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Abstract: An accurate method for large deformation structural modeling is fundamental to 

geometrically nonlinear aeroelasticity analysis. This paper develops a nonlinear reduced order 

modeling method suitable for aeroelastic analysis with high efficiency and sufficient fidelity. The 

structural reduced order modeling method is based on equations derived from the Galerkin 

approach to solve the geometric nonlinear dynamics in a weak form, in which the explicit 

calculation of nonlinear stiffness is not practical. Based on dynamic response data samples, 

nonlinear stiffness coefficients in structural dynamics equation are identified based on the fast 

Fourier transform and the Harmonic Balance nonlinearity identification technique. Co-Rotational 

finite element method is adopted for the structural simulation of a wing model to provide dynamic 

response data. Through static verification, the nonlinear reduced order modeling based on Co-

Rotational finite element method is moderately accurate. Then, the static aeroelastic method based 

on reduced order modeling method coupled with vortex lattice method is established and proves 

its effectiveness by comparing with nonlinear finite element method coupled with vortex lattice 

method. 

1 INTRODUCTION 

High-altitude long-endurance (HALE) unmanned aerial vehicles (UAVs), exemplified by the 

“Helios”, have excellent application prospects in both military and civilian fields. Typically, wings 

of these types of aircraft need to be of large aspect ratio and high rate of composite material usage 

to meet the requirements for aerodynamic characteristics of high lift-to-drag ratio, which leads to 

low stiffness and large deformation, resulting in serious geometrically nonlinear aeroelasticity 

phenomenon. Structural modeling is essential to aeroelasticity analysis, and an accurate method 

for large deformation structural modeling is fundamental to geometrically nonlinear aeroelasticity 

analysis. Researchers have developed different methods for large deformation structural modeling 

for aeroelasticity applications. The traditional displacement-based finite element methods, Total 

Lagragian (TL) and Updated Lagragian (UL) method, has high applicability and mature software 

code, but their solution efficiency is low. The Co-Rotational method, developed for geometrically 

nonlinearity, deal with large deformation problem faster, but is not efficient enough for preliminary 
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design of flexible wings and not very mature. Hodges' exact beam model, the strain-based finite 

element method, and the finite segment model are computationally efficient but are not convenient 

for handling complex models, limiting their scope of use. Structural reduced-order models can 

effectively reduce the degrees of freedom, improve computational efficiency, and maintain 

applicability to complex models. 

Reduced order methods commonly used in structural dynamics analysis include static 

condensation (Guyan reduction), dynamic condensation, and modal reduction. Modal analysis 

methods in linear dynamics cannot be directly applied to geometrically nonlinear analysis and 

require modifications to address the characteristics of nonlinear problems. McEwan et al. [1] 

presented in 2001 a form of nonlinear reduced-order equations and a method for solving nonlinear 

stiffness coefficients suitable for large deformation structural calculations. Mignolet and Soize [2] 

subsequently derived the origins of the nonlinear terms. This method selects linear structural 

modes as the basis functions for reduction, expressing the structural dynamics equations in modal 

space and neglecting the transient terms, and static deformations and loads obtained from nonlinear 

finite element analysis are used as samples. It employs regression analysis to determine the 

unknown nonlinear stiffness coefficients. Compared to nonlinear displacement-based finite 

element methods, it significantly reduces the number of degrees of freedom and can be applied 

without modification to almost all commercial software, maintaining applicability to complex 

models.  

Using structural reduced-order models, Harmin and Cooper [3] established a geometrically 

nonlinear aeroelasticity analysis model with the Doublet Lattice Method to analyze the nonlinear 

flutter problem of highly flexible wings. An et al. [4][5] considered the aerodynamic follow-on 

effect, improved the regression analysis method of the structural reduced-order model, and 

combined it with the surface vortex lattice method (VLM) to analyze the geometrically nonlinear 

static/dynamic aeroelastic responses of highly flexible wings. Cesnik et al. [6] integrated the 

structural reduced-order model into an aeroelastic framework based on a Computational Fluid 

Dynamics (CFD) aerodynamic program, further enhancing the accuracy of the analysis. 

