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Abstract: The ability to estimate aerodynamic loads and flight parameters in flight using only
internal sensors is desirable for guidance, navigation, and control. This is particularly true for
harsh aerothermal environments experienced in supersonic and hypersonic flight, but it is also
applicable to any other flight regime. The vehicle-as-a-sensor concept is a novel nonintrusive
sensing strategy for airframes in flight. It leverages the internal measurement of the deformed
state of the vehicle, its temperatures, and its accelerations to infer its aerodynamic state. An in-
verse model consisting of a strain-to-load, or strain/temperature-to-load, neural network trained
with static elastic solutions of a detailed finite element model of a slender hypersonic vehicle
is considered here. The deformed state of the vehicle is assumed to be measured with high-
density strain and temperature measurements on its internal surface, enabled by the application
of continuous fiber optic sensors. Constraints pertaining to the use of fiber optic sensors are
considered, where limitations such as applying the optical cables only on the internal surface
of the vehicle, and the necessity of choosing adequate strain component directions to recover
the aerodynamic state with sufficient accuracy are accounted for. Inverse models considering
selected sensors based on the physics involved in the problem are shown to successfully recover
pressure distribution on the outer surface of the vehicle.

1 INTRODUCTION

High-speed flight conditions are challenging environments when it comes to designing aircraft
and their flight control systems. More specifically, temperatures on the outer surface of a vehicle
in hypersonic conditions can reach around 1400°C due to heating [1]. This greatly affects design
choices such as materials and sensor selection.

To tackle this problem, a novel vehicle-as-a-sensor concept [2] is explored. It uses the vehicle’s
own deformation to obtain the aerodynamic loads it is subjected to by solving an inverse prob-
lem. Pham et al. [2] showed that this can be achieved by using machine learning algorithms
and successfully recovered pressure loads on a vehicle in hypersonic conditions given strain
measurements. However, no thermal effects were considered in that study.

In these high-speed flight conditions, thermal effects actually fundamentally change the nature
of the problem, and the vehicle’s dynamics. It becomes necessary to consider the aerodynamics,
aerodynamic heating, heat transfer, and the elastic airframe, as well as the interactions between
each of these [3] since the problem is highly coupled [4].
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Inverse elasticity problems of similar nature have been addressed previously through the use of
finite element models (FEM) with regularization in an iterative manner [5]. Still using finite
element models, inverse problems were addressed based on an inverse interpolation approach
to define loads through least-squares minimization of calculated and measured strains [6]. With
a non-iterative manner, it has also been addressed using deformations and tractions considering
the boundary element method [7].

Other recent attempts at addressing the solution of the inverse problem also leveraged on the
linearity assumption of the elastic structural model, while accounting for its ill-posedness. Pham
et al. [8] approached it as a least-squares problem and used finite element method solutions of
the elasticity partial differential equation as a constraint. Panigrahi et al. [9] applied a data-
driven technique for force reconstruction on a beam-like structure based on the pseudo-inverse
of the flexibility influence coefficients matrix.

For the vehicle-as-a-sensor to work, the solution of the inverse problem needs to be quick (in
real time), account for nonlinearities that arise from considering thermal effects, and possibly
account for unsteady effects.

Machine learning algorithms can satisfy these necessities if trained on relevant physics informed
data. Raissi et al. [10] showed that neural networks (NNs) can be used to provide solutions for
forward and inverse problems modeled by partial differential equations including nonlinearities.
On a more similar application to inferring loads for flight control purposes, Singh and Willcox
[11] applied machine learning, Bayesian statistics, and decision theory to perform trajectory
adjustments on a vehicle given in-flight measurements.

Neural networks have been used before to identify loads on aircraft-like structures given strain
measurements by Cao et al. [12], as well as by Klotz et al. [13] to obtain wing twist angle given
strain measured with a fiber optic sensing system on a modern business jet.

Thus, neural networks are proposed and applied here as a solution to the inverse problem that
defines the vehicle-as-a-sensor concept. They provide a mapping between the measured internal
strain and temperature of the structure to the applied aerodynamic loads.

