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Abstract:

We describe the Adaptive Euler methodology, and results from the High Lift Prediction Work-
shops with focus on the current HLPWS5, showing good validation and high efficiency [74].
Adaptive Euler is first principles FEM simulation with adjoint-based adaptive error control,
realized with automated discretization from mathematical notation in our FEniCS [81]] frame-
work. We describe a prototype extension of the methodology to aeroelasticity also with adjoint-
based adaptive error control, such methods are highlighted as having “great potential” in the
field of aeroelasticity in [80]].

We show that by the Adaptive Euler by the scientific method in our reproducible Digital Math
framework predicts drag, lift, pitch moment and pressure distribution in close correspondence
with experiments in the 4th and 5th High Lift Prediction Workshops, with very high efficiency,
estimated to 100x faster and cheaper than RANS, the industry standard for efficient aerodynam-
ics, corresponding to appx. 100 core hours on a commodity computational resource.

Reproducibility and Open Science is described as the goal of all NASA activities in [87], we
see that we realize this already today.

The guiding incentive for this work is to develop an efficient and versatile tool for aeroelasticity
modeling with the Adaptive Euler methodology. Such a product is highly sought after and is
motivated in part by the CFD Vision 2030 [86] set by NASA and the Certification by Analysis
2040 Vision [77] set by Boeing. The consequences of this would include-but are not limited
to—the eventual development of a full fluid-structure interaction (FSI) framework that may be
used for applications in aerospace engineering, including in the general Unified Continuum FSI
(UC-FSI]) framework we have previously developed. As such, we present numerical simulations
designed to test benchmark problems in the field of aeroelasticity. These problems are chosen
based on their relevance to current challenges and potential for extension, and the results are
compared to experimental data when available. We view these simulations as critical building
blocks towards the development of a full Adaptive Euler framework for aeroelasticity.
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1 INTRODUCTION

We show that computing turbulent solutions to Euler’s equations with a slip boundary con-
dition offers a Theory of Everything ToE for slightly viscous incompressible fluid flow as a
parameter-free model, covering a vast area of applications in vehicle aero/hydrodynamics in-
cluding airplanes, ships and cars. This work resolves the Grand Challenges of fluid dynamics
described in NASA Vision 2030.

The foundation of the methodology is an extremely efficient Direct FEM Simulation (DFS)
method. We describe a breakthrough in efficiency, allowing extremely small numerical dissi-
pation by choosing very small stabilization coefficients, while allowing very large time step
size.

This work is developed as part of the Digital Math framework [1]] - as the foundation of mod-
ern science based on constructive digital mathematical computation. We invite you to run and
modify the simulations yourself in your web browser. The Digital Math web environment with
the Open Source Adaptive Euler/FEniCS software for reproducing the results in the paper at in
principle “zero” cost, together with more detailed presentation and results is available at:

http://digitalmath.tech/ifasd2024

We show that Adaptive Euler by the scientific method in Digital Math predicts drag, lift and
pressure distribution in close correspondence with observations for real problems with complex
geometry with specific focus on the 4th High Lift Prediction Workshop and so can serve to
deliver complete realistic aero/hydro-data for simulators without input from model experiments
in wind tunnel and towing tank or full-scale experiments, as a new revolutionary capability.

2 ADAPTIVE EULER OVERVIEW

The methodology is a Direct FEM Simulation (DFS) [2,4]] of the first principle Euler equations
with a slip boundary condition - here denoted Adaptive Euler. The methodology is realized
according to the scientific method in the Digital Math framework. We call this realization
Adaptive Euler.

These first principle equations are discretized by the Direct FEM approach, meaning Galerkin-
Least-Squares (GLS) stabilization.

We here show a snapshot of the Digital Math environment with Adaptive Euler ALE with elastic
smoothing, including the DFS formulation with GLS stabilization of the Euler equations, try
yourself and test, modify, extend in your web browser on the Digital Math Adaptive Euler
IFASD 2024 site http://digitalmath.tech/ifasd2024:
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We see that this realizes part of Certification by Analysis 2040 already today.