In the above research, the nonlinear stiffness coefficients are obtained by regression analysis in the 

static form of equations, requiring a huge amount of static deformation and load cases as samples, 

of which the time cost is high. Meanwhile, neglecting unsteady terms can result in the loss of 

information in the process of identifying nonlinear stiffness coefficients. In the parametric 

identification of nonlinear system, frequency-domain methods, such as the Discrete Fourier 

Transform (DFT) and the Harmonic Balance Method (HBM), and time-domain methods, such as 

the Restoring Force Surface (RFS) analysis and Nonlinear Subspace Methods, are widely used for 

the parametric identification of nonlinear system by dynamic response samples. However, such 

methods are rarely used in the identification of stiffness coefficients of geometrically nonlinear 

structure.  

The dynamic response data, used in the parametric identification, can be collected by the mature 

finite element methods of the commercial software, such as UL and TL adopted in the 

Nastran/Abaqus, however, these traditional displacement-based finite element methods converge 

slow and difficultly when processing nonlinear deformation problems.  In comparison, CR(Co-

Rotational) method is specially developed for dealing with geometrically nonlinear deformation.  
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In this paper, we establish the geometrically nonlinear structural dynamics equations, and identify 

the nonlinear stiffness coefficients using the Harmonic Balance Method based on the dynamic 

response samples, and the reduced ordered model for flexible wings are obtained. The dynamic 

response samples are obtained by CR finite element. Compared with the traditional nonlinear 

element method, the accuracy of the reduced order model is verified. The static aeroelastic system, 

combining the reduced order model and the vortex lattice method, is established and the result 

show that the reduced order model is applicable in the static aeroelastic analysis. 

2 METHOD 

2.1 Reduced order model (ROM) 

Geometrically nonlinear problems have the same characters: large global displacement with still 

small local strain, which means that the relationship between displacement and strain is nonlinear 

while constitutive relationship between stress and stain is linear. Without considering structure 

damping and by means of momentum conservation theory, the balance equation of the structure 

domain is written as: 

 ( ) 0

0 0 0ij jk i i

k

F S b u
X

 


+ = 


ΩX   (1) 

where 0 is structure density of the reference frame; 0

ib is the body force of the element; 
ijF is 

deformation gradient; 
jkS is the second P-K stress tensor; iu  is a component of node deformation ; 

kX  is a component of node reference position coordinate ; 0Ω  represents structure domain. The 

Einstein notation is adopted in the equation (1). On the structure domain boundary 0Ω , surface 

force 
0t  is imposed on boundary 

0

tΩ  while boundary 
0

uΩ  specifies the boundary displacement. 

Therefore, the boundary condition can be expressed as 

 
0 0

0

t

ij jk k iF S n t X= Ω  (2) 

 
0

u= 0 Ωu X  (3) 

In the equation (2) and (3), 
0

n is the unit normal vector which is vertically outward from boundary 

0

tΩ ; u is the displacement vector of structure domain. Note that 
0

b  and 
0

t  in the equation (1) and 

(2) correspond to body force and surface force applied in the deformed configuration and converted 

to the reference configuration. Equation (1) ~ (3) are the control equations which determine the 

stress field and strain field of arbitrary position of structure, and equation (3) means that the 

boundary displacement of reference configuration is zero.  

Assuming ( )i i = X  satisfying equation (1) and ( )i i X =  satisfying equation (2) and (3), the 

weak form of equivalent integral of equation (1) can be expressed as 
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u X F S X b X t s
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Assuming ( , )iu tX ,which is one of components of displacement field u , meets: 

 ( )

1

( , ) ( ) ( )
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n

i n i

n

u t q t U
=

=X X  (5) 
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In the equation (5), ( ) ( )n

iU X  is one of basis function components; ( )nq t is the undetermined 

parameters, i.e. generalized coordinates. Approximate solutions are obtained by Galerkin method 

assuming ( )( ), 1,2,...,n

i iU n M = =X , of which M means the number of selected basis functions, 

i.e. order of the model.  Substituting equation (5) into equation (4), the reduced order structure 

dynamic equation can be obtained by algebraic operation, which can be expressed at tensor form: 

 (1) (2) (3)

mn n mn n mnl n l mnlp n l p mM q K q K q q K q q q f+ + + =  (6) 

where mnM  is the mass matrix; (1)

mnK , (2)

mnlK , (3)

mnlpK  are the stiffness matrix; mf  is the force; 

The basis functions aren't restricted in the deduction of above-mentioned reduced order equations. 

