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Abstract: Every year, the air transportation market increases the requirements for aircraft 

performance in order to obtain greater profits. Satisfaction of this requirement is the main purpose 

for aircraft manufacturer. One of the ways to achieve this purpose is improving the design process 

by developing and implementing new approaches and tools for modelling different phenomena (in 

considered case – Aeroelastic phenomena) inherent to flight vehicles. 

The purpose of this report is to present a modern mathematical method that allows modelling static 

and dynamic Aeroelastic Phenomena by a symbolic operation, in contrast to the numerical 

methods that are widely used today. 

The theory of this method based on science analogies approach which allow to present interaction 

(considering 6 DOF) between aeroelastic forces in analytical formulation, using modern Computer 

Algebra System tools and as results exclude iteration calculations which inherent inversing and 

eigenvalue extraction of large dimension matrixes.  

Approach of this method based on reduced order modelling principle and main idea is presenting 

lifting surface (wing, blade, etc.) as a principal scheme which look as parallel, serial and star 

connection of three types of elements: aerodynamical, elastic and inertial. Each element describes 

by respective matrixes of parameters with maximum dimension of 6x6 for 6 DOFs (3 translations 

+ 3 rotations). 

Analysis is performing by transformation scheme (connection nodes condensation) and finding 

equivalent matrix of “Aeroelasticity” using recurrent equations for each type of connection 

(analogical with electrical circuit). Described method was validate by modelling: Wing load 

distribution, Divergence, Effectiveness of control surface and Flutter. 

Finally, gotten Math model describes dependences between design variables and aeroelastic 

characteristic in explicit symbolic form which allow performs wide fast parametric investigation 

at preliminary stage design. Additional this model will be useful for structure optimization process 

using analytical methods and for machine learning and will allow expand using artificial 

intelligence in aerospace structure design. 

1 INTRODUCTION 

In the highly competitive landscape of the global aviation industry, airline companies are 

continuously seeking aircraft with enhanced performance. As fuel prices fluctuate and 

environmental regulations become more stringent, the necessity for aircraft that can deliver 

superior performance while minimizing operational costs is paramount. This drive for increased 
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performance encompasses several factors, including fuel efficiency, payload capacity, range, and 

overall operational reliability. Equally important is the aspect of safety; aircraft must meet the 

highest safety standards which is required by aviation government. Therefore, aircraft 

manufacturers are under immense pressure to innovate and improve their designs to meet these 

evolving demands while maintaining or exceeding current safety standards. 

To achieve these stringent requirements, aircraft manufacturers are increasingly turning to 

innovative materials and advanced design concepts [1,2]. The use of composite materials, known 

for their strength and light weight, is becoming more prevalent in the construction of modern 

aircraft. Additionally, new aircraft layouts, such as braced wings and high aspect ratio designs, are 

being explored to enhance aerodynamic efficiency and performance [3, 4]. However, these 

approaches result in increased wing flexibility, posing significant challenges in the design process 

including Aeroelasticity as important scope which must be considered in preliminary or even better 

on conceptual stage design [5, 6, 7]. 

Modern information technologies enable the highly accurate analysis of strength, aerodynamics, 

and aeroelasticity for well-known flexible aircraft structures, where specific technical solutions 

have been established, since they based on solving differential equations using various numerical 

methods such as FEM and Fluid structure interaction (FSI) realized by  interchanging data between 

aerodynamic and structural solvers [8,9]. For these reasons the most known, high accurate tools 

applicable for final stage design to verification and validation applied decisions.  

 Consequently, there is a growing demand for the creation of new tools [10] and methodologies 

based on new paradigms and approaches to predict aircraft characteristics and perform MDO 

within aeroelastic effects that arise from advanced configurations at conceptual design stage [11]. 

The primary objective of this paper is to present a cutting-edge approach to the difficult problem 

of mathematically modeling the aeroelasticity phenomena inherent of atmospheric flight vehicles 

at the preliminary stage of aircraft design. This approach based on paradigm for modeling 

aeroelasticity phenomena. This approach is based on ROM [12] and calculation operations 

performed using tensor forms [13]. In source [14] was used the similar approach with using tensors 

to modeling flight dynamic of different air vehicle and in sources [15,16,17] tensor product model 

used for investigation of Aeroservoelasticity scope considering limited Degrees-of-freedom 

(DOF).  

Mentioned works shows that tensor modeling intersects with different disciplines and open wide 

opportunity to formalization entire aircraft model and incorporates multidisciplinary optimization 

techniques [18]. 

Additionally, technique presented in this paper have already been successfully applied  

to obtain critical speed of wing divergence [19], and was shown ability to perform 

multidisciplinary optimization in symbolic forms [20], by Lagrange multipliers. 

Proposed shift paradigm of analysis from numerical calculation to symbolic operation with 

applying modern Computer algebra systems (CAS) [21]. 