The training data necessary for the neural network model are based on a detailed FEM of the
vehicle, where several responses to applied loads are generated so that an accurate mapping
can be obtained. It is generated through a framework based on the University of Michigan’s
High-Speed Vehicle (UM/HSV) simulation framework [14]. Pressure loads are generated using
Newtonian impact theory with shock-expansion pressure relations [15] and they are applied
to the structural FEM model of the vehicle to generate the corresponding static deformation
solution.

The definition of sensor placement is crucial to obtain an accurate and effective solution for the
inverse model and the vehicle-as-a-sensor. While Pham et al. [8] and Panigrahi et al. [9] have
provided insights into obtaining optimized placements considering their strain-to-load map-
pings, no considerations have been made regarding the thermal effects and temperature sensors.

The process for obtaining the inverse model through a neural network and the generation of
training data is described in Section 2, where the approach for including thermal effects is
also detailed. Section 3 explores the sensor selection methodologies, and Section 4 defines the
vehicle used to exercise the proposed methods and presents the results.

2



IFASD-2024-105

2 NEURAL NETWORK-BASED INVERSE MODEL
To address the need for an inverse model that enables the vehicle-as-a-sensor concept, the use of
neural networks is introduced. They are known to be of quick response once trained, and being
capable of modeling non-linearities, which align with the requirements of the problem at hand.
Potential difficulties of applying neural networks can arise from the loss of interpretability of
the model, and the need for large and accurate amounts of training data.

To simplify the problem for the current evaluations, only steady state conditions are considered,
and no distributed inertial effects are included. But the framework is general enough that it can
be enhanced to include those in a similar way.

The framework for generating the training data is described in Subsection 2.1, the approach for
including thermal effects is detailed in Subsection 2.2, and the neural network-based inverse
model is defined in Subsection 2.3.

2.1 Generation of Training Data
The main framework used to generate the training data is represented in Figure 1. The pro-
cess starts with sampling the parameter space experienced in flight, by defining Mach number,
altitude, angle of attack, and angle of sideslip. Then, parts of UM/HSV are used to obtain a
trimmed condition of the vehicle if desired, and obtain the aerodynamic loads the vehicle is
subjected to by applying Newtonian impact theory with shock-expansion pressure relations.
Additional adjustments could be made to the loads to account for separation, if high-fidelity
numerical solutions or experimental observed loads are available for the vehicle of interest. The
impact of using aerodynamic loads of reduced accuracy has been assessed and addressed in
previous work [16].
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Figure 1: Framework for generating training data.

Heating effects are included through a thermal reduced order model (ROM) generation process
proposed by Falkiewicz and Cesnik [3]. This ROM is used to generate temperature fields that
are considered representative of what could be encountered in flight. This process is further
described in Subsection 2.2.

The temperature fields and the aerodynamic loads are applied to the high-fidelity FEM for a
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thermal-elastic solution. Outputs of interest for this solution include strain and equivalent rigid
body acceleration, since a free-flight boundary condition is imposed.

The aerodynamic pressure on the outer surface affects the heating loads, and this is modeled
through the thermal ROM generation process used in this framework. However, the heating
loads do not considerable affect the aerodynamic pressure. This enables the application of the
current framework, where the temperature fields and the aerodynamic loads are applied to the
FEM independently.

2.2 Inclusion of Thermal Effects

It is necessary to account for the high temperatures experienced during high speed flight condi-
tions since they affect the mechanical and thermal properties of the materials, and consequently,
the deformation and strain experienced by the vehicle in flight. To properly account for that,
it is important to model the geometric stiffening that results from the thermal expansion in the
structure due to the temperature distribution, the change in material properties, and the applied
thermal loads.

To generate the representative temperature fields in the structure, the thermal model generated
by Weston and Cesnik [17] is used. It builds on the procedure proposed by Falkiewicz and Ces-
nik [3], where thermal snapshots are obtained from a series of independent aero-thermo-elastic
simulations of flight trajectories of interest. This is followed by applying proper orthogonal
decomposition (POD) to obtain a modal subspace of lower dimensionality.