For claritly, the Galerkin part of the method is formulated as below in FEniCS notation:

F_Galerkin = inner(udot + grad(u)xu + grad(p), v)xdx
F_Galerkin += inner(div(u), q)*dx

and in corresponding strong form in Latex notation:

%y -Vu+Vp=0in,
V-u=0in{Q, (1)
u-n=0onl,

We have previously developed the general Unified Continuum methodology for general Fluid-
Structure Interaction (UC-FSI) [82H85] , including adaptive error control. The vision is to
realize Adaptive Euler in UC-FSI for general aeroelasticity.

As a first step we extend Adaptive Euler with a boundary and mesh velocity - allowing the
boundary to move due to e.g. prescribed or simple rigid-body motion, this is typically called
ALE. The mesh velocity simply gives rise to a convective term as compensation, denoted as
“ALE” in the formulation above. Away from the boundary we are free to set an arbitrary mesh
velocity. We here formulate a simple but very effective elastic mesh smoother - i.e. an elastic
equation for the mesh velocity preserving the mesh quality for a large range of motions:

def epsilon(v):
return 0.5%(grad(v) + grad(v).T)

rsmoother = inner(1.0/hxepsilon(wmeshvel), epsilon(vv))sdx + \
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gammasnm+dot (wmeshvel — wmeshvelf, vv)xds + gammaximxdot (wmeshvel, vv)xdx

newtonIteration(rsmoother, wmeshvel)

For completely general motions, we have also demonstrated fixed-mesh variants of UC-FSI
where the marker function identifying fluid/structure is simply a sharp but continuous function,
but where the efficient stabilization still appears to give what may be “good enough” efficiency
with low smearing.

Another key aspect is the ability to automatically generate a “linearization” of models/equa-
tions, for automated generation of methods, eigenvalue analysis, etc.

We here demonstrate how the GLS stabilization (the key streamline diffusion term for illus-
trative purposes) is automatically linearized in Adaptive Euler/FEniCS, with the manual and
automatic variants giving the same output to machine precision:

# Automated linearization using derivative

r_SDO = derivative(d+inner(grad(ul)xul, grad(u2)xu2)xdx, ul, u)
r_SD1 = derivative(r_SDO, u2, v)

r_SD1 = replace(r_SDl, { ul: u, u2: u })

# Manual linearization
r SDA = r_SD1
r_SDM = dsxinner(grad(u)#xu, grad(v)#xu)xdx

In [78] researchers from Dassault highlight the importance of automatic linearization and the
advantages of the GLS stabilization methodology, i.e.: “The Galerkin/least-squares (GLS) for-
mulation introduced by Hughes and Johnson, is a full space-time finite element technique ...”

An overview of the main ingredients of Adaptive Euler with the Digital Math Euler realization
are given below:

Free slip boundary condition with 3D rotational slip separation

No thin boundary layers to resolve.

We show that the flow can separate with 3D rotational slip separation, at high velocity. See the
3D cylinder benchmark below for an illustration.

Our detailed validation of the reference benchmarks in the field: HiLiftPW2-4, NACAOQ0012
wing, etc. all show that with only the pressure drag our results are within 5% of the experiment.
This means skin friction drag is a small/negligible effect, which either can be omitted, or added
as a minor adjustment.

In [5] we give an overview of both experimental and Euler CFD evidence, of low dependence
of drag from Reynolds number in untripped configurations, consistent with free slip, from e.g.
Abbott.

Automatic turbulence modeling by residual stabilisation

Through weighted least squares residual stabilisation generating trurbulent dissipation T D(t, u, p),
as a solution to the open problem of turbulence modeling [29]]. In particular, the weighted
strong residual measures the furbulent dissipation as a mesh independent quantity meeting Kol-
mogorov’s K41 conjecture of finite turbulent dissipation [73]).

4
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Adaptive adjoint-based a posteriori error control

Guaranteeing mesh-independence of drag and lift, and accuracy to a few percent in the valida-
tions.

Reproducibility

Guaranteeing the scientific method, allowing inspection, falsification, modification.

There is today a reproducibility crisis in science which we resolve with the Digital Math frame-
work, and specifically here for Adaptive Euler.

3 DIGITAL MATH: SOLVING THE REPRODUCIBILITY CRISIS

Run and modify the simulations yourself in your web browser!

The Digital Math web environment with the Open Source Real Flight Simulator/FEniCS soft-
ware for reproducing the results in the paper at in principle “zero” cost is available at:

http://digitalmath.tech/ifasd2024

together with more detailed results, articles, pedagogic material, etc.
Contact Johan Jansson (jjan@kth.se) for questions, comments and ideas.