The present work is organized as follows. In section 2, described theoretical approach of presented 

methodology. In section 3 provided general models for analysis aeroelastic phenomena. Finally, 

the last section summarizes and concludes the article, and suggests research directions for future 

work. 
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2 TEORY OF THE METHODOLOGY 

2.1 General approach 

The main task of aeroelasticity is modeling the interaction of all the above-mentioned forces or 

their combinations depending on the aeroelastic phenomenon under consideration. Presented 

method, performs mathematical modeling of aeroelastic phenomena in a visual form using a 

schematic diagram of the interaction of aeroelastic forces, followed by its transformation and 

bringing to a certain form depending on the task being solved. 

 

Figure 1: Triangle and “star” of Aeroelasticity 

The basis of the method initially developed by Balabanov I.V [22] named as "Nodal condensation 

method" and use for analysis elastic frames of gyro device in three-dimensional space [23]. 

Based on the conducted research, the following algorithm for applying this method in the modeling 

of aeroelastic phenomena has been developed. Consider wing as one of the most important parts 

of the aircraft which undergoing aeroelastic effects. 

It is assumed that wing a regular structure, and it is permitted its division into a series of finite-

element sections. 

Each section, which is used for the element division, is represented as a node in the analysis 

diagram, with a corresponding number. Each node serves as a reference point where displacement 

and the acting or emerging force are subsequently determined. 

 

Figure 2: Wing section dividing  

Next step is creation of aeroelastic forces interaction scheme by following way. 
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Each finite element between sections [ 1]i −  and [ ]i  is replaced in the diagram by elements with 

specific designations according to their nature and impact on the formation of the aeroelastic 

properties of the entire object. In the general case, each section contains the following three types 

of elements, which characterize the influence of aeroelastic forces: 

- Elastic elements, which account for the emergence of elastic reaction forces and are 

mathematically described by the stiffness matrix 
[ , 1]i iC +

. 

- Inertial elements, which characterize the action of inertia forces and are mathematically described 

by the inertia matrix 
[0, ]iB . 

- Aerodynamic elements, which model the influence of aerodynamic forces. This influence is 

described by the aerodynamic operator 
[0, ]iA , also known as the aerodynamic influence matrix or 

aerodynamic stiffness. 

 

Figure 3: Typical elements using for aeroelasticity modeling 

Forces, which are conditionally constant and independent from wing deformation as following 

examples: weight loads from fuel and structural elements, engine thrust loads and the component 

of lift force from the wing installation angles of attack. These forces are gathered into a node 

adjacent to the finite element section and are mathematically expressed as the vector of applied 

forces 
[ ]iQ . 

Thus, the discrete computational scheme for an idealized wing represents an ordered system 

consisting of loaded nodes connected to each other by the corresponding inter-node links. The 

elastic properties are represented as a set of sequentially connected elastic elements, while the 

aerodynamic and inertial forces are modeled by parallel connection of the respective elements at 

the nodes, linking them to a notional base. It should be noted that the notional base for the 

aerodynamic and inertial elements implies that the corresponding forces, unlike the elastic forces, 

arise outside the structure. 
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Figure 4: Example of wing dividing for three elements   

 

Figure 5: Step approximation of wing deformation. 
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It is worth noting that the deformation pattern with this representation is stepwise (Figure 

5), and the greater the degree of discretization, the more accurately the model corresponds to the 

real behavior of the elastic wing. On the other hand, with increasing discreteness, the number of 

variables increases, which in turn leads to the cumbersomeness of the mathematical model. 

Coming from this, we can conclude that the degree of detail must be selected from the conditions 

of maintaining a balance between accuracy and the number of design variables, depending on the 

type of problem being solved and the design stage.  

2.2 Mathematical description of the elements of the design scheme 

2.2.1 Acting forces and resulting displacements in the node of the base finite element. 

At each node of the design scheme, a load can be simultaneously applied and generated, described 

using vectors of columns of generalized forces. 

Let's describe a system of forces and moments acting at a point 
eO and defined in the SC 

e e e eO x y z

. 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

{ }[ ] { }[ ] { }[ ] { }[ ] { }[ ] { }[ ] { }[ ][ ]n n n n n n n T

e m e m x e m y e m z e m x e m y e m zQ P P P M M M=  (1) 

The following notation is introduced here: 

( ) ( ) ( ) ( ) ( ) ( )

{ }[ ] { }[ ] { }[ ] { }[ ] { }[ ] { }[ ], , , , ,n n n n n n

e m x e m y e m z e m x e m y e m zP P P M M M - components of the column vector 

acting at m the ith node of the generalized force, describing the projections of force 
( )

[ ]

n

mP and 

moment 
( )

[ ]

n

mM onto the corresponding axes of the base coordinate system
e e e eO x y z  

 

Figure 6: Force vector components 

In turn, the movements of the nodes of the design scheme are described using column vectors of 

generalized movements. For example, the column vector of a generalized node displacement m
will look like 

 { }[ ] { }[ ] { }[ ] { }[ ] { }[ ] { }[ ] { }[ ][ ]T

w m w m x w m y w m z w m x w m y w m zq u u u   =   (2) 

Where: 
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{ }[ ] { }[ ] { }[ ] { }[ ] { }[ ] { }[ ], , , , ,w m x w m y w m z w m x w m y w m zu u u    - components of the column vector of the 

generalized displacement, describing the projections of the linear { }[ ]w mu and angular { }[ ]w m

displacement m of the node onto the corresponding axes of the base coordinate system 
w w w wO x y z

. 