Combinations of the thermal modes with modal coordinates ranging between the bounds cor-
responding to the snapshots are used to generate the temperature fields. The modal coordinates
are obtained through Latin hypercube sampling (LHS). Temperature fields with unrealistic val-
ues are discarded, that is, only fields where 0 < T < 1000 K are kept. Once the temperature
fields are generated, thermal-elastic solutions are obtained using Abaqus [18], where the nec-
essary considerations to account for the thermal effects for a free-flight boundary condition are
represented in Figure 2.
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Figure 2: High-fidelity FEM thermal-elastic solution.
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The temperature field enters as thermal loads to the model and as changes to the material prop-
erties in the temperature dependent stiffness matrices. The aerodynamic loads enter as external
nodal forces. Once the loads are defined, the equilibrium equations are solved and the outputs
of interest are obtained.

In order to be comprehensive of the flight conditions of interest, a large number of temperature
fields is expected to be needed, and more combinations of temperature fields and aerodynamic
loads than what would be observed in flight should be considered.

2.3 Neural Network: Strain- and Temperature-to-Pressure Distributions
Figure 2 is a representation of the forward model, where loads are used as input to a FEM
solution, and strains can be obtained as outputs. This input-output pair constitutes the training
data necessary for obtaining the inverse model, modeled here through a neural network.

A feedforward fully connected neural network for regression is obtained using Bayesian opti-
mization with a 5-fold cross validation, where the number of layers can vary from 1 to 5, the
size of each layer can vary from 1 to 400, the activation function can be one from Rectified Lin-
ear Unit (ReLU), hyperbolic tangent, sigmoid or none, and standardization and regularization
can be applied or not.

The training data for this inverse model is defined as strain and temperature values from selected
nodes on the inner surface of the vehicle FEM, and pressure distribution on the outer surface of
the vehicle. It maps strain and temperature measurements to the aerodynamic load the vehicle
is subjected to at that instant.

To decrease the dimensionality of the problem, a POD of the pressure values is obtained. This
allows for the recovery of modal coordinates instead of discretized pressure values on the outer
surface of the vehicle. Similarly, the recovery of integrated or distributed forces is also possible.

3 SENSOR SELECTION
For an accurate and practical solution of the inverse problem, it is crucial to select relevant and
sufficient number of sensor points as inputs. Thus, sensor selection is addressed here.

A common sensor selection methodology consists of applying an observability analysis. While
promising for the current application, it requires a state space representation of the system,
which is currently not implemented.

One disadvantage of using machine learning algorithms such as neural networks is that they
are known to loose interpretability, making it difficult to use in sensor placement, or sensor
selection. While SHAP (SHapley Additive exPlanations) [19], a framework designed for inter-
preting model predictions, addresses this issue, its implementation quickly becomes unfeasible
as hundreds of inputs are considered in the model.

A straightforward method of obtaining the influence each sensor has on a determined output
load was applied by Panigrahi et al. [9], where a heat map of the pseudo-inverse of the Flexibility
Influence Coefficients matrix was presented. This matrix can be determined by training data
consisting of applied loads and resulting strain. However, the method assumes linearity between
the input and output, meaning it cannot be applied in the presence of thermal effects.

To overcome that, the problem is divided into two parts. First, the nodes are ranked according
to the heat map, considering strain data without any thermal effects. In parallel, the nodes are
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ranked through an equivalent heat map generated considering the previously mentioned thermal
modes.

This process, although simplistic, is applicable to this problem and is further detailed in Subsec-
tion 3.1 and Subsection 3.2, along with the metric of error given the retained number of nodes.
For both parts, only sensor points on the inner surface of the vehicle comprise the initial set that
is then ranked.

3.1 Strain

As applied by Panigrahi et al. [9], the heat map of the pseudo-inverse of the Flexibility Influence
Coefficients matrix [C] is used here. First, [C] is obtained based on the training data with

[Ci×a] = {εi×n}{fa×n}T (fa×nf
T
a×n)

−1, (1)

where ε represents the strain, and f represents the applied load. The subindices i correspond to
the number of inputs, a to the number of outputs, and n to the number of training cases.

The pseudo-inverse of [C] can be used to obtain recovered loads with

{fra×n} = (CT
i×aCi×a)

−1CT
i×a{εi×n} = [C+

a×i]{εi×n}. (2)

Now, [C+] provides a heat map with a metric of influence of each strain sensor and component
to the applied/recovered load.

For the problem at hand, the applied loads can be defined as pressure distribution on the outer
surface of the vehicle, or force distribution decomposed in each direction. Since this method
assumes linearity, force is used instead of pressure. And the force distribution is modeled
through POD modes, similarly to what is applied to the pressure distribution in Subsection 2.3.

