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Abstract: The Unmanned multi-body aircraft (MBA) presents significant advantages for 
enhancing aspect ratio, optimizing aerodynamic performance, and reducing the challenges 
associated with takeoff and landing. Despite its potential, current research on this configuration 
predominantly addresses the rigid body aspect, entirely overlooking the geometric nonlinearity 
arising from aeroelastic deformation during flight. This study investigates the MBA configuration 
by employing the substructure method and modal reduction techniques to develop a reduced-order 
nonlinear structural model. Subsequently, the surface dipole lattice method is utilized to formulate 
the nonlinear aerodynamic model. By coupling the explicit nonlinear structural equations with the 
explicit aerodynamic equations via Lagrange equations, we derive an explicit dynamic 
representation of a high-dimensional aeroelastic system encompassing both geometric and 
concentrated nonlinear factors. Based on the established aeroelastic system equations, we perform 
a parametric analysis and mechanistic study of flutter characteristics. The results reveal that the 
flutter speed of the MBA configuration decreases as the number of modular aircraft increases. 
Additionally, nonlinear factors significantly influence the flutter characteristics across various 
configurations and cannot be disregarded. 

  

1 INTRODUCTION 
The increasing demand for near-space applications has significantly focused the aerospace 
community's attention on high-altitude long-endurance (HALE) unmanned aerial vehicles (UAVs) 
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[1,2]. Given the stringent requirements for lightweight structures and high endurance in near-space 
operations, high aspect ratio configurations have become essential for these aircraft. Although such 
designs offer superior aerodynamic characteristics, they also impose stricter requirements on 
takeoff and landing environments, transportation conditions, and structural integrity. These 
challenges are particularly pronounced in the relatively harsh low-altitude flight conditions, where 
the flexible structures of HALE UAVs are prone to undesirable aeroelastic phenomena [3,4]. 

In this context, the concept of modular UAVs has emerged. Independent flying units sequentially 
take off and achieve wingtip docking in the relatively stable stratosphere through mechanisms such 
as hinges. This configuration not only offers excellent aerodynamic characteristics but also 
effectively mitigates challenges related to limited takeoff and landing sites and the complexities 
of low-altitude flight [5]. 

The initial concept of modular UAVs dates back to the mid-20th century. Under the guidance of 
Dr. Vogt, two lightweight aircraft and a small transport aircraft achieved wingtip docking using 
ropes [6]. Over the next half-century, various countries conducted similar experiments. However, 
these efforts did not yield the desired outcomes due to incomplete theoretical frameworks and 
technological gaps [6,7]. Recently, with the exploration of near-space, the modular configuration 
has regained attention. At the beginning of this century, the McGill team compared the 
aerodynamic parameters of modular aircraft flight and formation flight, addressing the challenges 
of high maneuverability in military operations and long-distance air transport, and highlighting the 
importance of modular aircraft transport systems [6]. Patterson described a modular configuration 
where a mother ship handles transportation while sub-aircraft perform missions [8]. The Wlach 
team proposed a wingtip connection concept to enhance flexibility. 

Systematic research in this area has gained momentum over the past decade. Montalvo and 
colleagues introduced the concept of meta-aircraft, achieving wingtip docking through magnetic 
connections. They modeled the dynamics of these connections, considering factors such as sensor 
errors, atmospheric disturbances, and contact loads during docking events, and analyzed the fault 
tolerance of the connection behavior [9]. In subsequent years, Montalvo's team conducted studies 
on the flight dynamics, control, and stability of modular aircraft, further validating the 
controllability and feasibility of the wingtip connection configuration [10,11]. Similarly, the 
Cooper team demonstrated the feasibility of wingtip docking by developing dynamic models and 
control architectures for the aircraft system, enabling in-flight wingtip docking [12]. Both teams 
utilized a spring-damper magnet system to simulate the dynamics at the connection points. 
Subsequent studies included real-world experimental simulations focusing on control systems and 
near-field aerodynamic effects [12-14]. However, the spring-damper magnet system is not the sole 
method for modeling connection points; hinge structures also represent a viable approach for 
achieving wingtip connections [15]. Hinge mechanisms, allowing only relative roll motion 
between aircraft, are inherently unstable and require the design of appropriate control strategies 
[16]. The Alexander team also conducted research on flight dynamics, the dynamic process of 
connection behavior, and controllability for this configuration [17-19]. 