 

Figure 7: Components of a displacement vector 

2.2.2 Mathematical model of restoring elastic forces of a basic finite element. 

Since real structures are a spatial elastic system with cross connections between degrees of 

freedom, for the mathematical representation of stiffness we write a system of equations to 

determine the elastic reaction forces caused by movement along each of the 6 degrees of freedom. 

All forces and displacements are defined in the CS 
c c c cO x y z . 

 

Figure 8: Elastic reactions in a spatial element 
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    (3) 

For convenience, we introduce the following numbering of the components of the generalized 

displacement vector q corresponding to linear and angular displacements: 

  1 2 3 4 5 6

Т Т

x y z x y zq u u u q q q q q q   = =   (4) 

In a similar way, we introduce the numbering of the components of the vector of generalized forces 

Q corresponding to the acting or emerging forces and moments: 

  1 2 3 4 5 6

Т Т

x y z x y zQ P P P M M M Q Q Q Q Q Q = =   (5) 

This system of equations can be written in matrix form: 

 Q C q=   (6) 

Where 

q  - Vector of current displacements; 

Q  - Vector of elastic reaction forces; 

C  - stiffness matrix (a square matrix of dimensions (6x6), which unambiguously and completely 

describes the stiffness characteristics of the elastic element under consideration in three-

dimensional space. 

 

1,1 1,2 1,3 1,4 1,5 1,6

2,1 2,2 2,3 2,4 2,5 2,6

3,1 3,2 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

5,1 5,2 5,3 5,4 5,5 5,6

6,1 6,2 6,3 6,4 6,5 6,6

c c c c c c

c c c c c c

c c c c c c
C

c c c c c c

c c c c c c

c c c c c c

 
 
 
 

=  
 
 
 
  

  (7) 

ijc ( , 1,6i j = ) - elements of the stiffness matrix. Each element 
ijc is numerically equal to the force 

arising in the i -th direction under the action of a unit displacement in the j -th direction.  

 
1, 0( , )ij i

j k

c Q
q Q k k j

=
= =  

 (8) 
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2.2.3 Aerodynamic forces of the basic finite element. 

Let us introduce the definition of aerodynamic operators by analogy with elastic operators. 

The aerodynamic forces created by the lifting surface, in turn, depend on a number of parameters, 

one of which is the derivatives of the aerodynamic coefficients with respect to the angle of attack 

and angle of slip. 

Let's write down the matrix of the most general aerodynamic derivatives defined in a 

coupled coordinate system 
A A A AO x y z . 

 

0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

x x

z z

x x

y y

z z

c c

c c

m m

m m

m m

 

 

 

 

 

 
 
 
 
 
 
 
 
  

 (9) 

It is also worth noting that the content of the matrix may vary depending on the feasibility 

of using a particular coefficient in solving a particular problem. 

 
Figure 9: Aerodynamic element 

By multiplying the matrix (9) by the magnitude of the dynamic pressure 

2

2

V 

and the 

characteristic area of the load-bearing surface, S we obtain a matrix of derivatives of 

aerodynamic forces and moments A  (10).   

 

 

1,4

1,6

2
3,4

4,6

5,4

6,6

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 20 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

x

y

z

x

y

z

a c

a c

a c V
А S

a m

a m

a m















  
  
  
   

= − = −    
  
  
  

      

 (10) 
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Matrix 
,i jA a =   ( , 1,6i j = ) size 6x6 is a second-rank tensor, which in the general case describes 

the aerodynamic effect on the elastic wing . It is worth noting that the minus sign ( )− in front of 

the matrix components is indicated for the correct application of the rules of mathematical 

transformation of the structural diagram. 

ija ( , 1,6i j = ) - elements of the aerodynamic influence matrix. Each element 
ija is numerically 

equal to the increase in aerodynamic force or moment in the i -th direction with a unit change in 

the aerodynamic angle relative to the j -th direction. 

2.2.4 Generalized inertial forces of the basic finite element. 

For convenience, we assume that the axes of the base local coordinate system 
B B B BO x y z

coincide with the main central axes of inertia i of the th finite element section of the wing. 

 

Figure 10: Inertial element 

Then the inertia matrix B written in operator form , when defined in the base coordinate 

system 
B B B BO x y z , will have the corresponding diagonal form: 

 

2

2

2

2

2

2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

xx

yy

zz

m p

m p

m p
B

J p

J p

J p

 
 

 
 

= −  
 

 
 

  

  (11) 

m  and xxJ , 
yyJ , zzJ - mass and corresponding principal central moments of inertia i -th final 

element; 
d

p
dt

 - differentiation operator. 

Matrix ,i jB b =   ( , 1,6i j = ) size 6x6 is a tensor rank of two, which in the general case describes 

the influence of inertial forces when modeling the phenomena of dynamic aeroelasticity. It is also 

worth noting that the minus sign (-) in front of the matrix components (as well as for the matrix A
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) is indicated for the convenience of a mathematical description of the rules for transforming the 

block diagram. 

ijb ( , 1,6i j = ) - elements of the inertia matrix. Each element 
2

ijb p is numerically equal to the 

increase in inertial force or moment in the i -th direction with unit acceleration relative to the j -th 

direction. 