The sensors can then be ranked according to the influence value in matrix [C+]. After ranked
by importance, the sensors can be selected, and Equations 1 and 2 can be applied once again. A
metric of error can then be obtained when comparing the recovered forces to the original forces.

3.2 Temperature

The same heat map concept is applied to the temperature sensor selection. However, the [C]
matrix in this case actually corresponds to the thermal bases, that is, the thermal modes of the
model referred to in Subsection 2.2.

Sensor points are then ranked and can be selected by importance. The recovered thermal modes
can be obtained from

[ϕri×a
] = {Ti×n}{ca×n}T (ca×nc

T
a×n)

−1, (3)

where T are the temperature fields with selected sensors and c correspond to the modal coor-
dinates used to generate the respective fields. The subindices i correspond to the number of
sensor points, a to the number of thermal modes, and n to the number of training cases.

The recovered modal coordinates are obtained from

{cra×n} = ([ϕri×a
]T [ϕri×a

])−1[ϕri×a
]T{Ti×n}. (4)

The error metric is obtained by comparing the recovered modal coordinates with the initial
modal coordinates.
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4 RESULTS

The Initial Concept 3.X (IC3X), a representative slender high-speed vehicle, is used as a test
case. The results presented next are based on a FEM of the IC3X from Klock and Cesnik [20].
The model contains a total of 80,940 nodes and 66,045 elements, consisting of tetrahedral,
hexahedral and wedge shapes.

Training data is generated for combinations of M = [5, 6, 7], h = [20, 25, 30, 35, 40] km, and
α = [0◦, 10◦, 20◦, 30◦], resulting in a total of 60 flight conditions. Notably, the trajectories used
by Weston and Cesnik [17] for the generation of the thermal model also span these conditions.

In the next subsections, results regarding the inclusion of thermal effects are explored, followed
by results on the sensor selection methodology applied on the strain sensors and then on tem-
perature sensors, and finally, results on the recovery of pressure distribution using the inverse
model, as well as comparisons on the use of different sensor sets are explored.

4.1 Inclusion of Thermal Effects

The effect of including thermal loads on the training data generation process can be evaluated
when strain values obtained with and without thermal effects are compared.

Trimmed flight conditions resulting from the combinations of Mach number and altitude are
used. It is observed that, for the IC3X, the definition of the temperature field presents the largest
effect on maximum absolute strain values on the inner surface of the vehicle. In fact, thermal
effects can account for 97.7–99.5% of total maximum absolute strain values. For untrimmed
flight conditions, thermal effects can account for 66–100% of total maximum absolute strain
values. The cases where thermal effects have the lowest impact on overall strain values are
those where dynamic pressure and angle of attack are the highest.

The considered temperature fields present minimum and maximum temperatures on the inner
surface of the vehicle that range between 41–414 K and 398–914 K, respectively.

Even though there seems to be an overestimation of the strain values due to thermal effects,
these results highlight the importance and necessity of appropriately considering the thermal
effects for this vehicle-as-a-sensor concept in high-speed flight.

The strain estimation can be improved by considering more realistic thermal loads. In the
current implementation in Abaqus for the thermoelastic problem, the default reference is 0
K. This creates additional thermal strain to the system that are not actually present there. A
more realistic reference condition would be room temperature or whatever is the closest to the
zero strain under no loads (impacted by manufacturing and assembly processes). This is not a
limitation of the methodology and any reference temperature can be accommodated as long as
it is defined upfront.

4.2 Sensor Selection

As the problem of sensor selection is separated in two parts, the nodes on the inner surface
of the vehicle are ranked twice. One ranking considers the importance of strain values on the
recovery of aerodynamic loads, and the other considers the importance of temperature values
on the recovery of modal coordinates, that were used to generate the temperature fields by
combining the thermal POD modes.
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4.2.1 Strain

As mentioned in Subsection 3.1, the distributed loads applied on the vehicle are modeled
through POD modes. So, for the results presented next, force in the z direction (opposed to
gravity but in body frame) is used, and 12 modes are retained on the truncated bases. This
results in a half mean squared error of the order of 10−30 when comparing the original and the
recovered forces.

