed methodology accurately reconstructs the elastic dynamic elastic response. A
parametric study presents the effect of using different sensor data of various noise levels.

1 INTRODUCTION
Flight control systems (FCS) of flight vehicles rely on data, specifically, angular rates and
accelerations, commonly measured by a strap-down inertial measurement unit (IMU). These
measurements capture and reflect both the rigid body motion of the vehicle, exhibited mainly
in lower frequencies, and its elastic dynamic deformations, occurring in the relatively higher
frequency range. The FCS, which aims to regulate a vehicle’s trajectory, is typically designed
based on a rigid-body dynamics model, while the elastic modes are unmodeled. For such a
control system, the presence of accelerations and angular rates due to elastic vibrations in the
measurement is undesirable and must be accounted for. For a flexible slender body, the elastic
normal modes of the structure are in the lower frequencies, such that the elastic dynamic response
might be in the bandwidth of the FCS [1]; thus, special care is needed to filter out the elastic
response from the measurement, to avoid instabilities due to the FCS action.

The common practice in such systems is to remove the elastic motion component from the IMU
data by applying a combination of low-pass and notch filters, filtering out the higher frequencies
associated with the elastic motion, and retaining only the low-frequency data associated with the
rigid body motion of the vehicle. This requires in-advance estimation of the elastic frequencies.
However, the structural natural frequencies of slender vehicles, such as space launchers or
missiles, significantly vary during a flight mission due to fuel consumption and stage separations,
which change the inertial properties and geometry of the body. Moreover, the aerodynamic
forces also introduce stiffness-like terms, changing the aeroelastic frequencies of the vehicle as a
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function of flight conditions (e.g., altitude and Mach number). Therefore, the a priori estimation
of the aeroelastic frequencies of the vehicle throughout its mission is challenging.

As it is impractical to create and calibrate in advance a structural model for every state and flight
condition of the mission, the extreme frequencies, corresponding to the extreme flight conditions,
are computed using numerical finite element (FE) models, or experimentally estimated in
ground vibration tests (GVT) of representative states of the vehicle. Using the computed
extreme frequencies, frequency bands are defined and inputted into the FCS [2]. Typically,
the filtering is based solely on frequencies, disregarding the shape and amplitude of the elastic
mode. Consequently, the notch filter attenuation exceeds the requirements, resulting in a broader
filtered frequency band, reducing the stability margins of the FCS, and possibly even reducing
the effective bandwidth of the driving actuators.

In today’s platforms, measured data of the elastic accelerations and strains has become more
accessible. Specifically, acceleration over the body can be measured by small accelerometers
while multiple strain data can be captured with optical fibers. These offer accurate large data
on the dynamic elastic motion. The current study explores how this data can be leveraged
to estimate the rigid-body dynamics accurately. A recent study introduced a state estimation
approach in which the elastic states were estimated using an aeroelastic model, dynamic strain
data, and the Kalman state estimator (KSE) [3].

In the current study, we propose to utilize the KSE for assessing the dynamic structural modal
deformations, rates, and accelerations based on an approximate aeroelastic state-space model
of the vehicle and a combination of measured data, from integrated fiber-optics strain sensors
(FOSS), and other sensors commonly installed over the vehicle, such as accelerometers and
gyroscopes. The estimated states can then be used to reconstruct the elastic response at the inertial
measurement units (IMU) location, such that it can be removed from the inertial measurements,
from which the center of mass rigid-body dynamics can be computed.

The current study extends the KSE approach in that the modal accelerations are estimated
directly from the data (rather than computed based on the estimated displacements and rates).
This is possible due to the use of an approximated model, where the unknown dynamics of
the model are modeled as process noise, and the use of a combination of measurements from
different sensors, each dependent on a different state in the approximated model, making all the
modal states observable.

The study presents the formulation of an aeroelastic state-space model, and analyzes a test case
of a simple slender body vehicle under random time-varying forcing, commonly happening due
to aerodynamic turbulence. The test case uses an approximate aeroelastic model that does not
include the external excitation (considered as process noise). In the test case it is assumed that the
structural properties of the vehicle, as well as the flight conditions are constant during some time
window, representative of one phase of the flight mission. This assumption acts as yet another
approximation, making the calculation of the response use assumed modes instead the real
modes, with the participation factors adjusted by the KSE accordingly using the measurements
of the sensors. The reference response is calculated from the full response to the excitation. The
measured data is simulated as the response to the excitation at specific points defined as sensors,
contaminated with noise. The test case demonstrates that the use of the KSE approach with an
approximated model yields good estimation of the rigid body response of the vehicle.
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2 MATHEMATICAL MODEL
2.1 Aeroelastic state-space formulation
The equations of motion of an aeroelastic system, in modal coordinates, are given as [4]

[𝑀𝑎𝑒]{ ¥𝜉} + [𝐶𝑎𝑒]{ ¤𝜉} + [𝐾𝑎𝑒]{𝜉} − 𝑞∞ [𝐷]{𝑋𝑎} = {𝐹𝑒ℎ} (1)

where {𝜉} is the modal displacement vector and {𝑋𝑎} is the aerodynamic lag vector, defined in
the Laplace domain as:

{𝑋𝑎} =
(
𝑠[𝐼] − 𝑉

𝐿
[𝑅]

)−1
[𝐸]𝑠{𝜉} (2)

[𝑀𝑎𝑒], [𝐶𝑎𝑒] and [𝐾𝑎𝑒] are the aeroelastic mass, damping, and stiffness generalized matrices,
respectively, defined as (by using mass-normalized modes):

[𝑀𝑎𝑒] = [𝐼] − 𝑞∞
𝐿2

𝑉2 [𝐴2]

[𝐶𝑎𝑒] = 2[𝑍] [Ω] − 𝑞∞
𝐿

𝑉
[𝐴1]

[𝐾𝑎𝑒] = [Ω]2 − 𝑞∞ [𝐴0]