2.3 Coordinate systems 

Since when studying the wing we are dealing with a spatial system, and initially the 

parameters of each component of the structural diagram are given relative to its own local 

coordinate system, the main condition for a correct mathematical description of the unit under 

study is to bring the design diagram to a single reference system, by redefining mathematical 

operators from local coordinate systems into a single global coordinate system using formulas (15)

- (19). 

2.3.1 Local coordinate systems 

Depending on the choice of coordinate system (CS), matrix operators describing the 

properties of aeroelastic forces will change not only the numerical values of their elements, but 

also the structure of the matrix itself. 

To organize the design scheme in all similar finite element sections, local basic coordinate 

systems (Figure 11) are introduced according to the following principle: 

- for the wing profile elements that generate lift, coordinate systems are introduced 

a a a aO x y z , the origins 
aO of which lie at the aerodynamic center. 

a a a aO x y z . 

- for the elastic elements of the wing, coordinate systems are introduced 
c c c cO x y z , the 

origins cO of which lie in the corresponding centers of rigidity. c c c cO x y z (). 

- for the inertial elements of the wing, coordinate systems are introduced 
b b b bO x y z , the 

origins bO of which lie in the corresponding centers of mass. 

 

Figure 11: Coordinate systems of the basic finite element 
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2.3.2 Formation of a transition matrix between coordinate systems 

The position of characteristic points (centers of pressure, stiffness, mass and the point of 

application of the force vector), coinciding with the origin of the local coordinate system (in the 

general case 
w w w wO x y z ) , relative to the global coordinate system 

0 0 0Ox y z is characterized by the 

coordinates of the origin of the global coordinate system 
0 0 0 0O x y z relative to the center of the local 

coordinate system 
, , ,c b a iO - ( , , , )

0

c b a i

xr , 
( , , , )

0

c b a i

yr  and ( , , , )

0

c b a i

zr  

In turn, these parameters form an skew-symmetric transition matrix between coordinate 

systems 
w w w wO x y z and 

0 0 0 0O x y z with linear displacement, which has the following structure: 

 

( ) ( )

0 0

( ) ( )

0 0 0

( ) ( )

0 0

0

0

0

w w

z y

w w

w z x

w w

y x

r r

R r r

r r



 −
 

= − 
 − 

 (12) 

The angular position of the axes of the local coordinate system 
w w w wO x y z relative to the global 

coordinate system 
0 0 0Ox y z will be characterized by the matrix of direction cosines

0wD  

 

0 0 0

0 0 0 0

0 0 0

cos( ) cos( ) cos( )

cos( ) cos( ) cos( )

cos( ) cos( ) cos( )

w w w

w w w w

w w w

x x x y x z

D y x y y y z

z x z y z z

  

  

  

 
 
 

=  
 
 
 

 (13) 

where the elements of the matrix are the cosines of the angles between the corresponding axes of 

the local ( 
w w w wO x y z ) and global ( 

0 0 0Ox y z ) coordinate systems. 

The skew-symmetric matrix 
0wR and the matrix of direction cosines 

0wD form a coordinate 

transformation matrix 
0w that allows the transition from the local base coordinate system ( 

w w w wO x y z ) to the global one ( 
0 0 0Ox y z ), 

 0 3,3

0

0 0 0

w

w

w w w

D O

R D D

 
 =  

 
  (14), 

where 3,3O is a zero matrix of size (3x3). 

Then the determination of the vector of generalized forces in the new coordinate system 
0 0 0 0O x y z

is carried out according to the following formula: 

 
( ) ( )

{0}[ ] 0 { }[ ]

n n

m e e mQ Q=     (15) 

- the superscript ( n ) indicates the number of this generalized force 

- in subscripts { }e and [ ]m respectively indicates the number of the base coordinate system 

e e e eO x y z in which this generalized force is defined and the number of the node in which this 

generalized force acts. 

It should also be noted that the generalized movements of nodes 
{0}[ ]sq ( 1, )s n=  The main 

system is defined in a global coordinate system 0 0 0 0O x y z . In this case, the generalized 
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displacement m of the th node 
{0}[ ]mq and 

{ }[ ]w mq , defined in the global 
0 0 0 0O x y z and local 

w w w wO x y z coordinate systems, are related by the following expression: 

 { }[ ] 0 {0}[ ]

T

w m w mq q=     (16) 

For a stiffness matrix defined in the local coordinate system 
c c c cO x y z , 

( )

{ }[ , ]

k

c n mC which describes the 

properties of k the th elastic element located between n the th and m th nodes, the transition to the 

global coordinate system 
0 0 0 0O x y z is carried out in accordance with the following formula: 

 
( ) ( )

{0}[ , ] 0 { }[ , ] 0

k k T

n m c c n m cC C=      (17) 

where 
0c is the coordinate transformation matrix, described by the expressions (12)- (14). 

By analogy with the stiffness matrices, the determination of the matrices of aerodynamic 

influence and inertia in the global coordinate system is carried out using the formulas (18)and (19)

. 