Using the training data without any thermal effects, the [C] matrix is obtained using Equation
1. The modal coordinates are recovered with Equation 2, and this results in a half mean squared
error of the order of 10−12 when comparing to the original forces.

For the ranking of the sensors through the pseudo-inverse of [C], only absolute values of the
matrix are considered and each mode is given the same weight. The ranking specifies the node
and the strain component of most influence on the recovery of the modal coordinates of the
applied forces.

The half mean squared error on the recovery of the nodal forces according to the number of
retained sensors after ranked can be seen in Figure 3. There are 14,034 nodes available on the
inner surface of the vehicle as sensor points, and considering 6 strain components for each node
results in a total of 84,204 possible sensors.

100 101 102 103 104 105

Number of Sensors

10-15

10-10

10-5

100

105

M
SE

Figure 3: Half mean squared error on recovery of applied forces according to retained number of sensors.

Notice that with 12 retained sensors there is a considerable drop in the error value to 5.1×10−7,
with 90 retained sensors the error further decreases to 1.5× 10−9, and then with 2,405 retained
sensors the error reaches 1 × 10−11. The locations for these retained sensors can be seen in
Figure 4, where the nodes on the inner surface of the IC3X are represented in green and the
strain sensor locations are highlighted in black.

For 12 sensors, all of the locations are near the back of the vehicle at a region that presents high
stress concentration due to sharp corners. For 90 sensors some locations appear near the nose
of the vehicle, and for 2,405 sensors a bulk of the points appear along the vehicle.

This method results in clustered locations due to the high discretization of the possible sensing
points and no consideration for optimizing the number of sensors. Notably, for the vehicle-as-a-
sensor concept, clustering of sensors might be beneficial, since the use of continuous fiber optic
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(a) 12 sensors (b) 90 sensors (c) 2405 sensors

Figure 4: Nodes on the inner surface of the IC3X, with strain sensor points highlighted in black.

strain sensing cables naturally enables it.

However, a selection of 16 sensors based on “engineering judgement” results in an error of 3.4×
10−9 compared to 3.7×10−7 obtained from this method. These sensors were selected by keeping
the initial set of 12 and adding the subsequent four that presented the largest contribution to
error reduction, and where the distribution of sensor points looks similar to the set represented
in Figure 4 (b). The error results are summarized in Table 1.

Table 1: Half mean squared error (MSE) on applied forces.

Recovered with specified number of sensors
Ranked based on heat map Selected

POD All 12 90 2,405 16 16
MSE 10−30 10−12 5.1× 10−7 1.5× 10−9 1× 10−11 3.7× 10−7 3.4× 10−9

4.2.2 Temperature

Similarly to the strain sensor selection, the pseudo-inverse of the thermal modes matrix [ϕ] is
used for the ranking of the sensor points considering only absolute values and sensor locations
on the inner surface of the IC3X. In this case, the ranking specifies only the location of the node
of most influence on the recovery of the modal coordinates used to generate the representative
temperature fields.

The half mean squared error on the recovery of the thermal modal coordinates according to
the number of retained sensors after ranked can be seen in Figure 5. Here, the total number of
sensors corresponds to the total number of available nodes, that is, 14,034.

With 35 retained sensors there is a considerable drop in the error value; however, the error is
still high. With 79 retained sensors the error is 6.5 × 10−8, and with 166 retained sensors the
error further decreases to 5.8 × 10−10. The locations for these retained sensors can be seen in
Figure 6, where again the nodes on the inner surface of the IC3X are represented in green and
the temperature sensor locations are highlighted in black.

According to the sensitivity observed in the thermal modes matrix, the first set of sensors that
ranked the highest are located as close as possible to the nose of the vehicle. This region is
closest to the Tungsten nose ballast, as defined by Klock and Cesnik [21], which is one of the
areas that heats up the most due to the high thermal loads. Interestingly, the method also resulted
in a selection of nodes that spanned the whole circumference of that section, which allows for
recovering information that is not axisymmetric.

When the set with 79 sensors is considered, some information at the back of the vehicle is
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Figure 5: Half mean squared error on recovery of applied thermal modal coordinates according to retained number
of sensors.