The matrices [𝐴0], [𝐴1] and [𝐴2] represent the aerodynamic stiffness, damping and apparent
mass of the unsteady aerodynamics, respectively, and [𝑅] is a diagonal matrix containing the
aerodynamic lag roots that model the aerodynamic lag effects. [𝐷] and [𝐸] are coupling
matrices between the lag terms and the modal displacements. [5]

To estimate the modal accelerations together with the modal displacements and velocities, vector
{ ¥𝜉} is added to the state vector by introducing an expression for its time derivative:

{𝜉} = −[𝑀𝑎𝑒]−1 [𝐾𝑎𝑒]{ ¤𝜉} − [𝑀𝑎𝑒]−1 [𝐶𝑎𝑒]{ ¥𝜉} + 𝑞∞ [𝑀𝑎𝑒]−1 [𝐷]{ ¤𝑋𝑎} + [𝑀𝑎𝑒]−1{ ¤𝐹𝑒ℎ} (3)

The aerodynamic-lag rate, { ¤𝑋𝑎}, is also included as part of the state vector by introducing { ¥𝑋𝑎}
based on the time derivation of equation (2):

{ ¥𝑋𝑎} = [𝐸]{ ¥𝜉} + 𝑉
𝐿
[𝑅]{ ¤𝑋𝑎} (4)

The state vector, {𝑥}, is defined as:

{𝑥} =


𝜉
¤𝜉
¥𝜉
𝑋𝑎
¤𝑋𝑎


(5)

and the input vector {𝑢} is defined as:

{𝑢} = { ¤𝐹𝑒ℎ} (6)

3



IFASD-2024-110

The resulting state equation is:

{ ¤𝑥} =


0 [𝐼] 0 0 0
0 0 [𝐼] 0 0
0 −[𝑀𝑎𝑒]−1 [𝐾𝑎𝑒] −[𝑀𝑎𝑒]−1 [𝐶𝑎𝑒] 0 𝑞∞ [𝑀𝑎𝑒]−1 [𝐷]
0 0 0 0 [𝐼]
0 0 [𝐸] 0 𝑉

𝐿
[𝑅]


{𝑥} +


0
0

[𝑀𝑎𝑒]−1

0
0


{𝑢} (7)

Using the modal method, each physical response can be reconstructed as a linear combination
of a set of normal modes as:

𝜖

𝑤

¤𝑤
¥𝑤
𝜃
¤𝜃


=



[Ψ] 0 0 0 0
[Φ] 0 0 0 0
0 [Φ] 0 0 0
0 0 [Φ] 0 0

[Φ𝑟] 0 0 0 0
0 [Φ𝑟] 0 0 0




𝜉
¤𝜉
¥𝜉
𝑋𝑎
¤𝑋𝑎


(8)

where 𝜖 , 𝑤, ¤𝑤 and ¥𝑤 are the strain and physical displacements, velocities and accelerations at
some nodes and 𝜃 and ¤𝜃 are the physical rotations and angular velocities. [Φ] and [Ψ] are the
displacement and strain modes matrices, and [Φ𝑟] is the rotation modes matrix, all provided at
the physical nodes where the responses are recovered. By utilizing the state vector as defined
in equation (5), physical responses can be reconstructed directly, without requiring the input
{𝑢}. This is advantageous because, in this formulation, the input is the time variation of the
generalized external forces, which is unknown.

The normal modes matrices in equation (8) could be reduced matrices, holding only the rows
corresponding to the required output points, such as the location of the IMU in the vehicle, or
the locations of the sensors spread throughout the vehicle. The augmented aerodynamic states
𝑋𝑎 and ¤𝑋𝑎 are not used for the reconstruction of the physical parameters, but are needed as
part of the state’s computation. It is evident from equation (8) that an informed choice of a
combination of commonly available sensors, such as FOSS, gyroscopes and accelerometers, can
yield a measurement equation in which all the modal states are observable.

The state-space representation of the IMUs of the vehicle, which measures the acceleration and
the angular rate of the vehicle, is therefore:

{ ¤𝑥} =


0 [𝐼] 0 0 0
0 0 [𝐼] 0 0
0 −[𝑀𝑎𝑒]−1 [𝐾𝑎𝑒] −[𝑀𝑎𝑒]−1 [𝐶𝑎𝑒] 0 𝑞∞ [𝑀𝑎𝑒]−1 [𝐷]
0 0 0 0 [𝐼]
0 0 [𝐸] 0 𝑉

𝐿
[𝑅]


{𝑥} +


0
0

[𝑀𝑎𝑒]−1

0
0


{𝑢}

{𝑦}𝐼𝑀𝑈 =

[
0 0 [Φ𝐼𝑀𝑈] 0 0
0 [Φ𝑟𝐼𝑀𝑈

] 0 0 0

]
{𝑥}

(9)

where [Φ𝐼𝑀𝑈] and [Φ𝑟𝐼𝑀𝑈
] are the displacement and rotation modes matrices, respectively,

represented at the locations of the IMUs in the vehicle.
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2.2 Approximated state-space model
The approximated model assumes no external excitation forces. If a time-varying external load is
present, it is considered, along with other unmodeled dynamics, as process noise. Additionally,
in general, the state-space model may change in time, since both the structural properties and
the flight conditions vary during flight. In this study, we consider both structural properties and
flight conditions invariant within a time window during the flight. Thus, the time variation of
the state-space model is considered an additional approximation.

The state-space formulation of equation (7), considering model approximations, uncertainties
and measurement noise, becomes:

{ ¤𝑥} = [𝐴]{𝑥} + {𝑤}
{𝑦} = [𝐶]{𝑥} + {𝑣}

(10)

where {𝑤} ∼ N (0, 𝑄) and {𝑣} ∼ N (0, 𝑅) are uncorrelated zero-mean normally distributed
process and measurement noise with covariance matrices 𝑄 and 𝑅, respectively, [𝐴] is the state
transition matrix:

[𝐴] =


0 [𝐼] 0 0 0
0 0 [𝐼] 0 0
0 −[𝑀𝑎𝑒]−1 [𝐾𝑎𝑒] −[𝑀𝑎𝑒]−1 [𝐶𝑎𝑒] 0 𝑞∞ [𝑀𝑎𝑒]−1 [𝐷]
0 0 0 0 [𝐼]
0 0 [𝐸] 0 𝑉

𝐿
[𝑅]


(11)

and [𝐶] is the state output matrix defined based on the required outputs. This state-space
formulation essentially solves the free vibration problem of the aeroelastic system, driven by
process noise.