In summary, the analysis of feasibility and controllability remains the primary research focus for 
modular configurations. Building on this foundation, dynamic analysis of the connection process 
and subsequent flight dynamics and stability analysis are progressing. However, research on the 
aeroelastic characteristics of this configuration is still in its infancy. As a type of high aspect ratio 
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aircraft, the inherent geometric nonlinearity and aeroelastic issues arising from its high flexibility 
warrant significant attention[20]. In the field of nonlinear aeroelasticity, current methods primarily 
employ linearization or equivalent linearization techniques for local dynamic analysis, focusing 
on stability issues brought about by nonlinear factors [20,21]. Addressing such high-dimensional 
nonlinear systems necessitates the development of reduced-order aeroelastic system models that 
balance accuracy and efficiency, achieving higher numerical stability with fewer degrees of 
freedom [21-23].  

2 METHODOLOGIES 

2.1 Geometric nonlinear elasticity 
In the presence of aerodynamic loads, the wings of highly flexible aircraft exhibit minimal strain, 
maintaining adherence to linear elasticity theory within the structural material. However, notable 
nonlinear large deformations emerge, rendering the small deformation assumption invalid. In such 
scenarios, it becomes imperative to incorporate the second-order terms of deflection derivatives 
into the geometrically nonlinear elastic equations. 

To tackle this challenge, the Updated Lagrange method is employed for formulating the matrix 
equations of the elements [24]. 

 ( )t t t t t
L NL

+∆+ = −K K u Q F  (2.1) 

The corresponding dynamic equations are: 

 ( )t t t t t t t t
L NL

+∆ +∆+ + = −M u K K u Q F  (2.2) 

In many dynamic problems, it can still be assumed that the structure undergoes small amplitude 
vibrations around its static equilibrium state, including issues related to dynamic stability. This can 
be denoted as 
 = +u u x  (2.3) 

Here, u  represents the static equilibrium large deformation obtained from the equation; x  denotes 
the small amplitude vibration displacement. Based on the equations and the static equilibrium 
conditions, the free vibration equation of the system under steady loads can be expressed as: 

 0T T+ =M x K x  (2.4) 

2.2 Non-planar Dipole Panel Method 
Considering that the design state of the aircraft should avoid large oscillations and stall phenomena, 
it is still feasible to establish the aerodynamic calculation method for the wing's large deformation 
based on the small perturbation potential flow theory of Euler equations. Therefore, this paper 
employs the surface dipole lattice method for aerodynamic modeling of a high aspect ratio flying 
wing UAV layout. 
The dipole lattice method first requires a reasonable aerodynamic mesh division of the lifting 
surface. Traditional linear aeroelastic analysis involves meshing only on the planar lifting surface, 
resulting in the generalized unsteady aerodynamic expression as: 
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Vρ=Q Aq  (2.5) 

Here, ijA  is the generalized aerodynamic influence coefficient matrix. 

 1( )T H
P H

ki
x b

∂φφ φ
∂

−= +A SD  (2.6) 

where D  represents the unsteady aerodynamic influence coefficients. Hφ is the modal matrix at the 
control points; k  is the reduced frequency, and b  is the reference length. Pφ is the modal matrix at 
the aerodynamic grid points. ( )1, , nS diag S S= ∆ ∆ is the area-weighted matrix, with diagonal 
elements representing the areas of each aerodynamic grid.  
The aforementioned traditional dipole calculation method requires modification to accurately 
account for unsteady aerodynamics on surfaces experiencing large deformations. To address this, 
we must correct for non-coplanar aerodynamic forces. This involves initially generating a three-
dimensional mesh on the curved lifting surface, which is continuously updated to follow structural 
deformations, as illustrated in Figure 1, depicting the surface dipole lattice division. In this 
configuration, the dipole lines are arranged on a spatial curved surface, and the dipole grid becomes 
a spatial grid. Furthermore, it is crucial to establish a local coordinate system to accurately 
represent the actual deformation of the wing in the airflow, cos jϕ  is directly related to the shape 
of the lifting surface, including factors such as the sweep angle. The kernel function ijK  is also 
intricately linked to the wing's deformation. 