The linear modes of structure, also known as natural modes of structure, meet the requirements of 

basis functions of Galerkin method and have the characteristic of being easily solved in structural 

analysis. Therefore, adopting linear modes as the basis functions of equation (5) is a natural and 

reasonable choice. 

Assuming a natural mode set 1 2{ , , , }M=Φ Φ Φ Φ , the basis function can be expressed as 

 ( )m

m=U Φ  (7) 

Substituting equation (13) into equation (7) and (8) and considering orthogonality of natural modes, 

a generalized mass term mnM  and generalized stiffness term (1)

mnK  can be obtained 

 
0

mn m

mn

M M m n

M m n

 = =


= 
 (8) 

 

(1)

(1) 0

mn m

mn

K K m n

K m n

 = =


= 
 (9) 

where 
mM is a generalized mass term and 

mK is a generalized stiffness term. 

The relationship between physical displacement and generalized coordinate ca be expressed 

 

T

m
m

m

q
M

=
Φ uM

 (10) 

where M is a physical mass matrix of structure. 

Equation (6) can be simplified as 

 (2) (3)

m m m m mnl n l mnlp n l p mM q K q K q q K q q q f+ + + =  (11) 

where nonlinear stiffness coefficients (2)

mnlK  and (3)

mnlpK are undetermined parameters of reduced 

order model. 

2.2 Nonlinear coefficients identification 

The frequency domain parameter identification method for multi-freedom nonlinear system based 

on Harmonic Balance Method is adopted to identify nonlinear ftiffness coefficients (2)

mnlK  and 
(3)

mnlpK . By discretizing the generalized coordinate response mq  and generalized force mf  at equal 

time intervals, we can obtain that 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 (3)

m m mn m mnl n l mnlp n l p mM q i K q i K q i q i K q i q i q i f i+ + + =  (12) 

where 1,2,...,i N= , and N is the total number of time discretization. The generalized coordinate 

response mq  is discrete Fourier transformed to ( ), 1, 2, ,mQ k k L= , and L  is the total number of 

frequency discretization. ( )mQ k  meet the equation 
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Similarly, ( )mq i , ( ) ( )n lq i q i , ( )mf i  of equation (18) are discrete Fourier transformed to the 

following frequency sequence 
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Frequency dynamic equation of structure after dicrete Fourier transformation can be expressed as 

 ( ) ( ) ( ) ( ) ( )(2) (2) (3) (3)ˆ 0,1, , 1m m m m mnl nl mnlp nlp mM Q k K Q k K Q k K Q k F k k L+ + + = = −  (18) 

Under a given form and scale of test load, time-domain dynamic response samples u  can be 

calculated by nonlinear finite elment method,  and then are dicrete Fourier transformed to dicrete 

generalized coordinate response samples mq . Combined with equation (19) ~ (23), the frequency 

sequence samples ( )mQ k , (2) (3)ˆ ( ), ( ), ( )m nl nlpQ k Q k Q k  and ( )mF k  can all be obtained. 

By keeping the parts containing unknown coefficients at the left side of the equation and moving 

the other parts to the right side of the equation, equation (24) can be expressed in the form of 

regression problem as 

 ( ) ( ) ( ) ( ) ( )(2) (2) (3) (3) ˆ 1,2, ,mnl nl mnlp nlp m m m m mK Q k K Q k F k M Q k K Q k k L+ = − − =  (19) 

Equation (25) contains a total of L linear equations. By selecting a adequate value of L  and solving 

the least squares solution of Equation (25), nonlinear stiffness coefficients (2)

mnlK  and (3)

mnlpK  can be 

identified. 