For the aerodynamic influence matrix: 

 
( ) ( )

{0}[0, ] 0 { }[0, ] 0

k k T

m a a m aA A=      (18) 

For the inertia matrix: 

 
( ) ( )

{0}[0, ] 0 { }[0, ] 0

k k T

m b b m aB B=      (19) 

2.4  Analysis of the structure of the design scheme and its recurrent transformation. 

2.4.1 General description 

The essence of presented method is the sequential transformation of the main system into 

equivalent systems with fewer count of nodes. To do this, it is necessary to determine the main 

system that models the interaction of all structural elements and generalized forces, by bringing 

all components of the structural diagram to a single frame of reference. 

Consider the basic finite element shown in Figure 12. The generalized finite element 

corresponds to a basic fragment of the design scheme, consisting of elastic, aerodynamic and 

inertial elements (described by matrices C , A  and B ), connecting i the node , respectively, with 

the previous ( 1i − ) node , or with a general ground, and a vector of generalized forces 
[ ]iQ . 

Based on the principle of scientific analogies, it is possible to draw a parallel of similarities 

between the presented generalized fragment of the design diagram and the circuit diagram of the 

electrical circuit. The principal interaction scheme circuit as a whole is subjected to similar 

methods of analysis as when calculating an electrical circuit by transforming the circuit diagram, 

excluding nodes and finding equivalent resistances. 

The proof of the use of this approach was used earlier in the source [23]to calculate spatial 

elastic systems using the example of an elastic suspension of a gyroscope. This method is called 

the Nodal Condensation Method (NCM), the essence of which is the sequential transformation of 

the main system into equivalent elastic systems with fewer nodes. In general, NCM serves as a 

theoretical basis for current method. The main distinctive feature is the presence of different types 

(elastic, aerodynamic, inertial) structural elements that make up the design scheme. 
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Figure 12: Transformation of the structural diagram based on single section which undergoing elastic, aerodynamic 

and inertial forces. 

It is obvious that the element 
[0, ]iB and 

[0, ]iA are connected in parallel and element 
[ 1, ]i iC −

 with serial 

connection, and the equivalent inter-node connection after transforming the circuit, by analogy 

with the expression, is determined by the following equation: 

  
1 1 1

[0, 1] [0, ] [0, ] [ 1, ](( ) )i i i i iS B A C− − −

− −= + +  (20) 

Then the generalized displacement of node is defined as: 

 
1

[ 1] [0, 1] [ 1]( )i i i iq S Q−

− − −=   (21) 

2.4.2 Recurrent transformation of a structural diagram with many nodes. 

The recurrent transformation of the original system is a recalculation of the generalized 

matrices of internodal connections and nodal loads obtained by sequentially transforming the main 

system into equivalent systems with less count of nodes. Let us consider the most common 

structural diagram of the “star-delta” type for all cases (Figure 13). Then, during its transformation, 

which consists of eliminating l the th node, the generalized matrix 
{0}[ , ]( )k m lS and the node load 

{0}[ ]( )k lQ are determined by the following recurrent formulas: 

 
1

{0}[ , ]( ) {0}[ , ] {0}[ , ] {0}[ ] {0}[ , ]( )k m l k m k l l l mS S S S S−= +  (22) 

 
1

{0}[ ]( ) {0}[ ] {0}[ , ] {0}[ ] {0}[ ]( )k l k k l l lQ Q S S Q−= +  (23) 

where 
{0}[ ]lS is the sum of the matrices of all internodal connections directly adjacent to l -th node. 

 {0}[ ] {0}[ , ]

( )

l l s

s

S S


=  (24) 
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Here, when denoting generalized matrices
{0}[ , ]( )k m lS  and nodal forces 

{0}[ ]( )k lQ in the 

transformed system in lower indices after curly and square brackets containing the corresponding 

data (clause 2.3.2), an index is introduced in parentheses indicating the numbers of all nodes 

excluded in the transformed system under consideration. 

 

 
Figure 13: Transformation of the main system 

   

 

Figure 14: Parallel connection of aeroelastic elements 

Accordingly, based on the equation (22), the expression for determining the equivalent inter-node 

connection for a parallel connection has the following form 

 
[0,1] [0,1] [0,1] [0,1]S C A B= + +  (25)   
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Figure 15: Series connection of aeroelastic elements 

During the transformation, which consists of excluding a node 2 from the section of the diagram 

where elements 
[1,2]C and are connected in series 

[0,2]A , the expression for determining the 

equivalent elastic connection has the following form 

 
1 1 1

[0,1](2) [1,2] [0,2]( )S C A− − −= +  (26) 

To avoid the singularity of the matrix 
[0,2]A when inverting it, let’s rewrite the expression (26) in 

the following form: 

 
1

[0,1](2) [1,2] [1,2] [0,2] [0,2]( )S C C A A−=  +   (27) 

3 GENERALIZED MODELS FOR SOLVING AEROELASTICITY PROBLEMS 

3.1 Wing divergence 

To model the phenomena of static aeroelasticity, only elastic and aerodynamic forces are taken 

into account (Figure 16). Based on this, to determine the critical divergence speed, we present a 

structural diagram consisting only of elastic and aerodynamic elements Figure 16, which are 

described by matrices 
{0}C and 

{0}A defined in the global coordinate system 0 0 0Ox y z . It is also 

worth noting that to model this phenomenon of aeroelasticity, nodal forces are excluded from the 

scheme, since the phenomenon of divergence does not depend on the initial conditions. 
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Figure 16: Principal scheme for wing divergence analysis 