(a) 35 sensors (b) 79 sensors (c) 166 sensors

Figure 6: Nodes on the inner surface of the IC3X, with temperature sensor points highlighted in black.

added, and the remaining selected sensors are located on the lower part of the vehicle in a line,
providing for lengthwise spatial discretization.

Similarly to what was observed for the strain sensor selection, if engineering judgement is used
to select a set of 42 sensors the error reduces to 5.4 × 10−3 compared to 3.1 obtained through
this heat-map method. This set consisted of the 35 sensors represented in Figure 6 (a) and 7
extra sensors located at the back of the vehicle. The error results are summarized in Table 2.

Table 2: Half mean squared error (MSE) on recovery of applied thermal modal coordinates.

Ranked based on heat map Selected
79 166 42 42

MSE 6.5× 10−8 5.8× 10−10 3.1 5.4× 10−3

This shows once more that while this method is useful to obtain the locations with the highest
sensitivity to the loads, it does not consider any optimization on the number of sensors retained.
However, it does provide insight into the desirable sensor locations that can be used to infer the
sensor selection.

4.3 Recovery of Pressure Distribution

As addressed in Subsection 2.3, the inverse model predicts the pressure distribution through
the recovery of modal coordinates. The pressure bases were truncated in a similar manner as
Weston and Cesnik [17] applied on the thermal model. The first pressure mode was omitted
from the metric, and 99.99% of the cumulative sum of the remaining eigenvalues was obtained
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when a total of 7 modes are retained. When considering the non-dimensionalized pressure
values on the outer surface elements of the vehicle and the flight conditions of interest, the half
mean squared error of the truncated model is 2.5× 10−4.

As an example, the pressure distribution on the outer surface of the IC3X can be seen in Figure
7, where pressure values obtained through Newtonian impact theory with shock-expansion rela-
tions are compared with pressure values recovered with the 7 retained POD modes. The largest
difference is observed near the nose region, and it is smaller than 3%.

(a) Shock-expansion (b) 7 POD modes (c) Difference

Figure 7: Comparison of pressure distribution on the outer surface of the IC3X at Mach 6, 20-km altitude and
angle of attack of 30°.

Considering the untrimmed training data generated with no thermal effects, the pressure re-
covered through a neural network-based inverse model with 54 strain sensors, as ranked in
Subsection 4.2.1 and referred here as Set 1, can be seen in Figure 8. Differences in pressure
values when compared to shock-expansion, as well as to pressure recovered with 7 POD modes,
are largest in the nose, accounting for 3.7% and 3.4%, respectively.

(a) NN-based inverse model (b) Difference with shock-expansion (c) Difference with 7 POD modes

Figure 8: Comparison of recovered pressure distribution on the outer surface of the IC3X at Mach 6, 20-km altitude
and angle of attack of 30°, through a NN-based inverse model.

The half mean squared error observed for all 60 flight conditions available and on all the panels
on the outer surface of the vehicle when compared to shock-expansion is 5 × 10−2. While
considerably larger than what was obtained for truncating the model with POD, it shows that
recovery of pressure through a NN-based inverse model with a reduced set of sensors is feasible.

The actual accuracy is highly dependent on the outcome of the optimization process used to ob-
tain the neural network model, and the number of training data cases available. It is considered
good practice not to have more sensors than the number of training data cases. Comparisons
for inverse models trained with different sets and number of sensors are not carried out, since
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defining a well optimized comparable solution for each trained NN can be tricky. For the re-
sults shown here, the coefficient of determination (R2) for recovery of each of the 7 modal
coordinates was larger than 0.9, and can be found in Table 3. Setting up the problem with dif-
ferent numbers of sensors results in NNs with diverse characteristics (weights, biases, number
of layers, number of nodes per layer, activation functions), such that the difference in accuracy
observed cannot be said to be due to the selection of sensors. The main parameters of the neural
networks considering the recovery of each of the modal coordinates c and each of the conditions
to be discussed next, with and without the inclusion of thermal effects, are summarized in Table
3.

Table 3: Parameters of the neural networks, where ci corresponds to the i-th modal coordinate used to recover
the pressure distribution, nlay corresponds to the number of layers, nnodes corresponds to the number of
nodes in each layer, Act. indicates the type of activation function, Stand. indicates if standardization
was applied, λ corresponds to the regularization term strength, and R2 corresponds to the coefficient of
determination.