Below is a screenshow of the Digital Math web environment with Euler Adaptive Euler inter-
active quasi-real-time visualization:

Automated Digital Math

We leverage our Open Source FEniCS framework, which automated the solution of partial dif-
ferential equations by FEM, taking the mathematical notation as input, automatically generating
the low-level source code without human bugs and automatically utilizing the PETSc parallel
linear algebra library recognized as one of the most capable in the world. we have had long-term
collaboration with the PETSc development team, giving great cross-pollination and generating
what appears to be minimal abstractions. This allows an automation of Digital Math, described
in a bird’s eye view below:
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Automated discretization: (generate code for linear system from
PDE/model.)

r = (inner(grad(u), grad(v)) - inner(f, v))*dx =
Poisson.cpp

Automated error control: (including parallel adaptive mesh
refinement.)

with M (e) a goal functional of the computational errore = u — U.

Goal: Automatically generate the program, mesh and solution from

PDE/model (residual) and goal functional M (U) (e.g. drag).

3.1 Extremely efficient stabilized Direct FEM
The predictive adaptive stabilized Direct FEM Simulation method takes the form:

F = F\—Galerkin + F\—Stab

where F_Stab is a residual-based Least Squares Galerkin stabilization of the form (0 R(U ), R(v))
with d proportional to the mesh size h, controlled by the duality-based adaptive error control.

F_Stab provides numerical dissipation for the unresolved subscales in a Direct predictive and
adaptive setting.

In previous work on DFS we have chosen 6 = C'h or § = C'min(h) with C' = 1. In this work
we show a key breakthrough, choosing C; /= 0.1 for the velocity component U and C'p =~ 0.01
for the pressure component P. This corresponds to an efficiency increase of many orders of
magnitude, which is key for the resolution of the Grand Challenges in fluid dynamics.

4 VALIDATION

4.1 High Lift Prediction Workshop 4

4.2 High Lift Prediction Workshop 5

S ADAPTIVE EULER AS A SOLUTION TO NASA VISION 2030

We see that Adaptive Euler already today in 2024 satisfies the goals of the NASA Vision 2030
challenges (and partly also Certification by Analysis 2040, see relevant figures above):

1. Emphasis on physics-based, predictive modeling

Euler is predictive by being first-principles, parameter-free and mesh/discretization independent
by adjoint-based adaptive error control.
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Adaptive Euler RFS HiliftPW4 jjan@kth.se Adaptive Euler RFS HiLiftPW4 jjan@kth.se
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Figure 1: Digital Math Adaptive Euler simulation of the High Lift Prediction Workshop 4 benchmark, a complete
aircraft with slip BC, here showing stall at aoa=21.5 . The simulation predicts the lift and drag forces of
the experiment through the range of angle of attack, including stall. Adaptive error control demonstrates
mesh-independence in the figures below.

RFS HiLiftPW4 aoa range CD-CL-CM

Figure 2: HLPW4 forces and pitch moment over a range of angles of attack. Prediction of CL and CD pre-stall
within 5%, and CM for all angles and CL and CD at stall within 10%, specifically also predicts pitch-

o

Figure 3: HLPW4 CP plots at the A stattion for aoa=7, 17 and 21.5 showing excellent match to experiment.
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Figure 4: HLPW4 CP plots at the D stattion for aca=7, 17 and 21.5 showing excellent match to experiment.
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Figure 5: Digital Math simulation of the High Lift Prediction Workshop 4 benchmark, a complete aircraft with
slip BC. Adaptive error control demonstrates mesh-independence, here at aoa=7. Included is also a finer
surface mesh, demonstrating independence of surface mesh resolution.
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Figure 6: Digital Math simulation of the High Lift Prediction Workshop 4 benchmark, a complete aircraft with slip
BC. Longer time interval at stall, t aoa=21.5 .