To determine the parameters of the critical divergence speed, it is necessary to transform the 

structural diagram by eliminating nodes, with the remaining node k acting as a characteristic point, 

and the equivalent internodal connection described by the aeroelasticity matrix [0, ](1, 1)k kS −  

determines the state of the system (wing) and is expressed by the following formula: 

 
1 1 1 1 1

[0, ](1, 1) [0,1] [0,1] [1, 1] [0, 1] [ 1, ] [0, ]( ) (((( ( ) ) ) ( ) ) ) ( )k k k k k k kS V C A V C A V C A V− − − − −

− − − −= + + + + +  (28) 

Since, according to the expression, (10) the aerodynamic operators A , and as a consequence, S

are functions of the oncoming flow velocity V , then with an increase in this speed, a moment 

may occur in the state of the system at which the determinant of the matrix [0, ](1, 1)k kS − will be equal 

to zero. The magnitude of this speed is critical. 

 [0, ](1, 1)det ( ) 0кр k kS V − =  (29) 

The expression (29)is the condition for the occurrence of wing divergence. Mathematically, 

this is explained by the fact that, according to the formula (39)provided (29), the generalized 

movement of the node k  tends to infinity at the slightest load, which is what characterizes the 

phenomenon of divergence of the load-bearing surface (wing). 

 
1

[ ] [0, ](1, 1) [ ](1, 1)k k k k kq S Q−

− −=   (30) 

It is also worth noting that the choice of a characteristic node to which the equivalent 

system is reduced does not affect the calculation result. 

Examples of a generalized calculation of the critical speed of wing divergence are 

described in the works [19].  
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3.2 Deformation of the aerodynamic surface undergoing by air loads 

Another possibility of using presented methos is to determine the elastic deformation of the wing. 

Let’s consider this problem as determining the parameters of the steady state of the system, without 

taking into account the parameters of this time domain process. With this approach, we refer the 

problem to the field of static aeroelasticity. 

Below is a generalized model for determining the wing deformation angles at the existing 

geometric wing twist. Geometric twist is expressed by a vector of values of the installation angles 

i of each section, specified in the global coordinate system. The aerodynamic load arising due to 

twist (without taking into account wing deformation) is defined as: 

 
[ ] [0, ]i i iQ A =   (31) 

The principal scheme for a 4-th element system is shown in Figure 17 

 

Figure 17: Principal scheme for static aeroelasticity analysis 

For calculations, the principal scheme is transformed in such a way that only one node remains 

The equivalent internodal connection [0, ]iS , obtained after transforming the diagram, describes the 

behavior of node i  under load depending on the aerodynamic and stiffness parameters of the entire 

wing. 

 

Figure 18: Principal scheme condensation for each node  

Obviously, the number of expressions depends on the degree of discretization and is equal to the 

number of circuit nodes (or sections of the wing span along the span). Expressions describing the 

equivalent stiffness at each node for a four-element circuit are defined as: 

 
1 1 1 1 1 1 1 1 1

01(2,3,4) 34 04 03 23 02 12 01 01((((( ) ) ) ) )S C A A C A C A C− − − − − − − − −= + + + + + + +  (32) 

 
1 1 1 1 1 1 1 1 1

02(1,3,4) 01 01 12 02 34 04 03 23[(( ) ) ] [((( ) ) ) ]S C A C A C A A C− − − − − − − − −= + + + + + + +  (33) 

 
1 1 1 1 1 1 1 1

03(1,2,4) 01 01 12 02 23 03 34 04[(((( ) ) ) ) ] [( ) ]S C A C A C A C A− − − − − − − −= + + + + + + +  (34) 
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1 1 1 1 1 1 1 1 1

04(1,2,3) 01 01 12 02 23 03 34 04(((((( ) ) ) ) ) )S C A C A C A C A− − − − − − − − −= + + + + + + +  (35) 

The next step for the adequacy of the mathematical model is to determine the equivalent force 

acting in a characteristic node with the rest excluded. The expression for the desired force is 

determined in accordance with the expression (23).  

The physical meaning of this expression is to describe the influence of aerodynamic, stiffness and 

geometric (distribution of twist angles along the span) parameters of the wing on the magnitude of 

the resulting aerodynamic force in a certain section of the wing. It is obvious that, just as for the 

equivalent stiffness, the number of expressions for the equivalent force corresponds to the number 

of nodes. 