2.3 Kalman state estimator (KSE)
The KSE uses a system’s dynamic model, known control inputs to the system, and multiple
sequential measurements to estimate the system’s states. At each time step, the state estimation
is based on a weighted average of the model’s prediction and the new measurement set, with
the larger weight given to the component of greater certainty [6]. The algorithm optimally
minimizes the covariance of uncertainties, effectively handling noisy sensor data and process
uncertainty. The algorithm operates recursively and requires only the latest system state estimate
to calculate a new state, making it suitable for real-time control during flight.

Since the measurements are sampled in discrete times, a discrete state-space model is formulated
based on equation (10), as:

{𝑥𝑘+1} = [𝐹]{𝑥𝑘 } + {𝑤𝑘 }
{𝑧𝑘 } = [𝐻]{𝑥𝑘 } + {𝑣𝑘 }

(12)

where [𝐹] is the discrete state transition matrix, calculated from the continuous state-space
transition matrix [𝐴] as:

[𝐹] = 𝑒 [𝐴]Δ𝑡 (13)

where Δ𝑡 is the sampling time of the discrete system.

The measurement vector {𝑧𝑘 } contains a combination of data from strain, angular rate, and
acceleration sensors. The observation matrix [𝐻] is constructed using the modal method, where
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the corresponding modes are provided at the sensor points:

{𝑧𝑘 } =

𝜖𝑠
¥𝑤𝑠
¤𝜃𝑠

𝑘 =

[Ψ𝑠] 0 0 0 0

0 0 [Φ𝑠] 0 0
0 [Φ𝑟𝑠 ] 0 0 0



𝜉
¤𝜉
¥𝜉
𝑋𝑎
¤𝑋𝑎

𝑘
= [𝐻]{𝑥𝑘 } (14)

The state-space matrices are assumed constant within the considered time window, and as such,
both the state transition matrix [𝐹] and the observation matrix [𝐻], as well as the covariance
matrices [𝑄] and [𝑅], are also constant during the considered time window.

For the discrete state-space model (equation (12)), a discrete KSE is defined using a two-step
prediction-correction formulation as follows:

Prediction Step:

State Estimate: {𝑥𝑘+1|𝑘 } = [𝐹]{𝑥𝑘 |𝑘 } (15)
Error Covariance: [𝑃𝑘+1|𝑘 ] = [𝐹] [𝑃𝑘 |𝑘 ] [𝐹]𝑇 + [𝑄] (16)

Correction Step:

Kalman Gain: [𝐾𝑘+1] = [𝑃𝑘+1|𝑘 ] [𝐻]𝑇 ( [𝐻] [𝑃𝑘+1|𝑘 ] [𝐻]𝑇 + [𝑅])−1 (17)
State Estimate: {𝑥𝑘+1} = {𝑥𝑘+1|𝑘 } + [𝐾𝑘+1] ({𝑧𝑘 } − [𝐻]{𝑥𝑘+1|𝑘 }) (18)
Error Covariance: [𝑃𝑘+1] = ( [𝐼] − [𝐾𝑘+1] [𝐻]) [𝑃𝑘+1|𝑘 ] (19)

where {𝑥} is the estimated state, [𝑃] is the state estimation error covariance defined as [𝑃] =
E[(𝑥 − 𝑥)2] and [𝐾] is the Kalman gain matrix. The double index notation, 𝑎 |𝑏, stands for the
value calculated at time index 𝑎, based on the known value at time index 𝑏, and is used to add
an intermediate time index between the prediction and correction steps.

At each time step, the state vector is estimated by the KSE and then used to calculate the
estimated elastic response of the IMU:

{�̂�𝑘 }𝐼𝑀𝑈 =

[
0 0 [Φ𝐼𝑀𝑈] 0 0
0 [Φ𝑟𝐼𝑀𝑈

] 0 0 0

]
{𝑥𝑘 } (20)

The estimated vehicle’s rigid body response, �̂�𝑅, can be extracted by subtracting the estimated
elastic response from the overall measurement of the IMU:

{�̂�𝑅}𝐼𝑀𝑈 = {𝑦}𝐼𝑀𝑈 − {�̂�}𝐼𝑀𝑈 (21)

3 TEST CASE
The proposed method is tested using a simplified missile model of 6 m length and 0.2 m diameter.
The model is composed of 3 parts representing the mechanical properties of an outer structure,
a solid propellant, and a payload. A structural FE model and an aerodynamic panel model
were created to formulate the aeroelastic and KSE models. These models are presented in the
following subsections.
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3.1 Structural finite element model
A FE model was built using MSC Patran commercial software. The primary structure was
modeled using shell elements, each with a constant thickness of 4 mm and standard material
properties of Aluminum (𝐸 = 71 GPa, 𝜈 = 0.33, 𝜌 = 2810 kg/m2). The solid propellant section
was modeled using 1D bar elements of a ring-shaped cross-section with an inner diameter of
0.02 m and an outer diameter equal to the model’s diameter, of 0.2 m. Material properties are
typical of standard solid rocket motor propellant (𝐸 = 5 MPa, 𝜈 = 0.25, 𝜌 = 2000 kg/m2). Each
node of the propellant bar elements was rigidly connected to the outer structure’s cross-section.
The payload was modeled as a lumped mass (0D point element), weighting 60 kg also connected
rigidly to the outer structure at the same cross-section. Figure 1 shows the FE model. For
simplicity, the analysis of the symmetric model was performed in the X-Y plane only.