 
Figure 1. Curved surface dipole lattice division 

 
Figure 2: Dipole lines and normal direction 

The specific expression of the kernel function is given as follows: 

 ( )1 //
10

1lim
i

x i M R Mi x U

n
i j

K e e d
n n R

ω λω λ∞ ∞∞ ′−−

−∞→

 ∂ ∂  = ⋅  ′∂ ∂    
∫  (2.7) 

Where ( ), ,i i ix y z is the receiving point, ( ), ,j j jx y z  is the disturbance point, i jx x x= − , i jy y y= − ,

i jz z z= − , in  is the normal direction at point ( ), ,i i ix y z  on the wing surface, jn  is the normal 

direction at point ( ), ,j j jx y z on the wing surface. In the non-coplanar lifting surface, in , jn  is an 

arbitrary vector in space, determined in the local coordinate system of each respective grid. 
in

∂
∂

, 
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∂
∂

 is related to the shape of the wing surface in space (curvature deformation, torsional 

deformation). 
The key modification for surface dipole lattice lies in determining the boundary conditions. 
Surface dipole lattice requires computing the normal induction velocity (normal induced velocity) 
of the unit mesh to determine the boundary conditions. Traditional methods only focus on the 
vertical downwash velocity in the z-direction. The modes related to the boundary conditions also 
need modification. When introducing modes, the geometric deformation and structural dynamic 
characteristics of the highly deformed wing should be fully considered. Assuming the structure 
undergoes small amplitude vibrations around its equilibrium position of large static deformation, 
the concept of natural frequency and mode from linear system vibration theory can still be applied. 
This analysis is referred to as the "quasi-mode" method. 
Due to the influence of large deformation, the wing cannot be approximated to move near the x-y 
plane. Therefore, the boundary conditions of the surface dipole method are fundamentally different 
from the simplified methods used in the flat plane scenario. 
n represents the normal vector to the surface S(x, y, z) = 0, and (n, x), (n, y), (n, z) are the angles 
between the normal and the coordinate axes. Assuming the surface motion takes the form of 

i tS Se ω= , then the normal velocity of the object's motion is given by: 

 ( )b
b

= cos (n,x)+ cos (n,y)+ cos (n,z)n
x y zU
t t t
∂ ∂ ∂     

     ∂ ∂ ∂     b b

 (2.8) 

The more general boundary conditions for the surface are obtained as: 

 ( )H
H

fki f q
b n

∂
= +

∂
w  (2.9) 

Where /b
n V∞w = U  is the projection of the induced velocity of the grid on the normal vector, and 

Hf  represents the normal modal vector at the control point after specific nonlinear static 
deformations of the wing, namely, the "quasi-mode" vector obtained based on geometric nonlinear 
effects. In the surface dipole lattice method, the modal vectors Hf  already include information 
about the wing's nonlinear static deformations. Similar to the planar dipole lattice method, the 
aerodynamic calculation in the surface dipole lattice method can also be expressed as follows: 

 21
2f fQ V A qρ=  (2.10) 

 1( )T H
f P f H

f kA f SD i f
n b

− ∂
= +

∂
 (2.11) 

Where fD  is the spatial surface dipole influence coefficient matrix, and Pf  is the "quasi-mode" 
vector at the aerodynamic action point after nonlinear static deformations of the wing. Solving the 
above equation yields the pressure difference on the curved lifting surface. 
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2.3 Interpolation methods for curved wing structures/aerodynamics 
Due to the possibility of non-coincident nodes between the aerodynamic grid and the structural 
mesh, it is necessary to establish a spatial curved surface three-dimensional interpolation method 
to achieve coupling between aerodynamics and structure. This facilitates the establishment of a 
structural-aerodynamic coupling mechanism for static and dynamic aeroelastic analysis. 
Following this approach, traditional Thin Plate Splines (TPS) methods can be extended to multi-
dimensional space, making them applicable for transferring motion parameters and load 
information across the structure/aerodynamic interface of highly deformed curved wing 
configurations. 

Let { }1, , , ( 1, 2, , )N
i i iX x x I n= =  be the N-dimensional vector in n given vectors, and its 

corresponding multi-dimensional function { } ( )1, , , 1, 2, ,M
i i iW w w i n= =  , representing a vector 

in M-dimensional space. For each component of W, we establish the following interpolation 
function: 

 2 2
1 1 1

1 1
( ) ln( )

N n
k k k k

p p N i i i
p i

w c c x c r r ε+ + +
= =

= + + +∑ ∑X  (2.12) 

Where ( )
2

2

1

N

i p pi
p

r x x
=

= −∑ are the basis functions, and 1 2 1, N nc c c + + are the undetermined 

coefficients. For a general flat surface, 210 ~ 1ε −= , and for surfaces with singularity, it can be 
chosen as 5 610 ~ 10− − . pix represents the p-th coordinate of the i-th node. 

