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Abstract: This paper presents the modeling and analysis of unsteady aerodynamics for a
slightly flexible 25 kg unmanned aircraft during maneuvers and gust encounters. The unsteady
model is based on a doublet lattice method (DLM) implemented in MATLAB. It is combined
with an existing high-fidelity quasi-steady aerodynamics model derived from system identifica-
tion using flight test data. Utilizing the physical rational function approximation, it is possible
to differentiate between the steady and unsteady components of the DLM. Consequently, the
steady component of the DLM can be replaced by the high-fidelity model such that quasi-
steady and unsteady DLM forces and moments are superimposed. The combined unsteady
aerodynamics are integrated with linear structural dynamics identified from ground vibration
tests and nonlinear equations of motion based on the practical mean-axes formulation. Simula-
tion studies are conducted to analyze the impact of unsteady aerodynamic effects on the flexible
aircraft. The results indicate that unsteady effects, while noticeable during rapid maneuvers
in the aeroelastic frequency range, are especially significant when considering high-frequency
control surface deflections and encounters with short gusts. The proposed modeling approach
successfully combines high-fidelity quasi-steady aerodynamics with unsteady DLM aerody-
namics, demonstrating validity across a wide range of reduced frequencies.

1 INTRODUCTION

Future efficient aircraft designs will consider high aspect ratio wings and lightweight structures.
This leads to more flexible wings which exhibit increased in-flight deformations and structural
vibrations affecting the flow characteristics around the lifting surfaces. These time-varying
effects can become especially relevant during rapid maneuvers and gust encounters. This work
aims to analyze the impact of such unsteady aerodynamic effects on the flight dynamics of a
slightly flexible 25kg unmanned aircraft.

There are various methods for the purpose of modeling unsteady aerodynamics for flexible
aircraft ranging from strip theory indicial function approaches based on Wagner and Küssner
functions [1,2] to high-fidelity computational fluid dynamics methods [3,4]. The latter’s appli-
cation for flight dynamic simulations and controller design is often limited by their complexity,
leading to extensive computational effort and high-order models. Extended strip theory based
on indicial functions, on the other hand, is a well-known approach to model unsteady effects
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based on potential flow theory [5–8]. Recent applications include models for handling quality
investigations of a flexible airliner [9], comparisons with flight test data for a slightly flexible
utility aircraft [10], and a gust load alleviation simulation environment [11].
While extended strip theory offers a computationally efficient framework with moderate model-
ing effort, it is generally deemed a low-fidelity approach. A middle ground between fidelity and
modeling complexity, especially for low-speed applications, is offered by potential flow panel
methods. The most prevalent approach for unsteady aerodynamics is the doublet lattice method
(DLM) often casually described as an unsteady extension of the vortex lattice method (VLM).
Since its first implementation in 1969 [12], numerous refinements have been made [13–16].
Nowadays, the DLM is considered an established tool in research and industry alike. Its im-
proved accuracy compared to indicial functions for gust loads analysis has been shown in [17].
The DLM is widely used for flight dynamics and loads investigations [18, 19], and it has been
applied to the aeroelastic modeling of unmanned flexible aircraft in recent years [20–23].
Given a suitable model for unsteady aerodynamics, it is of interest to evaluate the impact of
unsteady effects on the flight dynamic behavior. In [10], the indicial function method was con-
sidered integral to capture the aeroelastic dynamics of the slightly flexible aircraft investigated
therein. On the other hand, a negligible impact of unsteady aerodynamics on flutter speed pre-
dictions was reported in [24] for a body-freedom flutter demonstrator.

This paper aims to extend an existing high-fidelity quasi-steady aerodynamics model, derived
from system identification, to include unsteady aerodynamics. An unsteady DLM model is im-
plemented in MATLAB/SIMULINK and combined with the quasi-steady high-fidelity model by
exploiting the structure of the physical rational function approximation [18]. Thus, the steady
component of the DLM model can be replaced by the high-fidelity quasi-steady model. This
combined aerodynamic model is integrated with linear structural and rigid-body dynamics, as
well as several other subsystem-models of actuators, sensors, and filters to obtain a nonlin-
ear flight dynamic simulation model. To ensure consistency of the combined quasi-steady and
unsteady models, the parameters of the quasi-steady aerodynamics model are newly adapted
during a parameter estimation. Further, comparisons of quasi-steady and unsteady simulations
are presented to evaluate the impact of unsteady aerodynamic effects. In the simulations, the
aircraft dynamics are excited with maneuvers at various frequencies ranging from fast rigid-
body dynamics to the aeroelastic frequency range as well as high-frequency gusts.
This paper is organized as follows. Section 2 introduces the slightly flexible 25 kg unmanned
aircraft G-Flights Dimona and its structural characteristics. The modeling framework is pre-
sented in section 3. Therein, the model structure, the equations of motion, the aerodynamic
models, and the combination of the quasi-steady and unsteady aerodynamics are described.
Finally, the results of the parameter identification and the simulation studies are presented in
section 4.