To simulate sensor measurements, sensor points were defined along the model’s top (𝑌 = 𝑅)
directrix. The sensor points are marked with red squares in figure 1. For simplicity, any sensor
point can represent either a strain, acceleration, or angular rate measurement, or any combination
of them. For a strain measurement, it was assumed that the measurements come from a fiber-optic
strain sensor installed on the outer side of the structure along the axial direction, considering only
the 𝜖𝑥𝑥 . For the acceleration measurement, the Y-direction accelerations, ¥𝑤, were considered,
and for the angular rates, the rotation rates around the Z axis ¤𝜃 were considered. The acceleration
and angular rate sensors were assumed to be installed above or below the propellant, as sensors
are typically not installed in the solid rocket motor structure. The IMU was positioned in the
front part of the missile, indicated by a green square in figure 1.

Figure 1: Test case finite elements model. Sensor points are marked with red squares. IMU output point is marked
with a green square.

Free vibration analysis of the free-free model was performed using commercial FE solver MSC
Nastran SOL 103 to determine the natural frequencies of the model and construct all the normal
modes matrices required for the state-space representation. The results are summarized in table
1. For the estimation in the test case, only the first three elastic bending modes were used, as the
following modes are excited at higher frequencies and are not expected to contribute significantly
to the system’s response. Figure 2 depicts the displacement, rotation, and strain components of
the first three elastic bending modes, at the sensors’ locations.
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Mode shape Frequency [Hz] Generalized Stiffness Generalized Mass
(𝜔2

𝑛) [Nm] [kgm2]
Surge 0 0 1.0
Pitch 0 0 1.0
Heave 0 0 1.0

1st Bending 12.6 6.335e3 1.0
2nd Bending 35.7 5.041e4 1.0
3rd Bending 72.7 2.087e5 1.0
4th Bending 122.2 5.899e5 1.0
1st Tensile 152.9 9.227e5 1.0

5th Bending 181.6 1.303e6 1.0
6th Bending 248.0 2.428e6 1.0

Table 1: Summary of the structural modal properties of the first calculated 10 normal modes of the test case FE
model.

3.2 Aerodynamic panels model
For the construction of the aeroelastic state-space model, matrices [𝐴0], [𝐴1], [𝐴2], [𝐷], and
[𝐸] were calculated using RFA with the ZAERO commercial aeroelastic software, utilizing the
aeroservoelasticity module of the solver.

The matrix [𝑄ℎℎ] can be divided into terms corresponding to rigid body modes and elastic
modes as:

[𝑄ℎℎ] =
[
𝑄𝑟𝑟 𝑄𝑟𝑒
𝑄𝑒𝑟 𝑄𝑒𝑒

]
(22)

where subscript 𝑟 refers to rigid body modes and 𝑒 refers to elastic modes. The calculation
and RFA of matrix [𝑄ℎℎ] are performed for all terms. However, as only the elastic response
is considered, only the terms of [𝑄𝑒𝑒] are utilized to construct the KSE transition matrix.
Aeroelastic coupling between the rigid body and elastic dynamics is neglected as it is considered
of second order.

ZAERO utilizes the aerodynamic panel method to compute the AIC matrix via different methods
for various flight conditions. For the current test case, a supersonic airspeed of Mach=2.0 was
selected, with sea-level atmospheric conditions. The aerodynamic panel model is composed of
a single body mesh segment, divided into 65 sections along the longitudinal axis. The nose
is defined as an inlet aerodynamic box with 0% flow penetrating the body (this is because at
supersonic velocities it is considered a superinclined box [5]). The aerodynamic model was
related to the structural model using the thin-plane spline module.

A sensitivity analysis for various approximation parameters was conducted, comparing Roger’s
[7] and the Minimum State (MS) [8] methods, and using a different number of aerodynamic lag
terms. Figure 3 shows a comparison of [𝑄ℎℎ] terms as computed by the RFAs and directly by the
aerodynamic model in the frequency domain for a range of reduced frequencies 0.005 < 𝑘 < 2.5.
Based on the sensitivity analysis, the state-space model was built with RFA using Roger’s method
with three aerodynamic lag terms.

3.3 Random time-varying excitation force
Missile vehicles are subjected to aerodynamic pressure excitation from different sources includ-
ing shockwaves, turbulent boundary layers (TBL), and recirculating flows, which have broad-
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Figure 2: Displacement, rotation, and strain elements of the first three elastic bending modes of the test case model.

band random characteristics. The aerodynamic excitation is most severe during the vehicle’s
maximum dynamic pressure flight phase.

Different empirical methods exist for determining the aerodynamic pressure power spectral
density (PSD) along a missile’s body derived for various flow regimes using measurements of
various missiles [9]. A simplified excitation based on the attached flow over a cone-cylinder
structure for supersonic velocities was used for the current test case. The pressure PSD in the
turbulent boundary layer of the attached flow is expressed as:

𝐺 (𝑥, �̄�) =
4𝑃2

𝑟𝑚𝑠𝛿
∗(𝑥)

𝑉

[
𝐹1.433

1 + (𝐹1.433�̄�)2

]
(23)

where 𝐹 is some empirical constant depending on the Mach number and is taken as 𝐹 =

1 + 0.13𝑀2, 𝑃𝑟𝑚𝑠 is the Root-Mean-Square (RMS) pressure value of the attached flow and is
calculated as 𝑃𝑟𝑚𝑠 = 𝑞∞ 0.01

𝐹
, where 𝑞∞ = 1

2𝜌𝑉
2 is the dynamic pressure with 𝑉 being the flight

velocity, �̄� is a normalized frequency defined as �̄� = 𝜔𝛿∗

𝑉
. 𝛿∗ is the displacement thickness of

the TBL and is defined as:

𝛿∗(𝑥) = 0.0371𝑥(𝑅𝑒)−0.2

[
9
7 + 0.475𝑀2(

1 + 0.13𝑀2)0.64

]
(24)
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Figure 3: Comparison of approximated and computed [𝑄ℎℎ] matrix terms for different numbers of aerodynamic
lag terms, using either Roger’s or Minimum State method, for the case study model having 𝑁ℎ = 6, where
first 3 modes are rigid body and modes 4-6 are elastic. Only terms of [𝑄𝑒𝑒] are shown.

With 𝑅𝑒 the Reynolds number and 𝑀 the Mach number.