 
1(2,3,4) 1 21 2 21 32 3 21 32 43 4Q Q K Q K K Q K K K Q= +  +   +     (36) 

 
2(1,3,4) 12 1 2 32 3 32 43 4Q K Q Q K Q K K Q=  + +  +    (37) 

 
3(1,2,4) 23 12 1 23 2 3 43 4Q K K Q K Q Q K Q=   +  + +   (38) 

 
4(1,2,3) 34 23 12 1 34 23 2 34 3 4Q K K K Q K K Q K Q Q=    +   +  +  (39) 

Where are the matrices K used for reduce the equations of formulas  and for the case of a 4-element 

wing are defined as: 

 1

12 12 01 01 12( )K C C A C −= + +  (40) 

 1 1 1 1 1 1

21 12 12 02 34 04 03 23( ((( ) ) )K C C A C A A C− − − − − −= + + + + +  (41) 

 1 1 1 1

23 23 23 01 01 12 02( (( ) ) )K C C C A C A− − − −= + + + +  (42) 

 1 1 1 1

32 23 23 03 34 04( ( ) )K C C A C A− − − −= + + +  (43) 

 1 1 1 1 1 1 1 1 1

34 34 34 01 01 12 23 02 23 03( ((( ) ) ) ) ) )K C C C A C C A C A− − − − − − − − −= + + + + + +  (44) 

 1

43 34 34 04( )K C C A −= +  (45) 

The displacement of each node during wing deformation is defined as: 

 
1

1 01(2,3,4) 1(2,3,4)q S Q−=   (46) 

 
1

2 02(1,3,4) 2(1,3,4)q S Q−=   (47) 

 
1

3 03(1,2,4) 3(1,2,4)q S Q−=   (48) 

 
1

4 04(1,2,3) 4(1,2,3)q S Q−=   (49) 

Now let's express the force acting in the i -th node in the form 
0i i iQ A =  , where is 

i the angle 

of geometric twist on the i -th section of the wing and write down the (46) – (49) equations in 

expanded form as following: 

1 1 1 1
011 01 01 1 01 21 02 2 21 32 03 3 01 21 32 43 04 4q S A S K A S K K A S K K K A   − − − −=   +    +     +       (50) 
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 1 1 1 1
022 02 12 01 1 02 02 2 32 03 3 01 32 43 04 4q S K A S A S K A S K K A   − − − −=   +   +    +      (51) 

 1 1 1 1
033 03 23 12 01 1 03 23 02 2 03 3 03 43 04 4q S K K A S K A S A S K A   − − − −=     +    +   +     (52) 

1 1 1 1

4 04 34 23 12 01 1 04 34 23 02 2 04 03 34 03 3 04 04 4q S K K K A S K K A S A K A S A   − − − −=      +     +     +    (53) 

 

These matrix equations are integral mathematical models describing the movements of a certain 

section of the aerodynamic surface in the air flow, and are functions of the aerodynamic and elastic 

characteristics of the wing. 

3.3 Efficiency of the control surface of an elastic wing 

To study the basic physical laws affecting the effectiveness of ailerons on an elastic wing, 

consider a three-element, one-dimensional (twist only) idealized wing model presented in 

 

 

 

 

Figure 19: Idealization of the wing for the aileron reverse speed definition 

The aileron has the ability to deviate by an angle 
a from the static equilibrium position 

of the wing. If we now assume that the wing compartment is rigidly fixed, then when the aileron 

is deflected downward, the lift force increases, and the resulting increase in lift force is applied 

behind the line of wing foci. 
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Figure 20: Principal scheme according the aileron reverse speed definition 

If now the additional force 
[3] ( )z aP  is moved to the focus, then at the same time it is 

necessary to apply a negative aerodynamic moment 
[3] ( )x aM  , tending to rotate the elastic wing 

in the direction of decreasing the angle of attack by the deformation angle 
[ ]i x , determined in each 

i section. As a result, we obtain a decrease in the total increase in lift force 
zP on the elastic wing 

console. The total increase in the lifting force of the console will be determined by the formula: 

 [3] [3] [3] [2] [2] [1] [1]( ) ( ) ( ) ( )z z a z x z x z xP P P P P    = − − −  (54) 

The moment 
[3] ( )x элM  is proportional to the square of the flow velocity, while the 

elastic restoring moment does not depend on the speed. Consequently, with an increase in flow 

speed, the effectiveness of the aileron in terms of the increase in lift force decreases and at the so-

called critical speed of aileron reverse, their effectiveness is zero, i.e., the total lift force remains 

unchanged. 

 0zP =   (55) 

In this case, the increase in lift force when the aileron deflects is equal to the total 

decrease in lift force in each section due to the deformation angle. 

 
[3] [3] [3] [2] [2] [1] [1]( ) ( ) ( ) ( )z a z x z x z xP P P P   =  + +   (56) 

The dependencies can be represented analytically in a fairly simple form. And the change 

in the increase in lift force due to the deformation of the elastically suspended wing compartment 

when the aileron is deflected by an angle 
эл is determined by the formula 

 
[ ] [ ] [0, ] [ ]( ) , 1,3i z i x i i xP A i  =  =   (57) 

The corresponding deformation angle i of the section is defined as: 
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1

[ ] [0, ] [ ]i x i i xS M −=    (58) 

and 
[ ]i xM and 

[0, ]iS are determined according to (21) based on the material presented above 

The effectiveness of ailerons at speeds below the critical speed and R  can be express using 

the efficiency coefficient, which has the following form: 

 
[3]

100%
( , )

( )

z

z

R

a

P C A

P









=  (59) 

3.4 Simulation of flutter 

Flutter refers to the phenomena of dynamic aeroelasticity, where the state of the system is 

influenced by all three types of forces (elastic, aerodynamic, inertial). Then the block diagram 

includes all three elements. 