The undetermined coefficients are determined by the following system of equations: 

 1
1

0
n

k
N i

i
c + +

=

=∑  (2.13) 

 
1

1
0 1,2, ,

N i

n
k p

i
i

c x p N
+ +

=

= =∑ ，  (2.14) 

 2 2
1 1 1 1

1 1
ln( ) 1,2, , ,

N n

p pj N i ji ji j N j j
p i

c c x c r r h c W j n i jε+ + + + +
= =

+ + + + = = ≠∑ ∑ ，  (2.15) 

In the equation above, ( )
2

2

1

N

ji pj pi
p

r x x
=

= −∑ , jh represents the weighting coefficients corresponding 

to the j-th node, which are predetermined by the calculator. When all weighting coefficients are 
set to zero, the fitted curve, surface, or hypersurface precisely passes through all the function values 
of the nodes. When all weighting coefficients are set to a non-zero value, it exhibits the properties 
of the least squares method. When weighting coefficients take various values, it allows for 
approximation curves, surfaces, or hypersurfaces with different degrees of fitting. 
Applying the interpolation theory mentioned above to the coupling of aeroelastic 
structures/aerodynamic interfaces allows for the transfer of motion information from the structural 
interface to the aerodynamic interface. Considering the three-dimensional nature of structural 



IFASD-2024-010 

 7 

configurations under large deformations, if the coordinates of n structural nodes are known as SX
and their deformation vectors as SU , we need to obtain the deformation vectors AU  corresponding 
to m aerodynamic grid nodes at point AX . Where: 

1 1 1S S S

S

Sn Sn Sn

x y z
X

x y z

 
 =  
  

  

1 1 1S S S

S

Sn Sn Sn

u v w
U

u v w

 
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  

  

1 1 1A A A
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An An An

x y z
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x y z

 
 =  
  

  

1 1 1A A A

A
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u v w
U

u v w

 
 =  
  

    

The interpolation function coefficient equation based on structural node coordinates is: 
 S SA C W=  (2.16) 

Where: 

1 2
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1 2
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( )2 20, lni ji ji jih b r r ε= = +  

( ) ( ) ( ) ( )2 2 22 , , 1,2, , ,ij Sj Si Sj Si Sj Sir x x y y z z i j n i j= − + − + − = ≠  

The displacement vector at the aerodynamic grid node can be expressed as: 

 1
A A S S SU A A W GU−= =  (2.17) 

Where G is the displacement interpolation matrix between structural nodes and aerodynamic nodes,  
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2.4 The force interpolation method 
Another significant issue in aeroelastic analysis is to transfer the load information from the 
aerodynamic interface to the structural interface. This process is known as force interpolation. In 
aeroelastic analysis, force interpolation does not rely on principles like static equivalence or 
deformation equivalence commonly used in structural analysis. Instead, it adheres to the principle 
of structural equivalence, which ensures that two equivalent sets of loads have equal virtual work 
on any possible virtual displacement of the structure. If the virtual displacement of the structure is 

SδU , the virtual displacement of the aerodynamic interface is AδU , the load on the aerodynamic 
interface is AF , and the equivalent load on the structural interface is SF , then they satisfy the 
relationship: 

 T T
A A S SFδ δ=U U F  (2.18) 

Where the interpolation relationship between the aerodynamic and structural interfaces' 
displacements is satisfied, i.e., A SGδ δ=U U , upon substitution into the equation considering the 
arbitrariness of virtual displacements, we obtain: 

 T
S AG=F F  (2.19) 

2.5 Geometric Nonlinear Aeroelastic Analysis 
Based on the above assumptions and principles, we can iteratively compute the deformation 
displacements for a given flight state. Utilizing the linearized modes corresponding to this state, 
we conduct flutter analysis. If the flutter results significantly deviate from the flight speed of this 
state, we need to reconsider the selection of the freestream velocity for nonlinear static aeroelastic 
computations and corresponding dynamic analyses near the equilibrium position. This process 
continues until the freestream velocity is relatively close to the flutter speed. The specific workflow 
is illustrated in Figure 3. 

 
Figure 3. Curved surface dipole lattice division 
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3 REFERENCE MODEL 
The simulation analysis in this study utilizes a large flexible wing model, as depicted in Figure 4. 
The wingspan of each individual flying unit is 1.96 meters, with a chord length of 0.1 meters. The 
mass of the wing structure is 1.187 kilograms. Detailed parameters refer to Table 1. 

 
Figure 4. The structural model diagram of the individual aircraft. 