The pressure excitation acts normal to the surface of the structure and is different along the axial
stations of the vehicle, both in amplitude and in spectral shape, since both the amplitude of the
PSD and the normalized frequency are functions of the displacement thickness (𝛿∗) of the TBL.
To simplify the calculation for the test case, the excitation was assumed as broadband random
excitation with constant spectral density (white noise) at all the stations along the structure,
having the same RMS amplitude of the shaped spectral density. The RMS value of the shaped
PSD is:

𝐺𝑟𝑚𝑠 (𝑥) =

√︄∫ ∞

0
𝐺 (𝑥, �̄�) 𝑑�̄� = 𝑃𝑟𝑚𝑠

√︂
2𝜋𝛿∗(𝑥)
𝑉

(25)

Therefore, the external aerodynamic force exciting the structure is a random force with normal
distribution having zero-mean and variance of 𝐺2

𝑟𝑚𝑠 (𝑥), that is {𝐹𝑒} ∼ N (0, 𝐺2
𝑟𝑚𝑠 (𝑥)), which

results in different amplitudes along the model’s longitudinal axis. Since the analysis is per-
formed in the X-Y plane only, and the pressure forces act normal to the structure’s surface,
only the forces acting on the 𝑦 = ±𝑅 edges of the structure were modeled. Figure 4 shows a
representation of the forces exciting the system for the case study model, the size of the arrows
is proportional to the RMS value calculated at each station of the model.
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Figure 4: Aerodynamic forces acting along the model. The force values represent the forces’ RMS amplitudes.

3.4 KSE implementation
To implement the KSE, the uncertainty matrices [𝑄] and [𝑅] are required, along with an initial
state vector {𝑥0} and the initial estimation error covariance matrix [𝑃0,0]. The optimal tuning
of the KSE parameters is not within the scope of the current study; hence, all values are derived
from assumptions or bounding values.

3.4.1 Measurement noise covariance
The measurement noise originates from the sensor noise. All sensors are modeled as uncor-
related, with zero-mean Gaussian noise defined by the variance corresponding to the type of
sensor. A baseline level of noise covariance was established using typical commercial sensors
data. The covariance values chosen were: 𝜎2

𝜖 = 5 𝜇s2 for FOSS, 𝜎2
¥𝑤 = 1e−3 m2

s4 for the ac-
celerometer, and 𝜎2

¤𝜃 = 5e−4 rad2

s2 for the gyroscope. With 𝑁𝜖 strain sensor measurement points,
𝑁 ¥𝑤 acceleration measurement points, and 𝑁 ¤𝜃 angular velocity measurement points, the resulting
[𝑅] matrix is:

[𝑅] =

𝜎2
𝜖 [𝐼]𝑁𝜖×𝑁𝜖

𝜎2
¥𝑤 [𝐼]𝑁 ¥𝑤×𝑁 ¥𝑤

𝜎2
¤𝜃 [𝐼]𝑁 ¤𝜃×𝑁 ¤𝜃

 (26)

such that the overall size of matrix [𝑅] is 𝑁𝜖 + 𝑁 ¥𝑤 + 𝑁 ¤𝜃 × 𝑁𝜖 + 𝑁 ¥𝑤 + 𝑁 ¤𝜃 , depending on the
number of each sensor type used.

3.4.2 Process noise covariance
The process noise corresponds to model inaccuracies (such as different stiffness due to simplifi-
cation during FE modeling of the structure), model approximations (such as addressing the mass
of the vehicle, or the dynamic pressure as constant during the calculated time window), and un-
modeled dynamics of the system (not modeling the excitation force as part of the approximation,
or having other unknown forces such as gust acting on the vehicle).

In this work, we will not estimate the model uncertainty but use bounding values to define the
process noise. For the modal responses of the structure, we will base the bounding uncertainty
using the maximal response of the structural system. Using the modal method for the elastic
system, the system equation of motion results in an uncoupled system of equations, such that for
each modal response, the equation has the form:

¥𝜉𝑖 + 2𝜔𝑛𝑖 𝜁𝑖 ¤𝜉𝑖 + 𝜔2
𝑛𝑖
𝜉𝑖 = 𝑓𝑖 (27)
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where 𝑓𝑖 is the generalized force acting on the i-th generalized coordinate. From the definition
of the generalized force, the maximal force amplitude can be bounded as:

| 𝑓 | =

������ 𝑁∑︁𝑗=1
𝜙𝑇𝑖 𝑗𝐹𝑗

������ ≤ 𝑁∑︁
𝑗=1

|𝜙𝑇𝑖 𝑗 | |𝐹𝑗 | ≤
𝑁∑︁
𝑗=1

|𝜙𝑇𝑖 𝑗 |𝐹𝑚𝑎𝑥 = 𝐹𝑚𝑎𝑥
𝑁∑︁
𝑗=1

|𝜙𝑇𝑖 𝑗 | = ∥𝜙𝑇𝑖 ∥1𝐹𝑚𝑎𝑥

such that the generalized force can be bounded using the corresponding displacement mode
shape and the maximal physical force amplitude expected to act on the system. The maximal
generalized force is therefore defined as the bound:

| 𝑓 |𝑚𝑎𝑥 = ∥𝜙𝑇𝑖 ∥1𝐹𝑚𝑎𝑥 (28)

The steady-state maximal modal displacement response is the response of the modal system to
the maximal excitation force:

|𝜉𝑖 |𝑚𝑎𝑥 =
𝑄𝑖 | 𝑓𝑖 |𝑚𝑎𝑥
𝜔2
𝑛𝑖

(29)

where 𝑄𝑖 is the Q factor, which is the maximal dynamic amplification of the response. Using
equation (28) with the approximation of𝑄𝑖 ≈ 1

2𝜁 for low damping ratios, equation (29) becomes:

|𝜉𝑖 |𝑚𝑎𝑥 =
∥𝜙𝑇

𝑖
∥1𝐹𝑚𝑎𝑥

2𝜁𝑖𝜔2
𝑛𝑖

(30)

Rewriting equation (30) in matrix form we get:

