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Abstract: The linearized frequency-domain method was recently implemented in the stabi-
lized finite element solver in NASA’s FUN3D code. Previous work by the authors used this
method for enforcing flutter constraints during gradient-based optimizations. More recently,
the solver was expanded to account for continuous (also known as stochastic) gust responses.
This paper expands on recent Common Research Model wing optimization work, which demon-
strated gradient-based optimization with flutter and stochastic gust constraints, among others.
While that work utilized FUN3D for static aeroelastic solutions but relied on doublet lattice
aerodynamics for gust and flutter responses, the present work replaces these unsteady aero-
dynamic analyses with those of FUN3D’s linearized frequency-domain solver. With analytic
derivatives available, gradient-based optimization is performed through the use of the OpenM-
DAO/MPhys libraries with over 700 shape, structural, and aerodynamic design variables and
over 10 nonlinear constraints. Comparisons of analysis results and optimized designs are made
between doublet lattice and linearized frequency-domain solutions.

1 Introduction

Flutter and gust responses must be taken into account when certifying a new aircraft. When
optimizing an aircraft, it is therefore useful to enforce nonlinear constraints on gust and flutter
responses. Historically, this has typically been done using panel-based methods, namely the
Doublet Lattice Method (DLM), often corrected using limited Computational Fluid Dynamics
(CFD) or experimental data. Higher fidelity CFD has also seen limited use for aeroelastic
constraints during optimization. These methods, while in theory more accurate than panel-based
methods, require orders of magnitude more time to evaluate, especially when using time-domain
CFD. To reduce the cost of these unsteady CFD calculations, the Linearized Frequency-Domain
(LFD) method presumes that the flow field is harmonic and linearized about a nonlinear state,
allowing the flow to be solved for a small set of frequencies rather than marching through time.

LFD has recently been implemented in the Stabilized Finite Element (SFE) solver [1, 2] in
the NASA FUN3D code [3-6]. This has been used for enforcing flutter constraints during
gradient-based optimizations [7] of the weakened AGARD 445.6 wing. More recently, the
LFD solver was expanded in Ref. [8] to account for continuous (also known as stochastic) gust
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responses [9, 10], which analyze how a structure reacts to typical atmospheric velocity varia-
tions during flight. These aeroelastic responses, and their analytic derivatives, have been imple-
mented with the help of the open-source MPhys [11, 12] Python library for OpenMDAO [13].
This software library, a collaborative effort by government, academia, and industry groups,
seeks to standardize multi-physics analyses in OpenMDAO. Using these standards, so-called
MPhys “builders” for aerodynamics, structures, load/displacement transfer, and geometry can
be used to set up a coupled aeroelastic OpenMDAO problem. Due to the modularity of these
builders, solvers can be interchanged easily at the top level. This, for instance, allows aeroelas-
tic design problems to be tested with panel-based aerodynamics before swapping these lower
fidelity aerodynamics with CFD. In addition to providing modularity for discipline coupling, a
recent addition to MPhys, so-called “remote components”, provides an automated way to eval-
uate computationally expensive OpenMDAO problems remotely on High-Performance Com-
puting (HPC) jobs.

While the LED gust and flutter optimization work was originally demonstrated on the AGARD
wing [7, 8], recent work by the authors [14] sought to work towards a more industry-relevant
design case, which was chosen to be the NASA Common Research Model (CRM) wing [15].
This recent work focused on typical CRM design cases in the literature, with the addition of the
gust and flutter constraints. Static aeroelastic analyses used either an in-house Vortex Lattice
Method (VLM) or FUN3D coupled to an in-house structural solver (PyShell) via the Matching-
based Extrapolation of Loads and Displacements (MELD) transfer scheme [16]. In this previous
work, unsteady aerodynamics (coupled to PyShell via MELD) during the optimizations were
only provided by an in-house DLM. The present work replaces these DLM-based aerodynamics
with those of the FUN3D LFD solver.