2 UNMANNED TEST AIRCRAFT G-FLIGHTS DIMONA

The G-Flights Dimona, depicted in Figure 1, serves as a test and research aircraft for the devel-
opment and validation of modeling [25,26], loads estimation [27], and control [28] methods for
flexible aircraft. It is an unmanned replica of the HK36 Super Dimona at a scale of 1:3 with a
total mass of 25 kg. The aircraft is driven by an electric motor with a maximum power of 4 kW
and has a length of 2.4m. The original wings have been replaced by a pair with increased flex-
ibility and structure-integrated sensors. They have a span of 5.4m and a surface area of 1.6m2.
The aircraft comprises a total of 11 control surfaces: Two elevators, one rudder, four ailerons,
and four flaperons. It is further equipped with several industry-grade sensors and computers for
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Figure 1: G-Flights Dimona

guidance, navigation, and control (GNC) applications. Strain gauges for shear, bending, and
torison as well as intertial measurement units (IMUs) are located at relevant stations along the
fuselage, empennage, and wings. With wing tip deformations of up to 10% of the half-span at
2g, it is considered a slightly flexible aircraft in accordance with [29].
Assuming linear structural dynamics, the elastic deformation is represented by a set of free vi-
bration modes and mode shapes. Ground vibration tests (GVT) with hammer and shaker inputs
as well as a modal analysis were performed to determine the structural modes from experi-
mental data. The first seven modes were identified and considered for the structural dynamics
model. Details on the measurement setup, test execution, and results are presented in [30]. The
structural mode shapes were subsequently determined from a finite element (FE) model that
was adapted to match the GVT data. These modes are listed in Table 1 with their respective
frequency f and modal damping ξ. They are visualized in Figure 2. Due to its low natural
frequency, the first symmetric wing bending is the mode most likely to affect the flight dynam-
ics. Additionally, it is the only mode with a natural frequency below the actuator bandwidth of
6.74Hz. Hence, it is considered to be the most relevant structural mode.

Table 1: First seven structural modes of the G-Flights Dimona

Mode Description f [Hz] ξ [%]
1 First symmetric wing bending 3.97 0.85
2 First antisymmetric wing bending 8.56 1.38
3 First antisymmetric vertical tailplane bending 11.18 1.24
4 First symmetric in-plane wing bending 13.21 1.83
5 Second symmetric wing bending 14.60 1.79
6 First symmetric horizontal tailplane bending 17.24 2.76
7 First symmetric wing torsion 25.83 1.91

Printed using Abaqus/CAE on: Thu Oct 19 22:33:11 Mitteleuropäische Sommerzeit 2017

Mode 1

Printed using Abaqus/CAE on: Thu Oct 19 22:33:46 Mitteleuropäische Sommerzeit 2017

Mode 2

Printed using Abaqus/CAE on: Thu Oct 19 22:34:38 Mitteleuropäische Sommerzeit 2017

Mode 3

Printed using Abaqus/CAE on: Thu Oct 19 22:35:00 Mitteleuropäische Sommerzeit 2017

Mode 4

Printed using Abaqus/CAE on: Thu Oct 19 22:35:22 Mitteleuropäische Sommerzeit 2017

Mode 5

Printed using Abaqus/CAE on: Thu Oct 19 22:37:16 Mitteleuropäische Sommerzeit 2017

Mode 6 Mode 7

Figure 2: Visualization of the structural modes
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3 FLEXIBLE AIRCRAFT MODEL

The nonlinear simulation model is implemented in MATLAB/SIMULINK and follows the modu-
lar subsystem-based modeling approach of the in-house library FLYSIM. The implementation
of the unsteady DLM model in the nonlinear simulation model is shown in Figure 3. The ac-
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Figure 3: Implementation of the unsteady DLM model in the nonlinear simulation model

tuators are modeled by second-order systems of the identified servo actuator dynamics. The
aerodynamics consist of a high-fidelity quasi-steady model based on strip theory and system
identification. In this work, it is combined with an unsteady DLM model. Making use of the
physical rational function approximation [18], it is possible to differentiate between steady and
unsteady components of the aerodynamic forces and moments computed by the DLM. Hence,
only the unsteady components are computed and superimposed with the quasi-steady model at
each strip. Additionally, atmospheric disturbances are modeled by the wind & turbulence sub-
system. The resulting forces and moments are inputs for the linear structural dynamics and the
nonlinear rigid-body dynamics. These dynamics are described by the equations of motion in
the mean axes body reference frame based on [31]. Lastly, the outputs are obtained from sensor
and filter models. The full aircraft model comprises additional subsystems for the propulsion
system, landing gear, as well as earth and atmosphere.

3.1 Equations of Motion

The equations of motion describe the aircraft’s response to external forces and moments consid-
ering nonlinear rigid-body dynamics and linear structural dynamics. They are developed with
the choice of the body reference frame to satisfy the practical mean axes constraints of zero
translational and linear rotational momentum due to elastic deformations [31]. This is achieved
by representing the elastic deformation in terms of free vibration modes and locating the origin
of the body reference frame Ob at the instantaneous center of mass, see Figure 4. The position
ri of a mass element dmi of the flexible aircraft in an inertial reference frame OI can be ex-
pressed in terms of the relative position pi to this body reference frame and the position r0 of
the origin of Ob: ri = r0 + pi. With the free vibration modes, the elastic deformations of the
ng structural nodes dg can be written as a multiplication of the flexible modal matrix Φgf and
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Figure 4: Visualization of the elastic deformation and definition of the reference frames

the modal coordinates ηf

dg =

 d1
...

dng


g

= Φgf ηf . (1)

Then, the position pi of the mass element can be separated into its undeformed part si and its
deformed part dg,i: pi = si+dg,i. The equations of motion can be derived in Ob by assuming a
structure of lumped masses, small deformations, collinear deformations and deformation rates,
and a constant tensor of inertia:

m
(
V̇b +Ωb × Vb − TbI gI

)
= F E

b , (2)