Thermal? Set ci nlay nnodes Act. Stand. λ R2

No 1

1 2 [97,385] Sigmoid Yes 0.1081 0.9995
2 2 [53,381] Sigmoid Yes 0.1003 0.9907
3 1 [55] Sigmoid Yes 0.0046 0.9986
4 3 [2,1,205] tanh Yes 3.53× 10−6 0.956
5 1 [322] tanh Yes 0.0254 0.9553
6 1 [3] Sigmoid Yes 2.43× 10−5 0.9171
7 5 [17,8,5,2,275] tanh Yes 0.0369 0.9828

Yes 1

1 4 [122,112,118,81] ReLU Yes 2.0884 0.9647
2 2 [222,287] ReLU Yes 1.7812 0.9191
3 3 [177,56,213] tanh Yes 0.9643 0.8653
4 4 [131,2,68,339] none Yes 0.1666 0.338
5 1 [1] ReLU Yes 6.18× 10−4 0.2854
6 5 [172,4,97,6,134] ReLU Yes 0.0015 0.5651
7 3 [3,7,73] tanh Yes 0.0029 0.4013

Yes 2

1 5 [84,128,260,159,144] ReLU Yes 0.1583 0.9669
2 3 [355,204,231] tanh Yes 4.6778 0.9384
3 3 [307,388,347] tanh Yes 0.1346 0.9146
4 3 [27,379,145] tanh Yes 7.94× 10−9 0.5036
5 5 [75,8,375,229,135] tanh Yes 0.0024 0.6155
6 4 [60,1,2,88] tanh Yes 1.30× 10−7 0.4551
7 5 [17,2,7,13,2] ReLU No 7.58× 10−9 ∼ 0

Yes 3

1 4 [88,290,288,170] ReLU Yes 0.1228 0.9648
2 3 [261,30,235] tanh Yes 8.6887 0.9436
3 3 [396,269,325] tanh Yes 0.0916 0.934
4 5 [295,3,176,14,277] none Yes 5.72× 10−9 0.3088
5 4 [38,224,398,89] tanh Yes 4.89× 10−7 0.6081
6 4 [274,62,355,17] tanh Yes 1.95× 10−8 0.5601
7 5 [22,24,5,379,1] ReLU No 3.39× 10−6 ∼ 0

For an adequate recovery of modal coordinates for the error evaluation on the temperature sen-
sor selection in Subsection 4.2.2, at least 32 temperature fields are needed. Thus, for conser-
vative purposes 34 representative temperature fields were generated for obtaining the training
data with thermal effects.

Considering the same 54 selected sensors (Set 1) and strain measurements only on the train-
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ing data set with thermal effects, the pressure distribution difference with the reference shock-
expansion for a case at temperature of 0 K can be seen in Figure 9 (a). The error observed
increased to 13.2%, however, the trained neural network only presented a coefficient of deter-
mination larger than 0.9 for 2 out of the 7 modal coordinates. The half mean squared error
observed for all 60 flight conditions available and on all the panels on the outer surface of the
vehicle when compared to shock-expansion is 1.06. This indicates that the neural network was
not able to properly fit the available data, which is expected since thermal effects have a large
impact on the strain values and no temperature measurements were considered. Pressure distri-
bution difference on a temperature state different than 0 K (temperature field 1) can be seen in
Figure 10 (a). The maximum error observed was 6.7%. This temperature field ranges between
178–620 K on the vehicle’s inner surface.

(a) Set 1 (b) Set 2 (c) Set 3

Figure 9: Difference of recovered pressure distribution with shock-expansion on the outer surface of the IC3X at
Mach 6, 20-km altitude and angle of attack of 30°, and temperature of 0 K.

(a) Set 1 (b) Set 2 (c) Set 3

Figure 10: Difference of recovered pressure distribution with shock-expansion on the outer surface of the IC3X at
Mach 6, 20-km altitude and angle of attack of 30°, and temperature field 1.