2.3 Co-Rotational method 

The essential of Co-Rotational (CR) method is to decompose nonlinear deformation into rigid 

body movement and linear elastic deformation. Firstly, a local Co-Rotational reference frame is 

defined, in which deformation is linear and elastic. Then the relationship between local and global 

deformation as well as between local internal force and global internal force are established. 

Finally, the global tangent stiffness matrix can be obtained by combining the relationships. 

Theoretically, CR method, which is based on existing linear elastic element types, is easier to 

construct and shows higher computational efficiency compared with traditional displacement-

based finite element method. 
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2.3.1 3-D beam element 

According to the principle of virtual work,  

 T T

g g l lV  = =p f p f  (20) 

where 
gp  is global displacement; 

lp  is local displacement; 
gf  is global internal force; lf  is local 

internal force.  represents variational symbol. 

The relationship between global displacement and local displacement can be expressed as 

 T

l g =p B p  (21) 

In the equation, B is transformation matrix from local reference frame to global frame, which can 

be obtained through geometrical analysis involving 3-D rotation parameterization. Substituting 

equation (27) into (26), we can obtain  

 T

g l=f B f  (22) 

By differentiating equation (28), and combining with 
g g g =f K p  and l ll =f K p , global 

stiffness can be expressed as  

 :T

g l

g


= +


l

B
K B K B f

p
 (23) 

where 
gK  is global stiffness matrix, lK  is local stiffness matrix, colon represents omission. The 

first term in the right side of equation (29) is the local stiffness transformed to global reference 

frame, and the second term is the geometrical tangent stiffness matrix induced by deformation.  

2.3.2 Time-domain dynamic analysis of CR element 

Dynamic equation is 

 ( ) ( ) 0i e+ − =Mx f x f x  (24) 

where M is a mass matrix of beam element, x is the acceleration, ( )if x  is internal force and 

( )ef x  is external force. 

To solve for the dynamic response result, Newmark integration method is adopted. The key is to 

assume the predicted value of displacement, velocity and acceleration, and correct the predicted 

value using Newton-Raphson iteration method. 

2.4 Static aeroelastic analysis 

The plane aerodynamic model, without considering surface effect of lift surface during 

deformation of a wing, is adopted in traditional aeroelastic analysis and has high accuracy when 

the deformation of a wing is small. However, for a wing with geometrically nonlinear deformation, 

the model is not no longer suitable, which would cause huge difference without considering surface 

effect. Therefore, in this paper the surface vortex lattice method [8] is adopted as aerodynamic 

model, and performes static aeroelastic analysis for a largely flexible wing combined with 

nonlinear reduced order model. 

The procedure of static aeroelastic analysis is as follows: 

(a) Input the model and calculating conditions; 

(b) Calculate aerodynamic force by surface vortex lattice method; 
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(c) Interpolate force; 

(d) Calculate static deformation by nonlinear reduced order model; 

(e) Judge convergency through the displacement condition of 1

Stip Stip

i i + − U U ; if the result is yes, 

then jump to step (g); if the result is no, then proceed to step (f); 

(f) Interpolate the displacement and update the aerodynamic model; go back to step (b); 

(g) Output static aeroelastic results. 

Here 
Stip

i
U  is structural nodal displacement of the wing tip in the ith iteration step;  is the 

convergency criterion. 

3 NUMERICAL EXAMPLE 

3.1 Model 

In this paper, a single-spar straight wing is adopted as a research object to study the accuracy of 

nonlinear reduced-order model. The original point is located at the rigid support at the root of the 

wing; the positive direction of x-axis points from the leading edge of the wing to the trailing edge; 

the positive direction of y-axis points from the root of the wing to the tip; z-axis satisfies the right-

hand rule. A counterweight rod is located at the wing tip to adjust the structure deformation of the 

wing. The finite element model of the wing is shown as Figure 1 and the design parameters of the 

wing is shown as Table 1. 

The results of linear modal analysis are shown as Table 2. The first mode, i.e. the first vertical 

bending mode, is low in the frequency, which indicates that the wing model is largely flexible. 