J Ω̇b +Ωb × J Ωb = ME
b , (3)

Mff η̈f +Bff η̇f +Kff ηf = FM
f (4)

Equation 2 and Equation 3 describe the nonlinear translational and rotational rigid-body flight
dynamics in the body reference frame, respectively. The vector Vb contains the translational
velocities and Ωb is the vector of angular velocities. The aircraft’s mass is denoted by m and its
inertia tensor by J . The matrix TbI transforms the gravitational acceleration vector gI from the
inertial to the body-reference frame. The external forces from aerodynamics and propulsion are
denoted as F E

b and the resulting moments as ME
b . Equation 4 represents the linear differential

equations of the structural dynamics. Here, Mff , Bff , and Kff are the modal mass, damping, and
stiffness matrices, respectively. The modal forces are denoted as FM

f . The nonlinear rigid-body
dynamics and the linear structural dynamics are coupled due to the aerodynamic forces.

3.2 Quasi-Steady Strip Aerodynamics Model
The quasi-steady aerodynamics are modeled using a stability and control derivative approach
and by applying strip theory. The underlying aerodynamic parameters have been previously
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identified from flight test data as described in [26].

In strip theory, the lifting surfaces are divided into nstrips spanwise strips, each with local width
bi, local chord ci, and local surface area Si. Each strip corresponds to precisely one structural
node (g). The elastic deformation is thus known from the superposition of mode shapes and
model coordinates, see Equation 1. Furthermore, each strip is assigned a neutral point (n) at
the quarter-chord position and a zero pressure point (p) at the mid-chord position. They act as
reference points for the aerodynamic forces and moments. The positions of these points are
depicted in Figure 5. The orientation of each neutral point, zero pressure point, and structural
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elastic axis (deformed)
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xrp

yrp

zrp

Ob

xb

yb

zb

Ωb

50%-chord line

i'th strip

25%-chord line

n g p

Figure 5: Position of the i’th strip relative to the reference point frame Orp and the body reference frame Ob

node can be described relative to a body-fixed frame, which has its origin at the reference point
Orp. It is aligned with the body reference frame Ob, but translated to the origin of the wing
by a vector bcm, which is considered constant due to the assumption of small deformations.
Neglecting chord-wise deformation of the strips, the instantaneous position of the i’th neutral
point relative to the reference point frame is given by

bn,i = brn,i + dt
g,i + Tng,i (b

r
n,i − brg,i) (5)

with the rigid position vector brn,i, the translational elastic deformations dt
g,i, and the transfor-

mation matrix Tng,i from the i’th structural node to the i’th neutral point due to elastic rotations.
The positions of the zero pressure point and the structural node can be described similarly.
The quasi-steady aerodynamics of each strip are described by a local non-dimensional lift and
a local non-dimensional drag coefficient. They are formed from the well-known stability and
control derivatives normalized by Si/Sref:

CL,i = CL0,i + CLα,i ·
(
1 +

√
X0,i

2

)
· αeff,i +

nx∑
ix=1

CLηx,ix
,i · ηx,ix (6)

CD,i = CD0,i + ki · C2
L,i (7)
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Here, quasi-steady stall effects are modeled by an approximation of the steady flow-separation
pointX0,i based on Kirchhoff’s flow separation theory [32]. For vertical stabilizer strips, the lift
coefficient is interpreted as a side force coefficient CY,i with the effective angle βeff,i. All terms
are assumed to act on the strip’s neutral point, except for CL0,i and CLηx,ix

,i · ηx,ix , which are
assumed to act on the strip’s zero pressure point and a variable point along the centerline as a
function of the deflection [33], respectively. They are transferred to the strip’s neutral point and
the resulting moments are described in terms of non-dimensional moment coefficientsCl,i (roll),
Cm,i (pitch), and Cn,i (yaw). Non-dimensionality is achieved through dividing the moments by
s (roll, yaw) and c (pitch), respectively. Lastly, the aerodynamic characteristics of the fuselage
are modeled by additional non-dimensional one-point stability derivatives.

The local relative flow at each strip is determined by summing the velocity components of aero-
dynamic free stream, aerodynamic rotation about the body reference frame, elastic translation,
and wind

Vn,i = Tnb,i

(
V A

b +ΩA
b × (bn,i − bcm)

)
+ ḋt

g,i + V W
n,i , (8)

where Tnb,i denotes the transformation matrix from the body reference frame to the i’th neutral
point due to rigid and elastic dihedral, twist, and sweep. The velocity components due to elastic
rotations are neglected.
Downwash at the tailplane strips is modeled by the induced downwash angle ϵT,i. It is used to
correct the local relative flow at the tailplane strips. The angle depends on the angle of attack
and flaperon deflections, delayed by the time ∆tϵT ,i the flow requires to reach the tailplane
strips [34]

ϵT,i(t) =
∂ϵT
∂α

· α(t−∆tϵT ,i) +

nf∑
if=1

∂ϵT
∂ηx,if

· ηx,if (t−∆tϵT ,i) , (9)

where ∂ϵT/∂α and ∂ϵT/ηx,if denote the partial derivatives of the downwash angle w.r.t. the angle
of attack and flaperon deflections, respectively.
The effective angle of attack and angle of sidelip of each strip are obtained based on the local
relative flow of Equation 8, which is corrected by the induced downwash angle for the tailplane
strips

αeff,i = arctan

(
wn,i

un,i

)
, βeff,i = arcsin

(
vn,i
|Vn,i|

)
. (10)

These effective strip angles and the control surface deflections are used to compute the coef-
ficient vectors CF

n,i and CM
n,i. The resulting quasi-steady aerodynamic loads P A,qs

n,i (forces and
moments) acting at the i’th neutral point are then given by

P A,qs
n,i

 F A,qs
n,i = q̄eff,i Sref C

F
n,i

MA,qs
n,i = q̄eff,i Sref ECM

n,i ,
(11)

where E is a diagonal matrix with main diagonal elements {s̄, c̄, s̄} and q̄n,i denotes the effec-
tive dynamic pressure at each strip.

