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Abstract: Wind tunnel tests were conducted using a flexible, half-wing model with a control
surface. The main purpose of these tests was to evaluate a methodology developed to accom-
plish nonlinear aeroelastic analyses. A flexible connection of the control surface was fitted with
a freeplay mechanism to introduce nonlinear effects in the system.

An important feature of the experimental setup was that the model was installed in the horizontal
position inside the test section. Therefore, the control surface was subjected to preloading due to
the moment around the hinge line generated by its own weight. Limit cycle oscillations (LCO)
were observed in the subsonic wind tunnel tests but only when the equilibrium position of the
control surface, which depends on the tunnel flow velocity, was within the freeplay deadspace.

The treatment of preloading found in the literature (see Laurenson and Trn [1]), however, was
not developed for such a condition. The condition in which the preloading formulation was
developed in Ref. [1] assumed that the equilibrium occurs only outside the freeplay deadspace.
Therefore, a special treatment for a preload equilibrium inside the freeplay deadspace was de-
veloped, for frequency-domain aeroelastic analyses, based on the same assumptions of Ref. [1],
for the present conditions. The new approach needed a method for determining the equilibrium
position of the control surface for a given wind tunnel flow condition (preload parameter).

The determination of the control surface equilibrium position demanded specific aerodynamic
coefficients along with mass and inertia properties of the aeroelastic system. Aerodynamics
were evaluated both by Vortex Lattice and Computational Fluid Dynamics (CFD) methods.
The results of such equilibrium position calculations, then the preloading parameter, agreed
well with experiments.

The predictions of the adapted methodology for the aeroelastic analysis of a nonlinear system
with preload were consistent with the experimental LCO frequencies and amplitudes evaluated
in the wind tunnel tests.
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1 INTRODUCTION

The presence of freeplay in airplane control surfaces is inevitable due to tolerances in manu-
facturing the mechanisms for the actuation of those surfaces. It is also verified in connections
between the surface and the actuator and between the actuator and its attachment to the primary
structure of the wing. The presence of freeplay, like other nonlinearities, may induce the ap-
pearing of aeroelastic phenomena and aeroelastic responses commonly known as LCO (limit
cycle oscillations).

LCO may occur and generate structural damage in the aircraft due to exceeding of loading limits
or structural fatigue. Furthermore, even if there is no structural damage, these oscillations may
induce discomfort to the crew and passengers and even generate difficulties to fly the aircraft,
either by inducing involuntary movement in the pilot’s body or by making it difficult to read
flight instruments.

Therefore, it becomes imperative to study methodologies capable of predicting the occurrence
of this nonlinear aeroelastic phenomenon, along with its characteristics in terms of amplitude
and frequency in several ranges of flight velocities. The LCO amplitude becomes an important
parameter in evaluating structural loadings and the frequency is relevant, for instance, in the
evaluation of parameters associated with fatigue life.

A methodology for the prediction of occurrence and characteristics of LCO for aeroelastic sys-
tems with concentrated nonlinearities was developed and implemented at Embraer. And, aiming
to verify the effectiveness of such methodology, a wind tunnel test was designed using a flexi-
ble model of a half-wing with a control surface. The connection of this control surface with the
main surface of the wing had a mechanism to introduce freeplay in that connection. Figure 1
presents a view of the wind tunnel model used in the tests. The control surface is shown in blue.

Figure 1: Isometric view of the flexible model used for the wind tunnel tests.

The flexible model used for the wind tunnel tests was designed by Embraer, using the imple-
mented methodology, with the requirement to be able to generate LCO inside the operational
envelope of the wind tunnel used for the tests. The chosen wind tunnel is a close-circuit and
presents a test section of 3.00 x 2.10 m. Additionally, due to a control system that can adjust
both the driving fan pitch and rotational velocity, the wind tunnel can generate flow velocities
up to 120 m/s at the test section.
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An important aspect of the present work refers to the installation of the flexible model in the
test section of the tunnel. The first option for this type of installation typically is to place the
model directly to the wind tunnel balance, used to measure the aerodynamic forces. This type
of installation ends up with the model in a vertical position, exactly as the structure used to hold
models for complete aircraft configurations. However, it was determined that the frequencies of
the natural modes of vibration of the wind tunnel balance could interfere with the frequencies
estimated for the aeroelastic phenomena to be observed. Then, an installation on the lateral wall
of the wind tunnel test section was chosen. The consequence of such choice was the presence
of preloading due to the action of gravity on the control surface.