Adaptive Euler HLPW4 and HLPW5 aoa range CD-CL-CM
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Figure 7: Preliminary HLPWS forces and pitch moment over a range of angles of attack and three different con-
figurations of increasing complexity. Approximately within 5% of experimental values, blind for Case
2.4. Main difference between HLPW5 an HLPW4 is the tail in HLPWS5, which dominates CM which is
clearly predicted by Digial Math Adaptive Euler.
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Adaptive Euler HLPWS5 forces
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Figure 8: Preliminary HLPWS5 Case 2.4 forces and pitch moment for aoa=19.7, showing mesh-independence (i.e.
mesh-converged quantities) already on the extremely coarse starting mesh of 100k vertices for half-span.
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Figure 9: Preliminary HLPW5 Case 2.4 blind validation of streamlines against experimental oil flow, where Digial
Math Adaptive Euler with free slip BC predicts the main separation mechanism at the wing-root juncture.
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Figure 10: Preliminary HLPW5 Case 2.4 blind validation of the highest-priority CLmax quantity, where Digial
Math Adaptive Euler with free slip BC predicts CLmax to within 2%, only one of three participants to

do so. [@]

Computational Costs of WMLES Simulations (Case 2.4)

Cells(DOF)/ [ Min. Time Time- System Number of Wwall (GPU/Core) Compute Estimated
Method Points | Spacing | | ™ Steps Type GPUs/CPU | Time hours | hours per | Hours for 50 Cost ($)
Millions| mm B per CTU GPU/CPU Cores per CTU CTU CTUs for 50 CTUs
125

127 Implicit 1715 V100 120 GPUs 0.40 48 2,400 2,520
WMLES
(GPUs) 325 40  Explicit 31,500 A100 64 GPUs 0.54 35 1,750 2,540
1,260 3.2 Explicit 25,000  A10G 8 GPUs 2.25 18 900 730
WMLES 131 61  Implicit 2000  Milan 3840 cores 1.25 4,762 238,100 3,850
& 131 61  Implicit 200 cPU 600 Cores 3.82 2,292 114,600 1,860
EULER
(cPUS) 575 19  Explicit 37,000  Skylake 1000 Cores 2.26 2,260 113,000 1,830
0.182 25 Implicit 14 cPU 96 Cores 0.01 1 50 0.81
" — Steady » .
RANS** 243 GridC Implicit o, CPU 2304 Cores 7.2 hours (2000 iterations) 16588*** 270%**
1-004

Figure 11: HLPWS5 Case 2.4 simulation cost of WMLES and Euler participants, which shows that Digital Math
Adaptive Euler is appx. 300x cheaper than RANS and appx. 1000x cheaper than WMLES.

11



IFASD-2024-XXX

= }\/’\/\W\/\W
_04 4
_06 4
_08 4
—1.0 A
-1.2 — M
CM_tail

—— CM_tail_complement

-1.4

175 200 225 250 275 300 325 350

Figure 12: HLPWS5 Case 2.4 for aoa=23.6 (stall angle) breakdown of contributions by component (tail and rest
of aircraft) to CM, showing that the tail dominates CM and the dynamics of CM is dominated by the
wake from the wing-root juncture, which we interpret as buffeting, which realizes part of Certification
by Analysis 2040 already today [77]

2. Management of errors and uncertainties resulting from all possible sources

Euler is first-principles, and does not have explicit modeling parameters. Euler relies on adjoint-
based adaptive error control to guarantee mesh/discretization-independence, and additionally
automatically generates the low-level source code from mathematical notation (just a few lines),
thus eliminating the possibility of human bugs.

3. A much higher degree of automation in all steps of the analysis process

Euler relies on automated mesh generation based on adjoint-based adaptive error control, and
additionally automatically generates the low-level source code from mathematical notation (just
a few lines) including the adjoint formulation and the adjoint solution.

4. Ability to effectively utilize massively parallel, heterogeneous, and fault-tolerant HPC
architectures

We demontrate that Euler has extremely cheap and fast performance ( 200 core hours), which
allows an extreme effectiveness by being able to run a large number of simulations on in prin-
ciple any parallel computer (also e.g. any virtual machine in a cloud setting, even in a web
browser), at a cost affordable to any engineer, researcher or even student.

5. Flexibility to tackle capability- and capacity-computing tasks in both industrial and
research environments:

The same answer as above. We demontrate that Euler has extremely cheap and fast performance
( 200 core hours), which allows an extreme effectiveness by being able to run a large number
of simulations on in principle any parallel computer (also e.g. any virtual machine in a cloud
setting, even in a web browser), at a cost affordable to any engineer, researcher or even student.