Initial distributions of the stability and control derivatives were obtained from VLM calcula-
tions. They were subsequently adapted based on flight test data using the output error method
in the time domain and maximum likelihood estimation. Details can be found in [26].
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3.3 Unsteady Doublet Lattice Aerodynamics Model

In this section, the implementation of a Doublet Lattice Method in MATLAB/SIMULINK to
determine the distributed unsteady forces and moments is described. The implementation is
based on previous work by [20] and follows the approach of [18]. The governing equations and
their derivations are available in the literature and will not be described here in detail.
The DLM is a linear potential-flow based panel method that allows to determine the pressure
distribution of a lifting surface undergoing oscillations of a certain frequency [12]. The wings
and the tailplane are treated as flat mean surfaces and small deformations are assumed. The
lifting surfaces are divided into a finite number of trapezoidal panels with a constant pressure
distribution for each. The resulting grid for the G-Flights Dimona, its coordinate system, and the
index notation for each panel are depicted in Figure 6. Note that the x- and z-axis are inverted
compared to the body-fixed frame defined in subsection 3.21. Following the notation of [18], l

x′
rpy′rp

z′rp

Orp

j
k
l

x′
rp

y′rp

ci

Figure 6: DLM grid of the G-Flights Dimona and the corresponding notation

denotes the load acting point (quarter chord), k is the panel reference point (mid chord), and j
denotes the collocation point (three-quarter chord).
By numerically integrating the Kernel function, the frequency-dependent matrix of aerodynamic
influence coefficients (AIC-matrix) Qjj(k) is obtained. It relates a downwash distribution wj to
a resulting pressure distribution

∆cpj(k) = Qjj(k)wj(k) . (12)

The reduced frequency

k =
c̄

2VTAS

ω (13)

is an indicator for the unsteadiness of the flow and depends on the mean aerodynamic chord c̄,
the airspeed VTAS, and the oscillation frequency ω. For the G-Flights Dimona, eight reduced

1Signs are adjusted where appropriate.
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frequencies up to k = 3 were considered. Usually, the solution for the steady case k = 0 is
replaced by a VLM solution to avoid approximation errors. Similarly, the steady aerodynamics
in this work are represented by the high-fidelity model described in subsection 3.2. Implemen-
tation details are given in subsection 3.4.

Modeling the fluid structure interaction between the aerodynamic panel midpoints k and the
structural nodes g is required to account for the influence of the flexible aircraft’s elastic de-
formation on the aerodynamic properties. As is conventional, the two degrees of freedom z-
translation and pitch about the y-axis are considered for each panel. Meanwhile, three degrees
of freedom are considered for each structural node2: z-translation, roll about its x-axis, and
pitch about its y-axis. For the i’th panel or node, respectively, this is denoted as

dk,i =
[
z θ

]T
k,i

; dg,i =
[
z ϕ θ

]T
g,i
. (14)

For the purpose of fluid structure interaction, a transformation matrix Tkg based on spline inter-
polation is constructed. Thus, the deformations of the structural grid can be mapped onto the
aerodynamic grid

dk = Tkg dg (15)

and similarly, assuming structural equivalence [35], aerodynamic loads can be mapped onto the
structural nodes

P A
g = T T

kg P
A
k . (16)

Here, P denotes the loads acting at each node or panel, respectively. Note that P A
g consists of

one local force and two moments, while P A
k consists of only one force and one moment at each

panel due to the degrees of freedom, see Equation 14.
The transformation between these grids is achieved by making use of an intermediate spline
grid as proposed in [20]. Hence, two consecutive transformations are required. First, a trans-
formation from the structural nodes g to the spline nodes s is performed with Tsg. Second, the
deformations of the aerodynamic grid are obtained by interpolating between the deformations
of the spline nodes with Tks. Thus, the overall transformation is defined as

Tkg = Tks Tsg . (17)

The spline grid spans the lifting surface and subsequently allows for the interpolation of lo-
cal deformations based on thin plate theory. Since this approach assumes deformations only
normal to the surface, each spline node has only a single heave degree of freedom zs,i. The
corresponding grid is obtained by projecting the structural nodes to the leading and trailing
edges of the lifting surfaces as shown in Figure 7. The three degrees of freedom of each struc-
tural node can now be transformed into pure heaving motion of the corresponding three spline
nodes (considering the structural node itself as a spline node) through the utilization of a small
angle approximation as described in [36]. This yields the transformation matrix Tsg. The sec-
ond transformation matrix is obtained based on surface spline theory. Given the known spline
node deformations, the unknown displacements at the panel midpoints are determined using
thin plate deformation equations. For this purpose, infinite plate splines based on radial basis
functions are implemented as described in [35, 37], yielding Tks.