This paper is organized as follows. First, Sect. 2 describes the optimization problem of interest
and other analysis details, including the use of remote components. Section 3 provides results of
the optimization problems. This includes convergence metrics, flutter and gust analysis results
at the optima, and comparisons of LFD and DLM aerodynamics at the same design points. The
paper ends with conclusions and comments on future work in Sect. 4.

2 Methodology

This section provides details on methodology used in the optimization problems. Section 2.1
provides details on the optimization problem, while Sect. 2.2 describes the use of remote com-
ponents.

2.1 Design problem definition

The current design problem [14] is based on CRM optimization work in the literature. Table
1 provides parameters used for the mission definition, as well as atmospheric conditions and
parameters that affect fuel and total mass. In this work, the goal is to optimize the wing jig
shape for minimum fuel burn of a typical transport aircraft mission. A steady level cruise flight
condition (Mach 0.85 at 37,000 ft altitude) is included, as well as a Mach 0.64, 2.5g pull up
maneuver at sea level, where a stress constraint is enforced. While other literature has included
a -1g push-down maneuver as well, this is excluded in the present work to reduce computational
cost and because the pull-up maneuver is the stronger design driver. Various other constraints
are included, including some related to geometry such as planform area, stiffeners via stiffness
smearing [17], and spar depth. Other constraints enforce static aeroelastic loads (i.e., load
factor) and consistency (i.e., fuel mass used in the structural analysis must equal computed fuel
mass based on the particular mission). Table 2 provides the list of design variables and nonlinear
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constraints used for the optimization. The optimizer chosen is the Sequential Least Squares
Programming (SLSQP) algorithm in the pyOptSparse [18] SciPy wrapper with a tolerance of

1x107.

Table 1: General parameters used for fuel and weight calculations, as well as atmospheric conditions.

Category Description Value Units
Design range 14,306.7 km
Specific fuel consumption 0.53 kg/(kggxs)
Fuel density 810 kg/m?
Fuel and weight Reserve fuel mass 15,000 kg
Fixed weight 1.4 x 10° N
Cruise fuel used 50 % of mission fuel burn
Maneuver fuel used 100 % of mission fuel burn
Cruise Mach number 0.85 -
Cruise altitude 37,000 ft
Atmospheric conditions Maneuver Ma.lCh number 0.64 i
Maneuver altitude Sea level -
Flutter Mach number 0.9 -
Flutter altitude 37,000 ft

Table 2: Objective, design variables, and constraints for the optimization problems.

Description Specification Quantity

minimize: Cruise fuel burn

with respect to:  Root chord differential €[-3,3]m 1
Tip chord differential €[-1,1]m 1
Span differential € [-10,10] m 1
Sweep differential € [-10,10] deg 1
Wing thickness twing = 0.5 X tyingo
Wing twist differential € [—10,10] deg 5
Fuel scaler € [0,1] 1
Shell thickness € [0.003,0.03] m 240
Stiffener thickness € [0.003,0.03] m 240
Stiffener height € [0.03,0.15] m 240
Static angle of attack € [—10,10] deg 3
Total 738

subject to: Fuel mismatch =0 1
Static load factor n=11,2.51]" 3
Wing area A >205.8 m? 1
Available fuel mass > 63,464.28 kg 1
Trailing edge spar depth > 0.19m 1
Stiffener aspect ratio KS,p <1 1
Stiffener vs. shell thickness K .Sy, <1 1
Pull-up stress 1.5KS, <1 1
Transonic flutter KSn <0 1
Cruise gust < 1.6 x 10" N-m 1
Total 12
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Compared to Ref. [15], the present work adds constraints on flutter and stochastic gust re-
sponses. The authors previously demonstrate this addition using DLM-based aerodynamics [14].
Flutter constraints are computed using a Kreisselmeier-Steinhauser (KS) [19] aggregate of
modal damping, as computed by a p-k£ method implementation. Meanwhile, stochastic gust
constraints are based on steady root bending moment combined with the gust-induced unsteady
Root Mean Square (RMS), where the von Karman gust spectrum [10] is used to model at-
mospheric velocity perturbations. The upper limit of the combined root bending moment is
explained in Thelen et al. [14]. A discrete gust constraint was excluded from the present results
as it was inactive throughout an optimization that utilized panel aerodynamics.