12
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6. Seamless integration with multidisciplinary analyses that will be the norm in 2030

Euler is realized in the Digital Math framework in FEniCS, taking the mathematical notation
(just a few lines) as input and automatically generating the low-level source code. We have
demonstrated general fluid-strucure interaction (FSI) generalizations in a very simple and au-
tomated way, and other multidisciplinary generalizations are possible or have been done in a
similar way. Digital Math means an Open Source setting, where it’s easy and natural to merge
and integrate different formulations for e.g. different physical phenomena.

6 DIGITAL MATH: SCIENTIFIC AUTOMATED FLOW SIMULATION

The scientific process has not kept up with digital technology, and there is today a reproducibil-
ity crisis. Lorena Barba representing NASEM describes the situation as:

“The widespread use of computation and large volumes of data have transformed most disci-
plines of science and enabled new and important discoveries. But this revolution is not yet
reflected in the ways that scientific findings are published and shared with the relevant commu-
nities. Extending the scholarly record to data, software, and computational environments and
workflows is a must to ensure the robustness of science in this digital era.”

We present the Digital Math framework as the foundation for modern science based on con-
structive digital mathematical computation, and as a solution to the reproducbility crisis. The
computed result (coefficient vector, FEM function, plot, etc.) is a mathematical theorem, and
the mathematical Open Source code, here in the FEniCS framework, and computation is the
mathematical proof. We can also derive additional constructive proofs from the FEniCS and
FEM formulation, such as stability.

Digital Math represents digitalization of science, mathematics, society and industry in the form

of automated and easily understandable computation of mathematical models. It is here realized

in the Open Source FEniCS framework with world-leading performance and recognized at the

highest level of science and industry together with an effective pedagogical concept with com-

bined abstract theory and mathematical interactive programming in a ’one-click” cloud-HPC
web-interface, accessible to anyone: In the Digital Math HiLiftPW4 site (http://digitalmath.tech/hiliftpw4-
aiaa), the full adaptive Adaptive Euler methodology for several cases is available, from a cube
benchmark case [3] to aircraft for you to inspect, run, modify, and reproduce, just as all exam-

ples presented. The web environment is illustrated in Figure

Computational solution of turbulent solutions of Euler’s equations as Adaptive Euler is auto-
mated using FEniCS [31] for automation of the finite element discretisation used to express
the principle of best possible approximate solution. This brings a new tool of Automated Flow
Simulation with only geometry input, which in particular allows for the first time computation
of complete aero-data (forces) for any given airplane/car/ship for design, Digital Twins, inter-
active simulators, etc. Adaptive Euler can include (small) positive boundary friction allowing
also flow before drag crisis to be computed, but it introduces friction as a coefficient to be
fittted to experiments. For high Reynolds number beyond drag crisis - the regime relevant to
aerodynamics - this is not needed, and Adaptive Euler is completely parameter-free.

7 PREDICTIVE ADAPTIVE EULER - RESOLUTION OF D’ALEMBERT’S PARA-
DOX

In 1755 the German mathematician Euler formulated a mathematical model describing the flow
of air (subsonic) and water with the following prophetic declaration of Euler’s Dream [24]):

13
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[ 1] 1r_m= (inner(u - u@, v)/k)*dx + rmp_m + wgamma*nm*inner(u, n)*inner(v, n)*ds + LS_u
2 r_c = (2*k*inner(grad(p - p0), grad(g)))*dx + rmp_c + .5*hmin*hmin*p*g*dx + \
3 (c2*dSC)*inner(grad(p), grad(qg))*dx + LS_p

@ SHOW CODE

Simulation monitor

Step dual t: 1.21197 stepc: 5 iters: 2 k: 0.24239 |u|: 3.13524 |p|: 0.08864 L: 0.03366 D: 0.60072 c1: 1 stept: 1.21376 rank: ©

. Digital Math R?ul Flight Simulator HiLiftPW4

& !
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.

Figure 13: Digital Math Adaptive Euler simulation, visualization, editing in mathematical notation, of an electric
aircraft connected to the ELISE project for electric aviation.

* My two equations contain all of the theory of fluid mechanics. It is not the principles of
mechanics we lack to pursue this analysis but only Analysis (computation), which is not
sufficiently developed for this purpose.