The aerodynamic boundary conditions are determined with the so-called differentiation matri-
ces D1

jk and D2
jk [18]. They relate the displacements of the aerodynamic panels in terms of their

2Note that Φgf in subsection 3.2 denotes a modal matrix with six degrees of freedom for each node.
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spline node (s)
structural node (g)

Figure 7: Spline grid of the G-Flights Dimona

heaving and pitching motion at the panel midpoint to the resulting downwash at the respective
collocation points

wj(k) =
(
D1

jk + jkD2
jk

)
dk(k) . (18)

For the i’th panel, these matrices are defined as

D1
jk,i =

[
0 1

]
(19)

D2
jk,i =

2

c̄

[
−1 ci/4

]
. (20)

Thus, in contrast to pure heave displacements, pitch displacements induce downwash at the
collocation point as indicated by Equation 19. Similarly, Equation 20 indicates that both heave
and pitch displacement rates lead to downwash at the collocation point as well.
Lastly, the generalized aerodynamic matrix (GAM) Qhh(k) can be obtained. This frequency-
dependent matrix maps rigid-body modes η̇b = [ V̇ T

b Ω̇T
b ]

T and flexible modes ηf to the resulting
aerodynamic rigid-body forces and moments as well as modal forces. Let Φgh =

[
Φgb Φgf

]
,

then the resulting forces and moments are given byF A
b

MA
b

FM
f

 = q∞ ΦT
gh T

T
kg SkjQjj

(
D1

jk + jkD2
jk

)
Tkg Φgh︸ ︷︷ ︸

Qhh(k)

[
η̇b

ηf

]
. (21)

Here, Skj denotes the load transformation matrix that consists of block-diagonal entries of the
individual panel area Si and the individual panel area multiplied by the quarter chord length
Si · ci/4. It transforms the pressure obtained at each panel to the resulting z-force and pitching
moment at the panel midpoint. Control surface deflections ηx can be included with a modal
matrix Φkx defined by rigid-body rotations and small angle approximations

dk = Φkx ηx . (22)

Thus, Φkx maps the control surface deflections to the resulting heave and pitch displacements
of the control surface panels’ midpoints. Equation 21 can be extended to include the control
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surface modes asF A
b

MA
b

FM
f

 = q∞ ΦT
gh T

T
kg SkjQjj

(
D1

jk + jkD2
jk

) [
Tkg Φgh Φkx

] η̇b

ηf

ηx

 . (23)

From here on, it will be assumed that Qhh(k) includes the control surface modes as shown
above. The GAM describes the aerodynamic model for a set of discrete frequencies k. In order
to make it applicable for time-domain simulations, a rational function approximation (RFA) [38]
has to be performed. To this end, a least-squares fit of the individual GAMs is performed in the
frequency domain to obtain a continuous transfer function

Qhh(sk) = Q0
hh +Q1

hh sk +Q2
hh s

2
k +

np∑
i=1

QLi
hh

sk
sk + pi

(24)

depending on the reduced frequency Laplace variable

sk =
c̄

2VTAS

s. (25)

The np lag poles are chosen in an iterative process to obtain a good fit. For the G-Flights
Dimona, two poles at p1 = 0.075 and p2 = 0.4 were selected. The resulting fit is depicted in
Figure 8 for the transfer functions of first symmetric wing bending mode and elevator deflection
to Z-force. Apart from minor deviations at high frequencies, a good fit is obtained. The delayed
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Figure 8: Rational function approximation of the transfer functions from first symmetric wing bending mode and
elevator deflection to Z-force at 20m/s ( ), 25m/s ( ), and 30m/s ( )

onset of unsteady effects with increasing airspeed indicates linear parameter-varying behavior.
This is explained by the poles’ dependence on airspeed in the actual frequency domain [36]

p∗i =
2VTAS pi

c̄
. (26)

An early onset of unsteady effects in the transfer function from the first symmetric wing bending
mode to the Z-force is noticeable, although the magnitudes are relatively low compared to
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those in e.g. [20]. The mode has a relatively high damping ratio of approximately 0.6 to 0.7
at reasonable cruise speeds. The onset of unsteady effects due to elevator deflections begins at
approximately 4 rad/s, i.e. reduced frequencies of k = 0.02 to k = 0.03.
The doublet lattice model described in this subsection could be extended to six degrees of
freedom for each aerodynamic panel and each structural node through appropriate expansion of
the relevant matrices [18]. Making use of a modified numerical integration and a cross-product
formulation, the so-called enhanced DLM would be obtained [23, 39].

3.4 Combined Model of Quasi-Steady and Unsteady Aerodynamics

In order to combine the quasi-steady strip aerodynamics described in subsection 3.2 with the
unsteady DLM aerodynamics of subsection 3.3, two requirements must be fulfilled: First, the
unsteady loads need to be available at the neutral points of each strip. This would allow for
the superposition of quasi-steady and unsteady forces and moments. Second, the DLM model
has to be separated into its steady and unsteady parts so that only the unsteady component can
be added to the quasi-steady strip aerodynamics. The first requirement is implicitly fulfilled by
the structure of the DLM model since the aerodynamic loads at each structural node P A

g can be
obtained by simply omitting the multiplication with ΦT

gh in Equation 23. Since each structural
node is assigned to precisely one aerodynamic strip, the unsteady loads can subsequently be
transferred to strip’s the neutral point and henceforth be superimposed with the quasi-steady
forces and moments. The second requirement can be fulfilled with the so-called physical ra-
tional function approximation (PRFA) proposed in [18]. This modification of the conventional
RFA is based on directly fitting the AIC matrices instead of the GAMs. Thus, no multiplication
with the differentiation matrices is performed prior to the function approximation. The main
drawback of this approach is the significantly increased size of the matrices involved in the
least-squares fit. In order to keep the matrix dimensions for the fit as low as possible, the AIC
matrices are still premultiplied with T T

kg Skj to obtain

Qgj(k) = T T
kg SkjQjj(k) . (27)