Table 3 lists the three optimization cases to be demonstrated. The new optimization case, la-
beled as “FUN3D”, has the same objective function and constraints as the “FUN3D+DLM”
and “VLM+DLM?” cases shown in Thelen et al. [14], except with the flutter and gust constraints
utilizing LFD instead of DLM. While the gust constraint is still computed about the Mach 0.85
cruise condition, the updated flutter constraint is computed at cruise flight conditions with Mach
number increased to 0.9. This adds an additional equality constraint (load factor must equal
one) and design variable (angle of attack) not included in the DLM-based optimizations. This
change was made to ensure that the flutter constraint is active at the optimum for demonstra-
tive purposes, as the constraint was inactive in the FUN3D+DLM optimization and transonic
effects seem to be relatively weak at the baseline design [20]. Gust and flutter LFD analyses are
both computed about statically deflected geometries. Gust analyses include pitch and plunge
rigid body modes, whereas the flutter analyses do not; these are excluded because the present
p-k method implementation cannot currently handle a Phugoid mode instability. Both analyses
use 9 modes (2 rigid body and 7 flexible for gust, 9 flexible modes for flutter) and 11 reduced
frequencies. All FUN3D analyses are currently limited to Euler equations solved on a fairly
coarse mesh with 60,742 nodes. Cruise drag is augmented with empirical profile drag to help
account for viscosity in the fuel burn calculation. Computing RANS-based steady and unsteady
aerodynamics on a better resolved mesh is an area of future work.

2.2 Use of remote components

With the analyses being implemented with OpenMDAO/MPhys, the FUN3D-based optimiza-
tions also make use of a new addition of the MPhys library, so-called remote components. This
class of component, derived from the OpenMDAO ExplicitComponent class, allows an OpenM-
DAO problem to be evaluated remotely on an HPC compute node, replicating inputs and outputs
locally. This, for instance, provides the ability to launch an optimization in the background on
an HPC login node, which evaluates the computationally expensive analyses on HPC compute
nodes as needed. In a client-server arrangement of nested OpenMDAO problems, these Open-
MDAO components use the ZeroMQ library [21] and ssh port forwarding to communicate (via

Table 3: Summary of the optimization problems to be compared.

Description Steady aerodynamics Unsteady aerodynamics Transonic flutter constraints
FUN3D FUN3D Euler* FUN3D Euler LFD ~ Mach 0.9, cruise altitude,
load factor of 1
FUN3D+DLM FUNS3D Euler* DLM Mach 0.85
VLM+DLM VLM DLM Mach 0.85

*augmented with empirical profile drag to approximately account for viscosity
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encoded JSON dictionaries) with the server-side analyses; meanwhile, pbs4py! is used for HPC
job management. As the optimization progresses, function and gradient evaluation times are
logged so that the HPC jobs can be relaunched when remaining job time is estimated to be too
short for an additional design evaluation.

In addition, the optimization is launched using a small number of processors so that separate
flight conditions may be evaluated in parallel on separate HPC jobs (via the ParallelGroup Open-
MDADO class). For the FUN3D+DLM optimization, this involved evaluating cruise and pull-up
maneuver conditions using 15 compute nodes each, while the DLM evaluations are performed
on a third job on one compute node. For the FUN3D optimization, cruise, maneuver, and flutter
flight conditions were evaluated on 10 nodes each. Overall, this allowed a single optimization
to span numerous HPC jobs running in parallel, with the total number of nodes exceeding the
allowed maximum for a single job, without having to manually restart the optimization each
time an HPC job expired.

3 Results

This section summarizes results of the optimization problems. First, convergence metrics are
given for the three cases: FUN3D, FUN3D+DLM, and VLM+DLM. Then, gust and flutter
responses are examined at the optimal designs. Finally, comparisons are made between DLM-
and LFD-based gust and flutter responses.