Table 1 Structural Model Parameters 
Parameters Values Parameters Values 

Span Length/ m 1.960 Position of Main Beam 50% Chord Length 

Chord Length/ m 0.100 Modulus of Elasticity of 
Main Beam/ GPa 395.1 

Structural mass/ kg 1.187 Cross-section Size of 
Main Beam/ m 0.035×0.0015 

The composite flying vehicle model after connection is depicted in Figures 3 to 4. The 
connection adopts a hinge-type configuration, with a width set at 0.04 meters. Finite element 
modeling primarily employs RBE2 elements and spring elements for simulation purposes, and 
the spring elements are assigned a stiffness of 2000 N/m. 

 

Figure 5. The structural model diagram of the two-
body aircraft. 

 

Figure 6. The structural model diagram of the 
three-body individual aircraft. 

The results of the natural mode analysis for the individual flying unit are depicted in Figure 7. To 
enable free separation and combination in near-space environments, the individual flying unit itself 
belongs to the category of high aspect ratio flexible aircraft. This implies lower stiffness and elastic 
mode frequencies, suggesting significant deformation of the aircraft even when flying solo. 

 
1st bending 

 
2nd bending 
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1st torsion 

 
1st in-plane bending 

Figure 7. Primary elastic modal shapes of single aircraft 

The primary mode shapes of the composite unmanned aerial vehicle formed by the combination 
of two aircraft and three aircraft are illustrated in Figures 8-9. It is evident that the modal 
frequencies of the aircraft decrease significantly after combination, reaffirming the necessity of 
aeroelastic property analysis for this configuration. The main modal frequencies of each composite 
flying unit are listed in Table 2. 
 

 
1st bending 

 
1st in-plane bending 

 
2nd bending 

 
1st torsion 

Figure 8. Primary elastic modal shapes of two-body aircraft 

 
1st bending 

 
2nd bending 
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1st in-plane bending 

 
1st torsion 

Figure 9. Primary elastic modal shapes of three-body aircraft 

Table 2 Structural Model Parameters 

Parameters 
Single aircraft 2-body aircraft 3-body aircraft 

Mode 
Order 

Frequency 
(Hz) 

Mode 
Order 

Frequency 
(Hz) 

Mode 
Order 

Frequency 
(Hz) 

1st bending 7 2.312 7 0.583 7 0.181 

2nd bending 8 6.385 8 1.577 8 0.460 

1st in-plane 
bending 14 53.86 13 13.600 14 5.993 

1st torsion 13 46.57 17 23.441 19 15.630 

4 AEROELASTICITY ANALYSIS OF MBA 

4.1 The initial flow velocity obtained from linear aerodynamic-elastic analysis 
The initial flow velocity iv  for iterative computation is determined through linear analysis. Taking 
the analysis process of a single aircraft as an example, a uniform grid of 60×6 cells is established 
along the spanwise and chordwise directions of the wing. The grid division of the aerodynamic 
surface of the wing is shown in Figure 10. To simplify the calculation, the grid division must 
remain consistent with the static aeroelastic analysis process. 

 
Figure 10 Aerodynamic Surface Model of the Single Aircraft Wing 

The aerodynamic elastic model is obtained through interpolation between the aerodynamic surface 
model and the structural model. The initial flow velocity for the current state is taken as the flutter 
speed for that state. The interpolation results of the primary mode linear aerodynamic elastic model 
for the single aircraft, along with the flutter results, are illustrated in Figures 11-12. The flutter 
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speed is 38.120 m/s, with a flutter frequency of 13.976 Hz. The flutter mode exhibits coupling 
between the second-order bending mode and the first-order torsional mode. 

 
1st bending 

 
1st torsion 

Figure 11. Interpolation results of the primary mode linear aerodynamic elastic model 

 
v-g 

 
v-f 

Figure 12. Linear flutter characteristics of single aircraft 

The flutter results for the composite UAV obtained through the same initial flow value calculations 
are presented in Figure 13 and Table 3. The flutter modes observed in all cases exhibit a coupling 
flutter between the first-order torsional mode and a certain bending mode. From the linear 
calculation results, we can preliminarily infer that the flutter speed will decrease with an increase 
in the number of aircraft in the combination. 