The PRFA is then given by

Qgj(k) = Q0
gj +Q1

gj sk +

np∑
i=1

QLi
gj

sk
sk + pi

. (28)

Now a distinction between the different components of the DLM model is possible: The steady
part is given by Q0

gj, added mass effects are represented by Q1
gj, and the lag behavior is modeled

by QLi
gj . Note the absence of the acceleration term Q2

gj in contrast to the conventional RFA in
Equation 24. This term would be recovered by multiplication with the differentiation matrices
to obtain the GAM as shown in [18, 36]. The same pole locations that were chosen for the
conventional RFA were also used for the PRFA.

For implementation in the time-domain simulation model, the lag dynamics are represented by
the state-space model [18]

ẋL = A
(

V∞
c̄/2

)
xL +B ẇj

P Lag
g = C xL

(29)
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with

A = diag
([
−p1 I . . . −pnp I

])
B =

[
I . . . I

]T
C =

[
QL1

gj . . . Q
Lnp

gj

]
,

where I is an identity matrix of dimension npanels × npanels. This state space model is usually
of high dimension with np · npanels states and npanels inputs. Nevertheless, a relatively efficient
implementation can be achieved by exploiting the pronounced sparsity pattern of A and B. The
loads at each structural node determined by the DLM model are given by

P A
g = q̄(Q0

gj wj︸ ︷︷ ︸
steady

+Q1
gj

(
c̄/2
V∞

)
ẇj︸ ︷︷ ︸

added mass

+C xL(ẇj)︸ ︷︷ ︸
lag

) . (30)

To implement the unsteady aerodynamics model, only the added mass and lag term are consid-
ered. The steady part is replaced by the quasi-steady model. The components of the downwash
derivative are given by

ẇj =



D2
jk Tkg Φgb

(
c̄/2
V∞

)
η̈b

+D1
jkΦkx η̇x

+D2
jkΦkx

(
c̄/2
V∞

)
η̈x

+D1
jk Tkg Φgf η̇f

+D2
jk Tkg Φgf

(
c̄/2
V∞

)
η̈f

+ẇG
j ,

(31)

where ẇG
j is the gust induced downwash derivative. It can be conveniently defined in the time-

domain for 1-cos gusts as described in [18]. The relative position of the aerodynamic panels’
collocation points w.r.t the gust is given by

xG
j (t) = xj + 2H − VTAS t , (32)

where xj denotes the collocation points’ positions and H is the gust gradient. The gust down-
wash derivative is then defined as

ẇG
j (t) =

{
−π V G

2H
sin
(
π

xG
j (t)

H

)
for 0 < xG

j < 2H

0 otherwise
(33)

with the gust amplitude V G.

With the definitions above, the outputs of the unsteady model are given by the loads due to
added mass effects P A,am

g and lag effects P A,lag
g . After transferring them from the structural

nodes to the strips’ neutral points, they are superimposed with the quasi-steady loads P A,qs
n to

obtain the distributed aerodynamic forces and moments acting at the neutral points

P A
n = P A,qs

n + P A,am
n + P A,lag

n . (34)

Since the lag term inherently models delayed downwash effects, it replaces the delay of the
quasi-steady downwash model Equation 9. It is thus excluded from the quasi-steady strip aero-
dynamics such that delayed downwash effects are represented by the corresponding lag forces
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acting at the neutral points of the tailplane strips. The distributed aerodynamic forces and mo-
ments are summed up to yield the aerodynamic forces F A

b and moments MA
b for the rigid-body

equations of motion in Equation 2 and Equation 3, respectively. The modal forces for the struc-
tural dynamics in Equation 4 are determined by multiplying the aerodynamic loads acting at the
structural nodes with the transposed flexible modal matrix

FM
f = ΦT

gf P
A
g . (35)

It should be noted that differences in the aerodynamic grids of the quasi-steady strip model and
the unsteady panel model lead to a model mismatch when simulating very short gusts. In the
quasi-steady strip model, a gust acts directly at the neutral point as soon as it is reached. In
contrast, in the DLM model, a gust acts at each panel’s collocation point while traveling over
the lifting surfaces. This results in a possible mismatch between the time-dependent reactions
of the two models. This effect can be largely mitigated by shifting the gust downwash derivative
ẇG

j (t) by ∆t = c̄/(2VTAS) in time as illustrated in Figure 9. This implies that the gust has already
traveled half the mean chord of the panel model when it reaches the leading edge of the strip
model. Comparisons of the quasi-steady model with a steady VLM model on the same grid as
the DLM model indicated that this approach yields satisfactory results by correctly matching
the forces in reaction to gusts, except when high-frequency gusts with very short time scales are
considered.

strip's neutral point n

panels' collocation points j
∆t

x′
rp

Figure 9: Schematic illustration of the time shift between the gusts of the quasi-steady model ( ) and the un-
steady model ( ) to achieve force matching in time

4 COMPARISON OF QUASI-STEADY AND UNSTEADY SIMULATIONS

This section analyzes the impact of unsteady aerodynamic effects on the slightly flexible G-
Flights Dimona. Prior to analyzing the simulations, a new parameter estimation is performed to
adapt the quasi-steady aerodynamic model after its combination with the unsteady DLM model.
This adapted unsteady model is then compared to the purely quasi-steady model in simulations
of maneuvers and gusts over a wide range of reduced frequencies.