3.1 Optimization convergence metrics

Figure 1 shows convergence metrics of the three optimization cases, including the objective
function, maximum constraint violation, and first-order optimality [14,22]. The FUN3D+DLM
and VLM+DLM results, originally shown in Thelen et al. [14], are plotted against the new
FUN3D result in black. In these plots, note that the FUN3D+DLM result was started from
the VLM+DLM optimum in a effort to reduce the number of iterations. This effort was largely
ineffective, likely because the VLM+DLM and FUN3D+DLM optimal designs are too far apart.
The FUN3D case, meanwhile, was started from the baseline design; presumably, starting from
the FUN3D+DLM optimum may have reduced the required number of iterations by a larger
amount because the optima are more similar (as suggested by planforms shown later).

For reference, Fig. 2 shows convergence of all constraints. Constraint convergence is further
categorized in Fig. 3, 4, and 5. Figure 3, for instance, illustrates which normalized constraints

! Available at https:/github.com/nasa/pbs4py
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Figure 1: Optimization convergence of the fuel burn objective (left), maximum constraint violation (center), and
first-order optimality (right).
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are violated at a given design evaluation, with the threshold being the optimization constraint
tolerance of 1x 107 (i.e., which constraints are greater than 1x107). Similarly, Fig. 4 illustrates
which normalized constraints are currently active (i.e., on the cusp of being violated and likely
driving the design process) with a somewhat arbitrary threshold of -1x10*. Figure 5 shows
which normalized constraint is currently the largest, thus indicating which constraint may be
the most difficult to satisfy.

Shown in Fig. 1, the FUN3D case obtained a lower fuel burn than the FUN3D+DLM case. This
is perhaps surprising, as the FUN3D+DLM flutter constraint is inactive while the FUN3D one
is active. Shown later in Sect. 3.3, this is likely due to DLM predicting a larger gust RMS than
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LFD at the optimum (thus being more restrictive on the design space), which is the opposite
trend seen at the baseline design. In the center plot of Fig. 1, the maximum constraint violation
is seen to converge to around 1x107 in 300-400 iterations. Figures 2, 3, and 5 suggest that
aeroelastic constraints are mostly well behaved and tend to converge relatively quickly (with
the exception of the FUN3D flutter constraint). Conversely, constraints relating to structural
geometry, particularly the stiffener vs. shell thickness constraint (and to a lesser extent, spar
depth), tend to be the maximum violation the vast majority of the time. This perhaps indicates
that they are more difficult to satisfy, potentially due to stronger nonlinearity of the functions,
than the more computationally expensive aeroelastic constraints.

Shown in Fig. 1 on the right, optimality is shown to drop by 3-4 orders of magnitude. Here,
note that the optimality of the FUN3D+DLM case indicated a numerical issue by having several
spikes (with values of around 1). The issue was related to insufficient flow adjoint convergence,
which occasionally led to poor gradient accuracy, and has since been resolved by adjusting
FUN3D solver settings. A gradient accuracy issue was also suggested by the required function
and derivative calls, 341 and 314, respectively, as there were several optimization iterations with
poorly converging line searches. For comparison, the FUN3D case required 396 and 391 func-
tion and gradient evaluations, while the VLM+DLM case required 392 and 390, respectively.

Perhaps worth noting in Fig. 4 is that the wing area constraint, which serves as a surrogate for
ensuring adequate wing volume, is only active for the VLM+DLM case as the FUN3D+DLM
and FUN3D cases yield a larger, more swept wing. This can be seen in Fig. 6, which illustrates
the baseline and optimized planform shapes. The constraint on available fuel mass, in addition,
is inactive for all optimization cases, although it nearly becomes active in the VLM+DLM
case as shown in Fig. 2. Nonetheless, in Fig. 6, it is interesting to note how closely the
FUN3D and FUN3D+DLM planforms resemble each other. This may indicate that these two
designs are much closer to each other than the third optimum; starting the FUN3D case from the
FUN3D+DLM optimum may have therefore led to more significant savings when compared to
restarting from the VLM+DLM optimum. Physically, this may mean that the FUN3D-computed
fuel burn trend (which depends on lift to drag ratio) drives sweep to larger values due to wave

Baseline

VLM+DLM

Figure 6: Baseline and optimized planforms.