 

Figure 21: Structural diagram of dynamic phenomena of aeroelasticity.   

We transform the diagram to a form with one internodal connection, which is described by the 

aeroelasticity matrix 
[0, ](1.. 1)k kS −

. 

 

 1

[ 1, 2] [ 2, 1] [ 1,0][ 1,0](1, 2) [ 2,0](1, 3) [ 2,0](1, 3)
( ) ,k k k k kk k k k k k

S C S C S A−

− − − − −− − − − − −
= + +  (60) 

 1

[ 2, 3] [ 3, 2] [ 2,0] [ 2,0][ 2,0](1, 3) [ 3,0](1, 4) [ 3,0](1, 4)
( )k k k k k kk k k k k k

S C S C S A B−

− − − − − −− − − − − −
= + + +  (61) 

 1

[3,0](1,2) [3,2] [2,0](1) [2,3] [2,0](1) [3,0] [3,0]( )S C S C S A B−= + + +  (62) 

 1

[2,0](1) [2,1] [1,0] [1,2] [1,0] [2,0] [2,0]( )S C S C S A B−= + + +  (63) 

After setting the determinant of the matrix to zero 



IFASD-2024-235 

 23 

 
[0, ](1.. 1)det 0k kS − =  (64) 

 

we obtain a characteristic polynomial of the following form: 

 1

0 1 1... 0n n

n nh h h h  −

−+  + +  +  =  (65) 

where 2p =  and n  is calculated as considered DOFs multiplying on count elements k. 

The coefficients of the characteristic polynomial h  are determined by the components of the 

matrices C , B and ( )A V , and characterize the state of the system depending on the ratio of elastic, 

inertial and aerodynamic forces. It is worth noting that, with constant elastic parameters and 

conditionally constant inertial characteristics, the main influence on the stability of the wing is 

exerted by aerodynamic loads depending on the speed of the oncoming flow V . 

The study of a system for stability is carried out using various stability criteria. 

 

3.5 MDO 

The developed mathematical method offers significant advantages, particularly in their ability to 

perform Global Sensitivity Analysis since in fact tensor modes which were gotten above are the 

Global Sensitivity Equation (GSE) [27, 24, 25]. This capability is crucial for multidisciplinary 

design optimization (MDO) in the field of aeroelasticity, especially during the preliminary design 

stage of aircraft wings. By creating GSEs, this method enable a comprehensive understanding of 

the sensitivity of aeroelastic system outputs to various input parameters. This leads to more 

efficient and accurate optimization processes, facilitating better decision-making and resource 

allocation early in the design process. The integration of GSE in aeroelastic MDO enhances the 

ability to address complex, interdependent design challenges, ultimately improving the overall 

performance and robustness of aircraft wing designs. 

4 CONCLUSIONS 

In this paper, we have introduced a novel methodology for aeroelasticity modeling, offering a 

comprehensive framework that includes the general theory and approach, a model for analyzing 

wing divergence, wing deformation, control surface effectiveness, and flutter analysis. Our method 

utilizes symbolic operations with Computer Algebra Systems (CAS), facilitating explicit 

dependencies between design parameters and flight performance. This advancement over 

traditional numerical methods enables multidisciplinary design optimization (MDO) and the 

solving of inverse aeroelasticity problems. 

Our methodology provides clear, analytical expressions for the relationships between design 

variables and aeroelastic characteristics, enhancing the understanding of how different parameters 

affect flight performance. The ability to perform MDO in symbolic form allows for more efficient 

and integrated optimization processes, accommodating various design disciplines simultaneously. 

Additionally, solving the inverse aeroelasticity problem aids in determining optimal design 

parameters to achieve desired aeroelastic performance, which is particularly useful in the early 

stages of aircraft design. 

The symbolic nature of our models makes them suitable for integration with artificial intelligence 

and machine learning algorithms, potentially leading to advanced predictive analytics and 

optimization capabilities [26]. Our method can be extended to include Aeroservoelasticity, 
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analyzing the interactions between aerodynamic forces, structural dynamics, and control systems. 

The framework can also be adapted for nonlinear aeroelastic analysis, enhancing its applicability 

to real-world scenarios where linear assumptions may not hold. Furthermore, the methodology is 

versatile enough to be applied to the analysis of rotor wings or blades, expanding its utility to 

rotary-wing aircraft and other aerospace structures. 

However, the primary constraint of our method lies in its reliance on computer algebra systems for 

handling tensor operations. This dependence can pose limitations in terms of computational 

resources and the complexity of the symbolic manipulations required for large-scale problems. 

In conclusion, our innovative approach to aeroelasticity modeling offers significant advantages in 

terms of explicit analytical dependencies, optimization capabilities, and versatility in application. 

Despite its reliance on advanced computational tools, the method provides a robust framework for 

improving the preliminary design and analysis of aerospace structures. Future research directions 

include enhancing the computational efficiency of the method and exploring its integration with 

advanced AI techniques for even greater optimization potential. 
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