4.1 Quasi-Steady Parameter Estimation

The parameter estimation follows the approach that has previously been taken to estimate the
parameters of the quasi-steady strip aerodynamics model [26]. Therein, the distributions of the
quasi-steady control and stability derivatives were adapted by scaling the initial distributions
with scaling factors. The same data set consisting of maneuvers to excite the rigid-body dy-
namics is used here. For this reason, only the parameters of the quasi-steady are adapted while
the unsteady aerodynamics remain unchanged. Consistency of the quasi-steady strip model and
the unsteady DLM model can thus be ensured. Additionally, a good match between the com-
bined model and flight test data in the quasi-steady regime can be achieved.
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The estimation is performed with the in-house tool DAVIS, which is based on the output-error
method in the time-domain and maximum likelihood-estimation [32]. The estimation param-
eters comprise linear scaling factors of the zero coefficient, stability derivative, and control
derivative distributions as well as additional parameters of the downwash and fuselage [26].

Θ = [ k CD0
k CYβ

k CL0,wing k CLα,wing k CLα,htp k CLηx,i
∂ϵT/∂α ∂ϵT/∂ηx,if Cl0,fuse Cm0,fuse ]

T . (36)

The criteria for the estimation are selected from standard measurement outputs of the rigid body
motion

y =
[
VTAS ṗ q̇ ṙ p q r ϕ θ ψ u v w ax ay az

]T
. (37)

Matching plots of the identification result are shown in the appendix in Figure 13. Apart from
some deviations due to model deficiencies and undetected atmospheric disturbances, a good
overall identification result similar to the identification of the quasi-steady model in [26] is
achieved. Especially the fast dynamics are matched well. This result indicates that the com-
bined quasi-steady/unsteady model is plausible and in good agreement with quasi-steady flight
test data. Time-dependent downwash effects that were previously explicitly modeled in the
quasi-steady aerodynamics are now represented by the DLM model. The final estimates are
listed in Table 2, where initial values of 1 represent the scalings obtained from the identifica-
tion of the purely quasi-steady model in [26]. Predominantly, the angle of attack derivative

Table 2: Quasi-steady parameter estimates

Parameter Initial value Final value Rel. std. deviation [%]
k CD0 1 0.99 1.87
k CYβ

1 1 0.79
k CL0,wing 1 1.36 2.49
k CLα,wing 1 0.83 0.85
k CLηx,fl

1 0.88 1.08

k CLηx,a,in
1 0.85 1.08

k CLηx,x,a,out
1 0.87 0.97

k CLα,htp 1 1.26 1.74
k CLηx,e

1 1.14 0.72

k CYηx,r
1 1.02 1.29

∂ϵT/∂α 0.411 0.561 1.95
∂ϵT/∂ηx,if 0.0248 0.017 2.24
Cl0,fuse −0.0017 −0.0017 0.93
Cm0,fuse −0.0356 −0.0378 6.39

distributions of the wing and the horizontal tailplane, the corresponding control surfaces, and
the partial downwash derivatives are adapted. Parameters of the fuselage aerodynamics and
the yawing motion are hardly altered. This indicates a reasonable identification since unsteady
effects are not implemented for these parameters. All estimates are reasonably close to the
initial values and have low relative standard deviations. The adaptations of the lift scalings
are attributed to the additional unsteady forces acting on the wing and the horizontal tailplane.
The change in downwash derivatives indicates an adjustment required to match the flight test
data with the time-dependent downwash effects now included in the DLM model. The adapted
model obtained in this subsection demonstrates overall satisfying behavior and is hence used
for subsequent simulation studies.
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4.2 Simulation Studies of Maneuvers and Gust Encounters

The combined unsteady model is compared to the purely quasi-steady model in simulations
studies. A wide range of reduced frequencies is considered to evaluate the impact of unsteady
effects on the overall flight dynamic and aeroelastic behavior.
To evaluate unsteady effects in the rigid-body frequency range, an elevator 3-2-1-1 maneuver
is simulated to excite the short period dynamics. The maneuver is executed at VTAS = 22m/s
where the short period mode reaches its maximum frequency of ωn,SP = 7.02 rad/s. Note
that the short period is overall highly damped with a damping ratio of ζ = 0.95 at 22m/s.
The time step for the 3-2-1-1 input is approximated by ∆t3211 = π/

(
2ωn,SP

) ≈ 0.22 s and the
elevator deflection is chosen such that ∆α ≈ 3◦ . . . 4◦ is achieved [32]. The simulation results
are shown in Figure 10. No significant differences between the quasi-steady and the unsteady
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Figure 10: Quasi-steady ( ) and unsteady ( ) simulations of an elevator 3-2-1-1 maneuver at VTAS = 22m/s

model are observed. This is considered reasonable for the slightly flexible Dimona at k = 0.05.
The existing differences in the pitch dynamics can mostly be attributed to the adaptation of the
quasi-steady parameters.