IFASD-2024-69

drag associated with shocks. For these highly swept wings, DLM may be better correlated with
LFD due to the lower effective Mach number, which may reduce transonic effects. Other factors
are likely at play as well; for instance, the root bending moment would be lower with a shorter
span wing, which potentially drove the optimizer from a wing with larger span and less sweep.

3.2 Flutter and gust responses at the optima

Figure 7 shows the p-k flutter result at the FUN3D optimum. The corresponding flutter con-
straint is active, with modes 1, 3, and 4 all coming close to straying into the black “keep-out”
zone (above the black curve being infeasible) in the dynamic pressure-damping space. For ref-
erence, Fig. 8 shows the wind-off mode shapes corresponding to these three modes. Here, the
first normal mode is in general a first bending mode, mode 2 is generally a second bending
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Figure 7: Flutter results at the FUN3D optimum.
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mode with some in-plane motion, while mode 4 is a second torsional mode. While mode 3
never encounters flutter, mode 1 causes a “soft” flutter onset while mode 4 causes a “hard” one.
Finally, Fig. 9 shows the corresponding LFD-computed complex pressures and mode shape
corresponding to the hard flutter crossing of mode 4. Based on pressure contours, this flutter
mechanism is largely driven by oscillatory pressures at the outboard leading edge, particularly
near the shock. In addition, while it is the fourth mode that goes unstable in the damping plot,
there is in fact a large amount of participation with modes 1 and 2. While not shown, the soft
flutter mechanism of mode 1 involves a large amount of in-plane bending.

Figures 10 and 11 show the DLM-computed flutter results at the FUN3D+DLM and DLM
optima. The flutter constraint was ultimately inactive for the FUN3D+DLM case, with modes
4 and 5 eventually encountering flutter beyond the dynamic pressure range of interest. The
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Figure 9: Flutter complex pressure (top) and mode shape (bottom) of the hard flutter crossing at the FUN3D
optimum.
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Figure 10: Flutter results at the FUN3D+DLM optimum.
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Figure 11: Flutter results at the VLM+DLM optimum.

flutter constraint for the VLM+DLM case was active, but only due to what is perhaps a soft
hump mode in mode 3; hard flutter in mode 5 is encountered at a significantly higher dynamic
pressure. Note that in these two results, flutter is computed at a Mach number of 0.85. The
previous FUN3D result instead used a Mach number of 0.9 (at cruise altitude and load factor of
1) to help ensure an active flutter constraint for demonstrative purposes.

Figure 12 shows a comparison of gust-induced root bending moment Power Spectral Densities
(PSDs) at the different optima. With the rigid body modes included in the gust analysis, and
with the gust quantity of interest being based on a reaction load (as opposed to tip displace-
ment), the PSD approaches zero at zero frequency. All designs have a peak at roughly the same

— FUN3D (RMS=5.44x10° N-m)
Lot [ — FUN3D+DLM (RMS=5.83x10° N-m)
il VLM+DLM (RMS=5.22x10° N-m)

0 2 4 6 8 10 12
Frequency, Hz

Figure 12: Gust-induced root bending moment PSD at the different optima.
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frequency (around 0.5 Hz) as this initial peak is driven by motion in the rigid body modes, with
some interaction with the first flexible mode. The FUN3D peak here is smaller than that of the
FUN3D+DLM design, which leads to a smaller RMS; the VLM+DLM design, however, has
the smallest RMS among them because the first peak at around 0.5 Hz appears to be narrower.
Differences at higher frequencies, due to interactions of flexible modes, are less consequential
to the RMS, with the next largest peak at roughly 5 Hz being two orders of magnitude smaller.
This secondary peak may correspond to an approaching flutter instability; if the gust analysis
atmospheric conditions were to approach those of flutter onset, then this gust PSD would grow
to infinity at the flutter frequency [14].

3.3 Comparison of DLM and LFD aerodynamics

Flutter and gust analysis results are next compared at the same designs (baseline and FUN3D
optimum) but using either LFD or DLM aerodynamics. Figure 13 shows the resulting flutter
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Figure 13: Comparison of DLM and LFD flutter at the baseline design (top) and FUN3D optimum (bottom).