{|𝜉 |}𝑚𝑎𝑥 =
1
2
[Ω]−2 [𝑍]−1{Φ𝑛𝑜𝑟𝑚}𝐹𝑚𝑎𝑥 (31)

where {Φ𝑛𝑜𝑟𝑚} = {∥𝜙𝑇1 ∥1 . . . ∥𝜙𝑇𝑁 ∥1}𝑇 . Similarly, expressions for the maximal modal velocity
and acceleration responses can be derived as:

{| ¤𝜉 |}𝑚𝑎𝑥 =
1
2
[Ω]−1 [𝑍]−1{Φ𝑛𝑜𝑟𝑚}𝐹𝑚𝑎𝑥 (32)

{| ¥𝜉 |}𝑚𝑎𝑥 =
1
2
[𝑍]−1{Φ𝑛𝑜𝑟𝑚}𝐹𝑚𝑎𝑥 (33)

For the aerodynamic lag terms, using the definition of the lag states given in equation (2), since
the [𝑅] matrix is diagonal, the matrix term(

𝑠[𝐼] − 𝑉
𝐿
[𝑅]

)−1
𝑠

is also a diagonal matrix having on its diagonal terms of the form 𝑠
𝑠+𝛽𝑖 , where 𝛽𝑖 is the ith lag

root. The amplitude of each such term is bounded by 1, such that the matrix term is bounded by
the identity matrix [𝐼]: (

𝑠[𝐼] − 𝑉
𝐿
[𝑅]

)−1
𝑠 ≤ [𝐼]

Therefore the maximal lag state amplitude is:

{|𝑋𝑎 |}𝑚𝑎𝑥 ≤ [𝐸]{|𝜉 |}𝑚𝑎𝑥 =
1
2
[𝐸] [Ω]−2 [𝑍]−1{Φ𝑛𝑜𝑟𝑚}𝐹𝑚𝑎𝑥 (34)
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Similarly, expressions for the maximal lag state derivative amplitude can be derived as:

{| ¤𝑋𝑎 |}𝑚𝑎𝑥 =
1
2
[𝐸] [Ω]−1 [𝑍]−1{Φ𝑛𝑜𝑟𝑚}𝐹𝑚𝑎𝑥 (35)

The maximal force is taken as the maximal predicted force acting on the vehicle (figure 4). The
process noise for the modal responses is taken as 10% of the maximal modal response. This
value is arbitrary at this point, but its effect is investigated as part of the test case.

The resulting process noise vector is:

{𝑤} = 0.1
{
|𝜉 |𝑚𝑎𝑥 | ¤𝜉 |𝑚𝑎𝑥 | ¥𝜉 |𝑚𝑎𝑥 |𝑋𝑎 |𝑚𝑎𝑥 | ¤𝑋𝑎 |𝑚𝑎𝑥

}𝑇 (36)

The corresponding process covariance matrix is:

[𝑄] = E
[
{𝑤}{𝑤}𝑇

]
(37)

3.4.3 Q/R Factor
The Kalman gain defines for the KSE what to rely on, when assigning the weights between
the model prediction and the measurements in each calculation step, based on the uncertainties
of the process and the measurement. Looking at equation (17) we see that the gain depends
on the ratio between the terms in the state estimate error covariance [𝑃] and the measurement
covariance matrix [𝑅]. Substituting the expression for the state estimate error covariance (16),
and neglecting the term for the state error covariance transition, as it should tend to minimum
as the KSE converges, we get the Kalman gain to be:

[𝐾] = [𝑄] [𝐻]𝑇 ( [𝐻] [𝑄] [𝐻]𝑇 + [𝑅])−1 (38)

The observation matrix [𝐻] is used to transform the process uncertainty matrix to the measure-
ment space such that the terms of [𝐻] [𝑄] [𝐻]𝑇 and [𝑅] are comparable. We will denote:

[𝑄𝑅] = [𝐻] [𝑄] [𝐻]𝑇 (39)

Rearranging equation (18) we get:

{𝑥𝑘+1} = ( [𝐼] − [𝐾𝑘+1] [𝐻]) {𝑥𝑘+1|𝑘 } + [𝐾𝑘+1]{𝑧𝑘 } (40)

When the the terms of [𝑄] are larger than those of [𝑅], meaning that the process uncertainty is
larger than the measurement uncertainty, the Kalman gains will tend more to unity and the state
estimate will be corrected mostly based on the measurements. In the opposite case, the Kalman
gains will be low such that the state estimate will be corrected mostly based on the prediction of
the state by the model.

Therefore, some metric should be defined to express the dominance of the interaction between
the different uncertainties, denoted as Q/R ratio factor. Since the [𝑅] matrix is diagonal, the
factor is defined as the mean value of the ratio between the terms on the diagonals of [𝑄𝑅] and
[𝑅]:

𝑓𝑄/𝑅 =
1
𝑁𝑠

𝑁𝑠∑︁
𝑖=1

𝑄𝑅𝑖𝑖

𝑅𝑖𝑖
(41)

where 𝑁𝑠 = 𝑁𝜖 + 𝑁 ¥𝑤 + 𝑁 ¤𝜃 is the total number of sensors. High values of 𝑓𝑄/𝑅 should lead to
an estimation that relies more on the measurements, and lower values of 𝑓𝑄/𝑅 should lead to an
estimation that relies more on the predictions using the state-space model.
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3.4.4 Kalman state estimation initialization
To execute the estimation, initial conditions for the estimated state {𝑥0} and the state estimation
error covariance [𝑃0|0] are needed. The system was assumed to be at rest, such that the state
vector initial condition was taken as:

{𝑥0} = {0} (42)

For the estimation error covariance, the [𝑄] matrix was used, such that:

[𝑃0|0] = [𝑄] (43)

4 RESULTS
The first part of the results section provides the results of the test case simulation using the
full aeroelastic state-space formulation, establishing the reference for the estimation. The
following part presents the results of a parametric study concerning the effect of various sensor
configurations on the estimation employing the approximated model and the proposed KSE
approach. The last section of the results assumes the best sensor combination is selected, and
presents an additional parametric study on the effect of the sensor noise levels and the process
noise on the estimation.