 
Figure 13. Flutter Speeds for Various Numbers of MBA 

Table 3 Flutter characteristics for Various Numbers of MBA 
Parameters Flutter Speed (m/s) Flutter Frequency (Hz) Mode Order 

Single aircraft 38.120 13.976 1st torsion (13th mode) 

2-body aircraft 36.961 11.853 1st torsion (17th mode) 

3-body aircraft 24.808 8.936 1st bending (7th mode) 
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4.2 Solving for the ‘quasi-modes’ at the static equilibrium position 
At a 0.01° angle of attack and under the initial flow velocity conditions, the iterative convergence 
process of the vertical displacement of the wingtip is illustrated in Figure 14. In the initial 
calculation step, the wing is in its initial planar configuration, with no additional angle of attack 
induced by elastic deformation, resulting in relatively minor aerodynamic loads. However, in 
subsequent iterative calculations, the elastic angle of attack increases, and the effect of additional 
aerodynamic loads becomes significant. Consequently, both the vertical and spanwise 
displacements of the wing continuously increase until reaching convergence. Taking the single-
aircraft scenario as an example, with the convergence condition set at 1 mm, the vertical 
displacement of the wing converges to 205.089 mm, approximately 10% of the wing's span. 

 
Single aircraft 

 
2-body aircraft 

 
3-body aircraft 

Figure 14. Convergence process of vertical displacement 

Figure 15 presents the computed results of the vertical displacements of the main beams for each 
configuration under this operating condition. For comparison, calculations are also performed 
using a nonlinear finite element-based static aeroelastic analysis method. The node displacements 
of the main beams computed by both methods exhibit minimal differences, indicating the 
rationality and accuracy of the static aeroelastic analysis method based on the nonlinear structural 
reduction model. 

 
Single aircraft 

 
2-body aircraft 
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3-body aircraft 

Figure 15. The vertical displacements of the main beams under static aeroelastic equilibrium 

4.3 The initial flow velocity obtained from linear aerodynamic-elastic analysis 
Under the initial flow velocity condition, linearized quasi-modes at static equilibrium positions for 
each configuration are obtained, as depicted in Figure 16. It can be observed that the form of 
linearized modes undergoes a noticeable transformation, with some linearized modes 
encompassing characteristics of other vibration modes. These factors contribute to the variability 
of nonlinear flutter characteristics with differing wing loading and deformation. 

 
1st bending 

 
1st torsion 

single aircraft 

 
1st bending 

 
1st torsion 

2-body aircraft 

 
1st bending 

 
1st torsion 

3-body aircraft 

Figure 16. Interpolation results of the primary mode linear aerodynamic elastic model 
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After multiple iterative calculations, the final flutter characteristics of each combined 
configuration at the static equilibrium state are determined, as shown in Figure 17 and Table 4. 
Compared to the linear calculation results, both the single aircraft and the combination of two 
aircraft occur flutter at lower speeds. This is because the static deformation state alters the original 
configuration of the aircraft, increasing its inherent flexibility. Additionally, some linearized 
modes contain other forms of vibrational characteristics, both factors contributing to the reduced 
flutter speed of the combined structure. 

 
v-g 

 
v-f 

single aircraft 

 
v-g 

 
v-f

2-body aircraft 

 
v-g 

 
v-f

3-body aircraft 

Figure 17. Nonlinear flutter characteristics 
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Figure 18. Flutter Speeds for Various Numbers of MBA 

Table 4 Flutter characteristics for Various Numbers of MBA 
Parameters Flutter Speed (m/s) Flutter Frequency (Hz) Mode Order 

Single aircraft 31.855 11.581 1st torsion (11th mode) 

2-body aircraft 29.461 10.853 1st torsion (17th mode) 

3-body aircraft 13.074 3.804 10st bending (18th mode) 

5 CONCLUSIONS 
To enhance the accuracy of flutter characteristics computation for composite configurations, we 
propose a quasi-modal modeling and analysis procedure integrating updated Lagrangian 
methodology and surface dipole grid method. This approach not only acknowledges the impact of 
nonlinear elements on aeroelastic property analysis but also circumvents the intricate solving 
process of high-dimensional nonlinear systems. Our findings indicate: 
1. As the number of unmanned aircraft integrated into the composite increases, the composite's 
flexibility escalates, precipitating a substantial decrement in flutter speed. Notably, when three 
unmanned aircraft are amalgamated, the flutter speed dwindles to less than half of that of individual 
flying units. Hence, meticulous attention is warranted in composite configuration design to meet 
flutter-induced structural design prerequisites. 
2. Comparative analysis with results obtained under linear conditions reveals a reduction in flutter 
speed upon considering geometric nonlinear factors. Across the three configurations scrutinized 
herein, flutter speed experiences an approximate 20% decrease. Consequently, geometric 
nonlinear elements must not be disregarded in the analysis of aeroelastic properties for composite 
configurations. 
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