12



IFASD-2024-69

results at these two designs. The soft flutter crossings at the baseline design, shown in the
top plots, are fairly similar when using the different physics, indicating a fairly weak transonic
effect at this Mach number as previously observed in Stanford & Massey [20]. At the FUN3D
optimum, however, a hard flutter crossing at around 3.5 x 10* kg/(m-s?) shows a larger difference
between LFD and DLM, with LFD predicting flutter at a lower dynamic pressure (as expected).
Interestingly, the DLM flutter result predicts a soft hump mode at a lower dynamic pressure
which yields a violated KS flutter constraint value of 0.147 compared to -2.900x 10 with
LFD.

Figure 14 shows the gust-induced root bending moment PSDs at the baseline design and FUN3D
optimum, using LFD and DLM aerodynamics. Looking at the largest peak at around 0.5 Hz,
LFD predicts a larger peak at the baseline design but a smaller one at the optimal design. Con-
versely, the peak at around 5 Hz is significantly larger with LFD. This indicates that, at the
dynamic pressure used by the gust analysis, one (or a combination of multiple) flexible modes
are more lightly damped with LFD than with DLM in the vicinity of 5 Hz. Overall, due to the
lower frequency peak, LFD predicts an RMS value significantly higher than DLM at the base-
line design, but slightly smaller at the optimal design. As mentioned in Sect. 3.1, this larger
RMS computed by DLM is more restrictive on the design space than LFD, thus leading to a
larger fuel burn with FUN3D rather than FUN3D+DLM. This occurs even in spite of the flutter
constraint, which is inactive in the FUN3D+DLM case but active in the FUN3D case.

4 Conclusion

Gradient-based optimization of the CRM wing with gust and flutter constraints has been demon-
strated. This work built on previous work by the authors [14] which introduced the problem
setup but relied on DLM-based unsteady aerodynamics (with either FUN3D- or VLM-based
steady aerodynamics). The present work replaced these panel-based unsteady aerodynamics
with those of the FUN3D LFD solver for both the flutter and stochastic gust analyses. The
flutter analysis was evaluated at a slightly higher Mach number (0.9 rather than 0.85) to ensure

——LFD (RMS=10.82x10% N-m) ——LFD (RMS=5.44x105 N-m)
10141 —— DLM (RMS=7.43x10% N-m) |] 1014 L ¢ —— DLM (RMS=5.78x10% N-m) ||
=
N\ 1012 / \\\
CR B
g
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)
[
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Figure 14: Comparison of DLM and LFD gust-induced root bending moment PSD at the baseline design (left)
and FUN3D optimum (right).
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a more active flutter constraint for demonstrative purposes. Comparisons were made with the
existing optimizations that relied on DLM. LFD- and DLM-based gust and flutter responses are
also compared at the optimized designs. Overall, large design differences were observed when
moving from panel to CFD-based steady aerodynamics. Smaller differences were seen when
replacing DLM with LFD, due to weak transonic effects in this case.

While performing a full gradient-based optimization with LFD-based unsteady aerodynamics
represents a major hurdle, various other improvements and developments are planned for future
work. For instance, while all present optimizations currently rely on Euler equations augmented
with empirical profile drag (in an attempt to compute more realistic fuel burn values), RANS
equations are the target aerodynamic fidelity level for future work. Moving to RANS will
likely require code performance improvements to be able to run an optimization in a reasonable
amount of time, especially when used for LFD as well. Another area of potential improvement
is to include more flight conditions for the gust and flutter responses. With DLLM readily avail-
able, many subsonic flight conditions could be included without increasing computational cost
significantly. It may also be valuable to implement DLLM correction methods in the literature
and compare DLLM and LFD to corrected DLM optimizations. Regardless of unsteady aero-
dynamics used, a longer term plan is to consider stresses as a gust quantity of interest rather
than root bending moment. The latter serves as an intermediate step towards constraining gust-
induced stresses, which would likely require rational function approximations to obtain accurate
stresses from a modal decomposition representation.
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