Finally, the present work consists of simulations in the frequency domain, using the methodol-
ogy implemented at Embraer, for the prediction of LCO characteristics and comparison with ex-
perimental data obtained in a wind tunnel. This comparison, ultimately, confirms the adequacy
of the used methodology for the prediction of LCO occurrence in aircraft and its characteristics.

2 METHODOLOGY

The methodology used for the aeroelastic analysis of nonlinear problems involves two distinct
approaches. The first one refers to the frequency domain and the second to the time domain.
In this work, only analyses using the methodology in the frequency domain are conducted.
Furthermore, experimental results obtained in the wind tunnel are used for comparison and
verification of the methodology. Next sections of this text cover some theoretical concepts of
the analysis in the frequency domain and some practical aspects of obtaining the experimental
data necessary for the comparison with the theoretical methodology.

2.1 Frequency Domain Analysis

The frequency domain analysis is based on the Harmonic Balance Method. The book of Wor-
den and Tomlinson [2] contains an excellent explanation of this method. The Harmonic Bal-
ance finds the best approximation of a nonlinear component of a dynamic system oscillating
harmonically in a certain operating condition (characterized by an amplitude and frequency of
oscillation) for an equivalent linear component as a function of the operational condition of the
system. The equation describing the best linear approximation for this nonlinear component is
known as the Describing Function [2].

However, due to the preloading condition mentioned earlier, the analysis to obtain the best
linear approximation for the nonlinearity needs some adjustments. The equilibrium position
of the system comes into the picture, as a consequence of the preloading force, in addition to
the amplitude and frequency of oscillation. Therefore, the operating condition of the system
consists of amplitude and frequency of oscillation and equilibrium position as a function of the
preloading.

The work published by Laurenson and Trn [1] provides the treatment obtained by using the
Harmonic Balance to a spring with a nonlinearity consisting of freeplay with preloading. When
there is a dynamic system composed of a mass and a spring with freeplay and preloading, the
equilibrium position occurs always in the region outside the deadspace or, in other words, in
the region where the nonlinear spring presents stiffness and can generate an elastic force to
neutralize the preloading force.

An excellent study and theoretical reference on the problem of freeplay with preloading is
given by Verstraelen et al. [3]. This work demonstrated the existence of two-domain limit cycle
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oscillations both theoretically and experimentally, besides given an outstanding theoretical basis
for modeling and understanding this particular problem.

The situation inside the wind tunnel, when there is flow around the test model and this model
is in the horizontal position, is such that the problem has an additional component to the ones
considered by Laurenson and Trn [1]. The airflow can generate an aerodynamic force capable
of counteracting the preloading force (gravitational) and makes it possible (even expected) to
obtain conditions of equilibrium inside the freeplay deadspace. As far as this possibility was
not treated by Laurenson and Trn and such study was not found in other references, there was a
need to develop a treatment to an equilibrium condition inside the freeplay deadspace.

The approach by Laurenson e Trn is used as a reference to this work and it is presented initially.
Next, the needed adaptations are discussed to obtain a mathematical formulation allowing the
analysis of equilibrium conditions of the control surface inside the freeplay deadspace region.

The development of a Describing Function for the current problem is based on the schematic
illustration shown in Fig. 2. The parameter P indicates the displacement of the equilibrium
point due to the action of the preloading force, the variable δ translates the freeplay deadspace
size, and the stiffness outside this region is represented by K.

x

F (x)

2δP

K

K

Equilibrium
position

Figure 2: Model for the treatment of a nonlinearity of the freeplay with preloading type.