When adding temperature measurements to the same 54 selected sensor locations, referred here
as Set 2, the pressure distribution difference with the reference shock-expansion for a represen-
tative case can be seen in Figure 9 (b). The maximum error observed decreased to 6.4%, and the
trained neural network presented a coefficient of determination larger than 0.9 for 3 out of the 7
modal coordinates. The half mean squared error observed for all 60 flight conditions available
and on all the panels on the outer surface of the vehicle when compared to shock-expansion
decreased to 0.94. This indicates that the neural network still was not able to properly fit the
available data, however there was an improvement when compared to not having any tempera-
ture measurements. Pressure distribution for temperature field 1 can be seen in Figure 10 (b).
The maximum error observed was 6.7%.

Consider now the 54 strain sensors selected through the ranking of the strain sensors and 54
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temperature sensors selected through the ranking of the temperature sensors, referred here as
Set 3. For this set, the pressure distribution difference with the reference shock-expansion for
a representative case can be seen in Figure 9 (c). The maximum error observed is 10.6%, and
the trained neural network presented a coefficient of determination larger than 0.9 for 3 out
of the 7 modal coordinates. The half mean squared error observed for all 60 flight conditions
available and on all the panels on the outer surface of the vehicle when compared to shock-
expansion decreased to 0.96. This also indicates that the neural network still was not able
to properly fit the available data, and that using the temperature sensors selected through the
temperature sensor selection metric did not necessarily provided for better results than using the
temperature sensors selected through the strain sensor selection approach. Pressure distribution
for temperature field 1 can be seen in Figure 10 (c). The maximum error observed was 8.9%.
Table 4 summarizes the errors for the purely aeroelastic problem and the aerothermoelastic one.

Table 4: Half mean squared error (MSE) on recovery of non-dimensional pressure for problems where the thermal
effects are and are not present.

Thermal effects present?
No Yes

POD Set 1 Set 1 Set 2 Set 3
MSE 2.5× 10−4 5× 10−2 1.06 0.94 0.96

The difficulties observed in obtaining a good fit for the inverse model in the presence of thermal
effects could be improved by increasing the number of samples in the training data. Increasing
the number of temperature states as well as the discretization of flight conditions would also
allow for increasing the number of sensors considered in the inverse model. This shows the
necessity of having training data of adequate quality (in terms of sensor selection) and quantity
for the application of neural networks to this problem.

The strain values considering thermal effects are likely being overestimated due to high temper-
ature values currently applied, and this could also be inducing an extra level of difficulty that is
unrealistic.

Even with all this considered, a neural network inverse model that uses as inputs strain and tem-
perature measurements on the internal structure of a vehicle is still a promising approach for the
recovery of pressure distribution on the vehicle’s outer surface in flight. Further investigations
are ongoing and will be reported at a later time.

5 CONCLUDING REMARKS

A neural network-based inverse model is applied to a vehicle-as-a-sensor concept in high-speed
flight. This concept aims to address current difficulties regarding sensors on the outer surface
of a vehicle used to obtain its aerodynamic state, particularly in hypersonic flight conditions.

The framework for generating the data used to train the neural network is formulated, where
representative aerodynamic loads and temperature fields spanning the parameter space observed
in flight are applied to a detailed finite element model of the vehicle. The process to include
thermal effects is described, where temperature fields obtained through combinations of a POD
basis resulting from possible temperatures observed in flight are generated and applied to a
thermoelastic solution of the equilibrium equations.

A feedforward fully connected neural network for regression is trained to predict pressure distri-
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bution given strain and temperature measurements. Recovery of modal coefficients of a reduced
order model of the pressure distribution is applied to make the problem more tractable.

A sensor selection methodology consisting of obtaining the sensitivity of a sensing point to
the applied loads is evaluated. The problem was separated in two parts, where a strain sensor
ranking was obtained for recovery of force and a temperature sensor ranking was obtained
for recovery of the thermal modal coordinates used to generate the representative temperature
distribution in the vehicle. While the error on recovery of loads according to the number of
sensors was quantified, the results showed clustering of sensor locations, and an optimization
on the number of sensors for a given error threshold was not considered.

Inverse models considering the selected sensors were trained and the error on recovery of pres-
sure distribution was compared. While the recovery of pressure is feasible, and the inclusion of
temperature sensors shows an increase in accuracy of this recovery, difficulties were observed in
obtaining a well-trained neural network given the current sensor set and NN parameter choices.

Future work includes improving the sensor selection process by considering optimal sensor
placement techniques, and improving the neural network’s capability to recover pressure by
using more accurate and adequate sampling of the training data.
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