In order to excite high frequency aeroelastic dynamics, an elevator sine sweep from 1Hz to 6Hz
executed at VTAS = 20m/s is considered. The resulting wing tip accelerations are depicted in
Figure 11. Here, the excitation of the first wing bending mode is visible at t ≈ 5 s. The
differences between the combined unsteady model and the quasi-steady model at k ≈ 0.1 are
most likely still dominated by the quasi-steady parameter adaptation. At k ≈ 0.2, a phase shift
and a decrease in amplitude become evident. The unsteady aerodynamics result in a significant
phase shift and decrease in amplitude of the wing tip acceleration at k ≈ 0.3. Note that k ≈ 0.3
is reached with a rather low airspeed of VTAS = 20m/s and an elevator frequency of 6Hz, which
is close to the maximum actuator bandwidth of 6.74Hz. Thus, higher reduced frequencies will
hardly be reached with maneuvers. While the impact of the unsteady aerodynamics is clearly
visible in the aeroelastic frequency range, there remains a distinct separation between these
frequencies and those of the rigid-body dynamics so that unsteady effects hardly affect the
rigid-body dynamics.

16



IFASD-2024-046

0 2 4 6 8 10
−12

−10

−8

time [s]

w
in
g
ti
p
a
cc
.
a
z
,w

t
[m
/s

2
]

1.8 2 2.2
−11

−10

−9

−8

time [s]

a
z
,w

t
[m
/s

2
]

k ≈ 0.1

5.8 6 6.2
−12

−10

−8

time [s]

k ≈ 0.2

9.8 10 10.2
−11

−10

−9

time [s]

k ≈ 0.3

0 2 4 6 8 10
−8

−6

−4

−2

0

2

time [s]

el
ev

a
to
r
η x

,e
[d
eg

]

Figure 11: Quasi-steady ( ) and unsteady ( ) simulations of an elevator sine sweep from 1Hz to 6Hz at
VTAS = 20m/s

The most notable impact of unsteady effects is expected during gust encounters. To this end,
three 1-cos discrete gusts with decreasing gust lengths are simulated at a cruise speed of VTAS =
25m/s. Since 1-cos gusts are especially relevant in loads analysis, the wing root bending
moment (WRBM) is considered to evaluate the unsteady effects. The simulation results of
the three gusts are depicted in Figure 12. For k = 0.2, the impact of unsteady aerodynamics

0 0.2 0.4 0.6
0

100

200

W
R
B
M

M
x
,w

r
[N
m
] k = 0.2

0 0.2 0.4 0.6
50

100

150

200

k = 0.4

0 0.2 0.4 0.6
50

100

150

200

k = 0.6

0 0.2 0.4 0.6
0

1

2

3

time [s]

|V
G
|[
m
/
s]

0 0.2 0.4 0.6
0

1

2

3

time [s]

0 0.2 0.4 0.6
0

1

2

3

time [s]

Figure 12: Quasi-steady ( ) and unsteady ( ) simulations of gust encounters at four different reduced fre-
quencies with VTAS = 25m/s

is visible by means of a phase shift, and qualitative similarities to k ≈ 0.2 in Figure 11 can
be observed. The effects become more pronounced at higher frequencies with a stronger phase
shift and decrease of the maximum WRBM at k = 0.4. The slightly earlier reaction of the
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unsteady WRBM due to added mass effects is visible. Lastly, the most significant impact of
unsteady effects is observed for k = 0.6, showing a clear difference in load progression. It is
thus confirmed that unsteady effects become especially relevant for short gusts. The resulting
time delays and deviations in WRBM amplitude can be of importance when considering gust
load analysis and load control.

It can be concluded that the purely quasi-steady model captures the essential dynamics with
reduced frequencies of k < 0.2 well. At higher frequencies, unsteady effects influence the
dynamics significantly. They result in phase-shifts, changes in amplitude, and delays due to
the added mass and lag forces. For the slightly flexible G-Flights Dimona, these reduced fre-
quencies are not reached during conventional maneuvering flight. It is thus concluded that
unsteady aerodynamics will most likely not have to be considered for classical controller de-
sign. However, they can become relevant during loads analysis and control of short gusts, where
high-frequency control surface deflections are required.

5 CONCLUSION

The modeling and analysis of unsteady aerodynamics for a slightly flexible 25 kg unmanned
aircraft was presented. An identified high-fidelity quasi-steady strip aerodynamics model was
combined with DLM unsteady aerodynamics by exploiting the structure of the physical ratio-
nal function approximation. In this way, it is possible to differentiate between the steady and
unsteady parts of the DLM model and the steady part can be replaced by the high-fidelity quasi-
steady model. The combined aerodynamics were integrated into a modeling framework for
flexible aircraft, using linear structural dynamics and nonlinear equations of motion based on
the practical mean-axes formulation. The quasi-steady part of the combined model was newly
adapted with a parameter estimation based on quasi-steady flight test data. Overall, a good
match with the flight test data was obtained, ensuring consistency of the models. Simulation
studies of maneuvers and gusts exciting the rigid-body and aeroelastic dynamics over a wide
range of reduced frequencies were performed. Significant differences to purely quasi-steady
simulations were observed for maneuvers at relatively high reduced frequencies in the aeroelas-
tic frequency range close to the actuator bandwidth, while the rigid-body dynamics remained
mostly unaffected. The strongest influence of the unsteady aerodynamic effects was observed
during gust encounters. The response of the wing root bending moment was significantly altered
for short gusts. It was concluded that unsteady effects are most likely negligible for classical
controller design of the unmanned slightly flexible aircraft. However, they could be relevant
during loads analysis and control of short gusts.
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6 APPENDIX: SYSTEM IDENTIFICATION MATCHING PLOTS

Matching plots for the system identification results of the quasi-steady parameters for the com-
bined model.
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Figure 13: System identification results comparing flight test data ( ) and simulation data ( )
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