4.1 Nominal response of the IMU
To investigate how the proposed KSE approach estimates the elastic response at the required
IMU location, and extracts its rigid body response, an analysis of the IMU’s nominal response
is required. To compute the nominal response, the full state-space model described in section
2.1 was solved using the matrices derived from the mathematical models detailed in sections 3.1
and 3.2, for the random excitation input specified in section 3.3.

In general, for a time-varying aeroelastic model, the modal responses themselves are not of
great interest, since the modal basis changes in time. The KSE, which calculates the response
using an assumed constant modal basis, should compensate for the change in the modal bases by
varying modal responses. In such cases, only the physical response may be used for evaluating
the accuracy of the estimation. However, for a constant model, in which the structural properties
and the flight conditions do not change, the modal basis is also constant, the physical responses
are directly proportional to the modal responses, and the latter can be used to evaluate the
estimation’s accuracy.

The current test case considers a flight phase in which the structure and the flight conditions
do not vary significantly. The approximate model is constructed using a fixed modal basis,
and therefore the KSE estimated modal responses are expected to be similar to the full model’s
responses. Therefore, the KSE’s performance will be evaluated based on both the modal and
the physical responses.

4.2 Effect of sensor configuration
In the measurement equation formulation (14), each type of sensor measurement is directly
proportional to one of the modal responses. However, each measurement location has a different
sensitivity to each mode shape. The selection of a sensor placement has to consider the modes
it observes, as well as the practical aspects of sensor installation. In this section, the selection
of sensor configuration is explored. The number of sensors and their locations are selected such
that all three elastic modes are observable, while still being feasible for real-world deployment.
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For the strain sensors, since this study relies on FOSS, it was assumed that it is feasible to install
a fiber as part of the rocket engine structure, such that axial strain data along the missile is
available. Therefore, for the strain measurement, all measurement points were used, making all
three elastic strain modes observable.

For the acceleration sensors, common accelerometers are installed on the internal part of the
structure either ahead of the motor (measurement points 1-5 in figure 1) or behind it (measure-
ment points 28-29 in figure 1). The acceleration reconstruction uses the displacement modes,
which, in the case of a free-free slender body, obtain their maximum displacement at the free
ends. However, because the center of mass of a free-free body is fixed in the elastic modes,
for a structure with a non-uniform mass along the structure, the bending modes will also have
a non-uniform displacement along the structure. Therefore, as can be seen from figure 2, the
front end of the structure is not the optimal location for an accelerometer to observe the second
and third modes.

For the angular rate sensors, measured by gyros, the installation strategy is similar to that of
the accelerometers: They are located where the corresponding modes are most observable. The
modes used for the angular rate reconstruction are the rotation modes. Since the rotation angle
along the main axis is the axial derivative of the displacement, the rotation modes are zero
where the displacement modes are maximal, and vice versa, except for the structure’s edges.
Therefore, the locations best suitable for displacement modes observability are the least suitable
for rotation modes observability. In many real-life scenarios, however, a 6-DOF sensor that
combines accelerations and angular rates is utilized, requiring a position selection that works
well for both accelerometers and gyroscopes.

In the current study, both accelerometers and gyros were placed in measurement points 2, 5, and
28, where the displacement and rotation modes are not maximal, but are both observable and
differentiable between each other. Figure 5 shows the locations of each sensor type.

Figure 6 shows the estimation of the modal responses using the KSE method for different
combinations of sensor types. A close-up on a 0.1 sec representative section of the response
is shown, such that the difference between different sensor combinations can be observed. The
modal displacement is observed by the FOSS and therefore is accurately estimated in all cases
since all cases have FOSS in the sensor configuration. The modal velocity is observed by
the gyros, and therefore is best estimated in cases where there are angular rate measurements.
However, for both the case of FOSS only, or FOSS and accelerometers, the modal velocities
estimation is also adequate. The modal acceleration is observed by the accelerometers and
therefore is best estimated in cases where there are acceleration measurements. The modal
acceleration exhibits the largest elastic response to the dynamic generalized force excitation,
and therefore, an accurate estimate is obtained only in cases where there are acceleration
measurements.

Figure 7 shows the extracted rigid body response at the IMU location using the KSE with
different sensor configurations. Similarly to the modal responses, figure 7 shows that in all
cases an adequate extraction is achieved. However, the best estimations of the IMU’s rigid-body
accelerations or angular rates are achieved in cases where there are acceleration or angular rates
measurements, respectively.

Figure 8 shows the PSD of the rigid body response at the IMU location (the PSD of the entire
response of figure 7) computed using the KSE method with different sensor configurations.
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Figure 5: Different sensor locations along the missile structure shown over the first three elastic modes. The red-
shaded area represents the rocket motor where accelerometers and gyros cannot be installed.

For all cases, the method successfully cleaned the elastic response component of all considered
modes, leaving only the rigid body response at the vehicle’s IMU location.
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Figure 6: Comparison of the first three elastic modes modal response estimation computed using different sensor
combinations. The figure displays only part of the full response, at times 4.0𝑠 < 𝑡 < 4.1𝑠, for improved
clarity.
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Figure 7: Computed rigid body (a) acceleration and (b) angular rate at the IMU location. The figure displays only
part of the full response, at times 3.1𝑠 < 𝑡 < 3.2𝑠, for improved clarity.

17



IFASD-2024-110

0 10 20 30 40 50 60 70 80 90 100
10-4

10-3

10-2

10-1

100

Nominal

Only FOSS

FOSS + Gyros

FOSS + Accelerometers

FOSS + Gyros + Accelerometers

(a) Acceleration

0 10 20 30 40 50 60 70 80 90 100
10-10

10-8

10-6

10-4

10-2

Nominal

Only FOSS

FOSS + Gyros

FOSS + Accelerometers

FOSS + Gyros + Accelerometers

(b) Angular rate

Figure 8: PSD of the rigid body (a) acceleration and (b) angular rate responses at the IMU location computed by
the KSE using different sensor configurations.