Treatment of problems involving preloading also differs from the normal approach to freeplay
nonlinear problems by assuming that the average position of the response harmonic motion of
the system is not the center of the freeplay zone or, in mathematical terms, the value of A0 in
Eq. (1) is not necessarily zero.

x(t) = A0 + A1 cosωt (1)

in which the coefficients A0 and A1 are defined as the average displacement and the ampli-
tude, respectively, of the response motion of the system. These parameters can be determined,
according to Laurenson and Trn, Ref. [1], using an assumption that the energy stored in the non-
linear spring is the same for both positive and negative displacements. This assumption leads to
the relationships between A0 and A1 given by Eqs. (2) and (3).

A1 =
A

2
+

1

2

√
2PA− P 2 for P < A ≤ (P + 2δ) (2)
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or
A1 =

A

2
+

1

2

√
(A− 2δ)2 + 4Pδ for A > (P + 2δ) (3)

where A = A0 + A1 and, according to the convention shown in Fig. 2, A1 represents the
amplitude of movement and A0 translates the average displacement of the system with respect
to the equilibrium position (x = 0).

It seems clear that, depending on the average position A0 and the amplitude A1, the movement
of the system may not reach the freeplay region, only part of this region, or cover it entirely and
reach the other side. In this last instance, both regions with stiffness contribute to the solution.
For this reason, in case of preloading, there are more possibilities of Describing Functions in
spite of only one involved in cases without preloading. The describing functions associated
with preloading are:

Keq

K
= 1 for A ≤ P (4)

and

Keq

K
=

1

π

[
π − θ1 + 2

(
P − A0

A1

)
sin θ1 −

1

2
sin 2θ1

]
for P < A ≤ (P + 2δ) (5)

in which:

θ1 = arccos

(
P − A0

A1

)
(6)

and

Keq

K
=

1

π

[
π + θ2 − θ1 − 2

(
P + 2δ − A0

A1

)
sin θ2

+2

(
P − A0

A1

)
sin θ1 +

1

2
(sin 2θ2 − sin 2θ1)

]
for A > (P + 2δ)

(7)

where

θ1 = arccos

(
P + 2δ − A0

A1

)
and θ2 = arccos

(
P − A0

A1

)
(8)

These describing functions are suitable for cases in which the equilibrium position lies outside
the freeplay deadspace region and will be referred to as DF1 in this text.

Aiming to develop a model for cases where the equilibrium position is located inside that region,
the convention depicted in Fig. 3, can be used.

The development of the equations for the case of equilibrium inside the freepaly region leads
to:

Keq

K
=

1

π
[θ2 − sin θ2 cos θ2 + θ1 − sin θ1 cos θ1] (9)

in which

θ1 = arccos

(
P + 2δ − A0

A1

)
and θ2 = arccos

(
A0 − P

A1

)
(10)
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Figure 3: Model for studying freeplay with preloading and equilibrium position inside the deadspace region.

Equation (9) is in agreement with the equations developed in Ref. [3]. More specifically,
Eq. (18) in page 16 can be easily related to the present describing function. The way to find a
relationship between θ1 and θ2, however, is based on the work of Laurenson and Trn [1]. The
assumption mentioned earlier, in which the same energy stored in the nonlinear spring occurs
for both positive and negative displacements, brings about the following condition:

(δ − A1)(P − A0 + δ) = 0 (11)

The satisfaction of Eq. (11), on its turn, imposes two different conditions:

(a) δ − A1 = 0 ⇒ A1 = δ, resulting in a movement with amplitude exactly equal to the
size of the freeplay deadspace.

(b) P −A0+ δ = 0 ⇒ A0 = P + δ, representing a possible movement with cos θ1 = δ/A1

and cos θ2 = δ/A1.

Condition (a) implies A1 = δ and this leads to a condition that cos θ1 = cos θ2 = 1 and, then,
A0 = P + δ. This reflects a particular movement in which the control surface oscillates exactly
inside the freeplay region, since A0 = P + δ, and then Keq = 0. Therefore, this possibility of
movement is discarded.