These are Euler’s equations for (unit density) slightly viscous incompressible fluid flow for-
mulated in terms of fluid velocity u(z,t) and fluid pressure p(x,t) depending on space-time
coordinates (x,t) as an expression of force balance (Newton’s 2nd Law) and incompressibility
complemented by a slip boundary condition. They read [[17]]:

%%—u-VU—I—szOinQ,
V-u=0in{Q, )
u-n=0onl,

where () is a spatial domain occupied by the fluid with boundary I with unit normal n acting
like a solid wall impenetrable to the fluid as expressed by u - n = 0. The only forces acting
on the fluid (without gravitation) are the internal pressure gradient Vp as a volume force in €2
combined with a surface pressure force pn from the wall acting in the normal direction on I'.
Formally there are no internal viscous shear forces (zero viscosity) and no force tangential to
the boundary (zero skin friction).

In bluff body flow (2 is the domain filled by fluid flowing past a volume occupied by a solid body
at rest in a coordinate system with the flow velocity being constant at large distance from the
body as a far-field condition. The basic problem in bluff body flow is to determine the pressure
distribution from the fluid on the body with drag and lift as net forces opposite and perpendicular
to the main flow direction in normalized form appearing as coefficients of drag C'p and and lift
(1. This is the basic problem of vehicle aero/hydrodynamics including airplanes, ships and
cars. We shall see that computing furbulent solutions of Euler’s equations allows accurate
prediction of drag and lift for a body of arbirtary shape, as a realisation of Euler’s Dream by
computing.

As is clear from (2)) the Euler equations are parameter-free since viscosity and skin friction pa-
rameters are set to zero. This means that the Euler equations/Euler’s Dream represent Einstein’s
ideal mathematical model as a Theory of Everything ToE for a certain range of physics (slightly

14
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viscous incompressible) flow, that is a mathematical theory capable of making predictions about
reality (drag and lift) without any input of parameters such as viscosity and skin friction. We
give below massive evidence that computation of turbulent solutions to Euler’s equations is a
ToE for fluid mechanics, and as such very remarkable and useful. But it took 250 years to make
computing powerful enough to make Euler’s Dream come true, and the start for Euler in 1755
was rocky.

Eulers French adversary mathematician d’ Alembert namely quickly crushed Euler’s grand plan
by showing that Euler’s equations admitted certain solutions (potential solutions) showing zero
drag and lift of a body moving through air or water, in direct contradiction to observation
[2330.[33],34]. This was coined d’Alembert’s Paradox (in fact realised by Euler before 1755
[34]), which from start as expressed by Chemistry Nobel Laureate Hinshelwood, separated
practical fluid mechanics (hydraulics) describing phenomena (drag, lift), which cannot be ex-
plained, from theoretical fluid mechanics explaining phenomena (zero drag, lift), which cannot
be observed.

We show that predictive Adaptive Euler resolves the paradox. The potential solution with zero
drag is unstable - shown by stability analysis and computational evidence with adaptive error
control. We illustrate the resolution by the basic cylinder model problem, and also by the most
advanced benchmark in the world representing vehicles and aerodynamic devices - the High
Lift Prediction Workshop, where we show that Euler CFD predicts the experiment to 5% with
mesh independence, and predicts they key stall mechanism.

In Figure [14] we show our resolution of the paradox with Digital Math Adaptive Euler: the
potential solution is unstable and develops streamwise vortices on the downstream side of the
cylinder, generating “3D slip separation” - separation at high flow velocity.

Figure 14: Digital Math simulation of a 3D cylinder with slip BC, and a sweep over the Reynolds number/viscos-
ity. Starting at Re=1e9 (low viscosity), we observe the 3D slip separation” with streamwise vortices
generated on the downstream side of the cylinder. However, by Re=1e3 and Re=1e4 this mechanism is
damped out.

In the HiLiftPW4 results throughout this article, we show prediction of stall, both CD and CL
within 5% of the experiment and mesh-independent. This represents the resolution of the NASA
Vision 2030 grand challenge, and with Digital Math guaranteeing the scientific method.
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8 CONCLUSIONS

We have showed that computing turbulent solutions to Euler’s equations with a slip boundary
condition offers a Theory of Everything ToE for slightly viscous incompressible fluid flow as a
parameter-free model, we are now able to predict a vast area of applications in vehicle aero/hy-
drodynamics including airplanes, ships and cars. This work resolves the Grand Challenges of
fluid dynamics described in NASA Vision 2030.

Key specific results are breakthrough results validating Euler for the High Lift Prediction Work-
shops and rigid-body aeroelastic wing cases.
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