The deformation of the wing can be large under aerodynamic load. 

 

Figure 1: Finite element model. 

Table 1: Design parameters of the model. 

Design Parameters value 

Semispan/mm 1000 

Chord Length/mm 100 

Location of elastic axe 50% chord length 

Density of spar/(kg·m-3) 7.75x103 
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Section shape of spar 35mmx1.5mm(rectangle) 

Counterwight Rod Length/mm 200 

Counterweight Rod Mass/g 62 

Table 2: First six modes. 

Mode Description Frequency,Hz 

1 1st vertical bending 1.179 

2 2nd vertical bending 7.724 

3 3rd vertical bending 22.19 

4 1st torquing 22.95 

5 1st horizontal bending 27.47 

6 4th vertical bending 44.27 

3.2 Load case for nonlinear coefficients identification 

The load case should be selected to activate the nonlinear characters of structure as the input of 

finite element method (FEM) program, which simulates the dynamic response sample data for 

nonlinear coefficients identification. This paper adoptes the ''3211'' multi-level square wave as the 

input load case, which can adjust t  to change the frequency rang of the load. The ''3211'' suqare 

wave model is presented as  

 

1 1

1 1

1 1

1 1

1 1

0 [0, ), [ 7 , )

[ , 3 )

[ 3 , 5 )

[ 5 , 6 )

[ 6 , 7 )

t t t t t

t t t t

t t t t t

t t t t t

t t t t t



 





  +  +


 + 


= −  +  + 
  +  + 

−  +  + 

 (25) 

where t  is time; 1t is the start time of the load;  is amplitude of the load. The aerodynamic load 

of the wing model in the condition of the incoming wind speed of 16m/s and angle of attack of 3° 

is referred as amplitude of the load. Set 0.1t s = , and the effective frequency band of the load is 

adjusted to cover the natural frequency of 1st vertical bending mode. The power spectral density 

of the generalized force corresponding to the vertical bending mode and square wave input are 

shown in Figure 2 and Figure 3. The frequency band is wide, and the energy near the low-

frequency bending mode frequency is large, which meets the requirements of dynamic response 

identification. 



IFASD-2024-83 

 9 

 

Figure 2: Power spectral density of the generalized force. 

 

Figure 3: Time domain change of the generalized force. 

3.3 Dynamic response simulation based on CR 

Co-Rotational finite element (CR FEM) is used to get dynamic response data. Set the stime step 

as 0.01s, and simulate the dynamic response of 7 seconds as to the model mentioned above. 

Meanwhile, using the software MSC.Nastran to simulate the dynamic response in the same setting 

of time step for comparision. The vertical displacement response at the end of wing spar is shown 

as Figure 4, and the deformation simulated by CR FEM and MSC.Nastran is relatively consistent. 

However, as is shown in Table 3, CR FEM costs less calculation time to get the results with enough 

accuracy. Therefore, CR FEM is suitable for providing dynamic response data for nonlinear 

coefficient identification for its moderate accuracy and high efficiency. 
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Figure 4: Dynamic response  of vertical displacement of wing tip. 

Table 3: Time cost of calculation. 

Method Total time cost,s 

CR FEM 340 

MSC.Nastran 490 

3.4 CR-ROM 

3.4.1 Static verification 

The accuracy of ROM based on CR FEM is verified through static deformation simulation of the 

wing model, and the aerodynamic load under the condition of angle of attack of 3° and the 

incoming wind speed of 10m/s, 16m/s and 22m/s respectively is used as the validation load. The 

results obtained by ROM and by MSC.Nastran are shown in the Figure 5 and Figure 6, where CR-

ROM represents the results obtained by ROM (based on the CR FEM); Nonlinear FEM represents 

the results obtained by MSC.Nastran (SOL 106); Linear FEM represents the results obtained by 

MSC.Nastran (SOL101). 