18



IFASD-2024-110

4.3 Sensor noise level effect
Different sensors have different noise levels, whereby measurement noise may arise from elec-
trical noise in the sensor’s surrounding or inadequate signal conditioning. The Kalman gain
is calculated using both process and measurement uncertainties, where based on their ratio,
different weights are given for the prediction and the measurement. A high Q/R factor will result
in an estimation mostly based on the measurements. If the measurement noise itself is high, the
estimation will be noisy as well.

To investigate the effect of sensor noise levels, several noise levels were simulated for the case
of estimation that uses a combination of FOSS, accelerometers, and gyros data. For each noise
level, different sensor variance values were assigned to each sensor type. The variance values
for the regular noise level were determined based on typical commercially available sensor
datasheets, and the low and high noise variance levels were arbitrarily determined as a few
orders of magnitude lower or higher than the regular value, to yield a significant difference in
Q/R factor. Table 2 summarizes the sensor noise variance levels that were used.

Measurement Strain Acceleration Angular Rate

(𝜇S)2
(

m
s2

)2 (
rad
s

)2

Low Noise 0.1 1 × 10−5 1 × 10−8

Regular Noise 5 1 × 10−3 5 × 10−7

High Noise 1000 5 × 10−2 1 × 10−5

Table 2: Noise variance levels for each sensor type used to determine noise levels for sensitivity analysis.

Figure 9 shows the modal response estimation using the KSE for different levels of sensor noise.
A close-up on a 0.1 sec representative section of the response is shown, such that the difference
between different sensor configurations can be clearly seen.

Results in figure 9 show that for each modal response, the impact of noise levels is different.
For the modal displacements, high noise value results in significantly noisy estimation, while
for the modal velocities, the effect of noise is smaller and is mainly limited to the first mode.
For the modal acceleration, the noise levels have a minor impact. These differences derive
from the different noise levels of the different sensor types that are used to observe the modal
displacements, velocities, and accelerations. Additionally, since the sensor noise is white
Gaussian noise, its effect is more apparent in the first mode, where the responses are at a lower
frequency relative to the measured frequency band, which contains noise at higher frequencies.

Figures 10 and 11 show the rigid body time response and PSD, respectively, at the IMU location
computed by the KSE with different sensor noise levels. The results show that even for high
sensor noise, the rigid body response is adequately computed, eliminating the elastic responses.
In the case of high noise, the computed rigid body response is also noisy due to the broadband
white noise, but the lower frequency physical response is well extracted.

4.4 Process noise level effect
The process noise in this study is bounded by some theoretical maximal response value for each
of the states. The investigation uses different fractions of the maximal responses as a measure
for different levels of process noise. The simulation was run using a combination of FOSS,
accelerometers, and gyros, having regular sensor noise variance levels. In each simulation, a
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Figure 9: Comparison of the estimation of the modal responses of the first three elastic modes of the model, using
different levels of sensors noise. The figure shows only part of the full response at times 4 < 𝑡 < 4.1 for
improved clarity. The calculated Q/R factor for each simulation is shown in the legend.

different fraction of the maximal modal response (36) was used, similar for all states. The process
noise is directly proportional to the fraction value used, and the Q/R factor is proportional to its
square value. The values used for sensitivity analysis were selected such that they yield various
levels of Q/R factors that impact the KSE performance.

Figure 12 shows the RMS of the error between the nominal and the KSE-computed rigid body
response as a function of the process noise, presented as a fraction of the maximal response
value. The corresponding values of Q/R factor are also shown. At low process noise values
(leading to a low Q/R factors), the process uncertainty is much lower than the measurement
uncertainty, such that the KSE estimates the response mostly based on the model prediction.
However, since the model is an approximate model, it fails to accurately predict the responses,
hence the error in the rigid body response is large. At high fraction values (leading to a high Q/R
factors), the estimation is based mostly on the measured data and thus converges to a constant
RMS error for constant levels of sensor noise.

5 CONCLUSIONS
This study presented a method to estimate the elastic response of a slender body in flight using an
approximate aeroelastic model and a combination of sensors utilizing the Kalman state estimator.
The method was demonstrated on a test case of a simple slender body, showing the successful
extraction of the rigid body response at the IMU location by substracting the estimated elstic
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Figure 10: The rigid body response extraction of (a) acceleration and (b) angular rate for different noise levels. The
figure shows only part of the full response at times 3.1 < 𝑡 < 3.2 for improved clarity.
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Figure 11: The PSD of the IMU extracted rigid body (a) acceleration and (b) angular rate responses for different
noise levels. The PSD is calculated for the whole response.
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Figure 12: RMS error of the computed rigid body responses with varying process noise levels. The process noise
is defined as the fraction of the maximal response for all states. The Q/R factor is calculated for each
case.

response from the IMU measurements.

In order to estimate the elastic rates and accelerations, a modified aeroelastic formulation was
presented, which includes the modal accelerations as states. With this formulation, all the
considered measurements are directly proportional to a single state of the system, either modal
displacement, velocity, or acceleration, through the corresponding normal modes set. This
provided for improved estimation of the modal accelerations and the physical elastic acceleration
response.

The test case results showed the feasibility of implementing the proposed approach on a real
structure, considering practical constraints on sensor’s installation. The results showed that
using sensors whose measured data is proportional to some modal response, leads to the best
estimation of that modal response, and the best reconstruction of physical responses calculated
based on that modal response. In general, as expected, having all types of sensors at measurement
points, such that all modes are observable and differentiable, yields the best estimation of all
parameters. However, even in cases in which there is no sensor proportional to some of the
modal responses, adequate estimation of all the modal responses is achieved, leading to adequate
reconstruction of the elastic response at unmeasured points and the elimination of the elastic
response from the overall measurement at the IMU point.

Finally, the effect of measurement and process uncertainties were analysed using some bounding
values without full tuning of the uncertainty matrices. The analysis showed that using an
approximated model increases the process noise (that compensates for the approximation), and
leads to an estimation that is mostly based on the measured data. However, even in cases of noisy
sensors, which yield a noisy estimation, an adequate reconstruction of the elastic response, and
consequently, elimination of the elastic response from the overall measured data is attainable.
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