Figure 5 indicates that the vertical displacement at the end of wing spar obtained by ROM is close 

to the results of MSC.Nastran. And when the wind speed increases, the deformation increases 

rapidly, and the ROM results are closer to the nonlinear FEM results than the linear FEM results 

in the case of large deformation, which show the moderate accuracy of ROM. 
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(a) wind speed = 10m/s 

 

(b) wind speed = 16m/s 

 

(c) wind speed = 22m/s 

Figure 5: Vertical displacement at the end of wing spar at different wind speeds. 

Figure 6 shows the huge deviation of linear results from nonlinear FEM results and ROM results 

in the spanwise deformation. This is because that nonlinear FEM and ROM consider the difference 
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of geometrical configuration before and after deformation. At the wind speed of 22m/s, the 

spanwise deformation have reached 6% of the semispan, which already has nonnegligible impact 

on the aerodynamic simulation. Therefore, the nonlinear method for structure is significant for 

aeroelastic analysis. 

 

(a) wind speed = 10m/s 

 

(b) wind speed = 16m/s 
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(c) wind speed = 22m/s 

Figure 6: Spanwise displacement at the end of wing spar at different wind speeds. 

3.4.2 Static aeroelastic analysis 

Based on the ROM, the nonlinear static aeroelastic analysis is established. The method is used to 

perform static aeroelastic analysis on the wing model above, where the vortex lattice method 

divides the aerodynamic grids into 20 spanwise and 2 chordwise grids, and the angle of attack is 

set as 3°, and the convergency condition is set as =0.5mm . As a comparison, the other two 

methods, nonlinear static aeroelastic analysis method based on nonlinear FEM and vortex lattice 

method, as well as the linear aeroelastic method, calculate the static aeroelastic deformation of the 

wing model under the same operating conditions.  

The static aeroelastic vertical displacement at the end of wing spar obtained by three methods is 

shown in Figure 7. As the wind speed get higher, the difference between results obtained by linear 

static aeroelastic and by nonlinear FEM coupled with VLM is more obvious. And ROM coupled 

with VLM maintain a high consistency with nonlinear FEM coupled with VLM in the static 

aeroelastic vertical displacement. 

 

(a) wind speed = 10m/s 

 

(b) wind speed = 16m/s 
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(c) wind speed = 22m/s 

Figure 7: Static aeroelastic vertical displacement the end of wing spar at different wind speeds. 

The static aeroelastic spanwise displacement at the end of wing spar obtained by three methods is 

shown in Figure 8. Compaerd to the linear static aeroelastic method, which can not calculate 

spanwise deformation, the ROM coupled with VLM can get theaccurate results of spanwise 

deformation. The difference between the results obtained by ROM coupled with VLM and by 

nonlinear FEM coupled with VLM is within the range of 7%. 

 

(a) wind speed = 10m/s 
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(b) wind speed = 16m/s 

 

(c) wind speed = 22m/s 

Figure 8: Static aeroelastic spanwise displacement at the end of wing spar at different wind 

speeds. 

According to the vertical and spanwise displacement obtained by three methods, compared with 

the static aeroelastic analysis method based on nonlinear FEM, the aeroelastic analysis method 

based on the ROM has higher consistency in calculation results, while there is a significant 

difference between the linear aeroelastic analysis results and the nonlinear method analysis results. 

ROM can be effectively applied to predict wing structural deformation and nonlinear aeroelastic 

analysis. 

4 CONCLUSIONS 

This paper establishes nonlinear dynamic equations and reduced order model for large flexible 

structures, and uses Harmonic Balance Method and fast Fourier transform parameter identification 

frequency domain method to build the reduced order model based on dynamic response data 

samples obtained by CR FEM. And static verification is conducted on the nonlinear ROM method. 

Through static verification, the nonlinear ROM has the higher accuracy compared with linear 

method especially in calculation of the spanwise deformation. Combining the ROM and VLM, the 

nonlinear static aeroelastic method is set up. In the static aeroelastic analysis, the nonlinear static 
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aeroelastic method based on ROM has a relatively close accuracy to that based on nonlinear FEM. 

Therefore, the ROM based on CR FEM is effective in the nonlinear structure deformation 

simulation and nonlinear static aeroelastic analysis. 
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