Concerning condition (b), one has to solve Eq. (9). This is a transcendental equation and needs a
numerical procedure for finding its roots. It also needs the evaluation of arccos θ1 and arccos θ2.
There are limitations of using this function to reach all possible solutions. For the present
constraints, one can have only a small number of combinations for cos θ1, sin θ1, cos θ2, and
sin θ2. To ease the implementation of a numerical procedure to find solutions of Eq. (9), one
makes cos θ1 = cos θ2 = δ/A1 = ξ and then:

sin θ1 =
√

1− ξ2 and sin θ2 =
√
1− ξ2

Recalling that parameter A0 can now be written as:

A0 = P + δ (12)

and this mean position corresponds exactly to the center of the freeplay deadspace.
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The Describing Function now becomes:

Keq

K
=

2

π
(arccos ξ − ξ

√
1− ξ2) (13)

This describing function will be referred to as DF2 and the associated equation for obtaining
the solution for the amplitude of the movement is:

g(ξ) = arccos ξ − ξ
√

1− ξ2 − π

2

(
Keq

K

)
= 0

The equation that needs to be solved for the amplitude is transcendental and needs some numer-
ical procedure. Newton-Raphson’s technique is used in the present work for finding the root of
transcendental equation (g(ξ) = 0) and it uses the following iterative process:

ξ(n+1) = ξ(n) − g(ξ(n))

g′(ξ(n))

The attempt to find small amplitude solutions, like the ones obtained in Laurenson and Trn [1]
and represented by Eqs. 5 and 6, revealed that cos θ1 = 1. This means there is no small am-
plitude motion satisfying the assumption that the same energy stored in the nonlinear spring
occurs for both positive and negative displacements.

2.2 Equilibrium Position Evaluation

A parameter to be used in the analyses, when there is preloading in the aeroelastic system, is the
equilibrium position where all forces are balanced. In the specific case of this test, the aerody-
namic loading has an important contribution and, along with the gravitational force, determines
the equilibrium position of the control surface.

Control surface equilibrium position can be determined, then, by means of a model of the wing’s
aerodynamics and the imposition of a zero resultant moment around the control surface hinge
line. Aerodynamic moment around the hinge line is a function of both the angle of attack, α,
and the control surface deflection angle, β, and it can be approximated by a first order Taylor
series expansion around the point (α0 = 0, β0 = 0):

CH(α, β) = CH0 + CHαα + CHβ
β (14)

where the parameter CH represents the aerodynamic moment coefficient with respect to the
hinge line (hinge moment) and CH0 , CHα , and CHβ

are related to hinge moments for zero angle
of attack and zero control surface deflection, the derivatives of the hinge moment coefficient
with respect to the angle of attack and with the control surface deflection angle, respectively.

Evaluating the hinge moment aerodynamic coefficient:

H ≈ 1

2
ρV 2S l(CH0 + CHαα + CHβ

β) (15)

where ρ is the air density, V translates the airflow velocity, S is the reference area and l repre-
sents the reference length used in the evaluation of CH .
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Figure 4: Schematic of forces and moments acting on the control surface.

The equilibrium position can be obtained by making the balance of moments around the hinge
line, based on the schematic of Fig. 4:

Mβ −H −mg xCG = 0 (16)

Doing the substitutions:

Kβ(βeq − δ)− 1

2
ρV 2Sl(CH0 + CHαα + CHββeq)−mg xCG = 0 (17)

Solving Eq. (17) for βeq and rearranging the terms, one ends up with:

βeq =
c+ δ − a(−CH0 − CHαα)V

2

1− aCHβV 2
(18)

where:
a =

ρSl

2Kβ

and c =
mg xCG

Kβ

Equation (18) can be used for situations of equilibrium in which βeq < δ1 or βeq > δ2, according
to the illustration in Fig. 5. Variable δ in Eq. (18) corresponds to δ1 or δ2 for βeq < δ1 or βeq > δ2,
respectively.

In case the equilibrium position is in the region where δ1 ≤ βeq ≤ δ2, there is no restoring
moment in the spring due to freeplay. Then, the balance of moments around the hinge line can
be rewritten as:

−H −mg xCG = 0 (19)

Substituting, simplifying, and rearranging terms, one obtains:

βeq =
c− a(−CH0 − CHαα)V

2

−aCHβV 2
(20)
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Figure 5: Model for the spring torque of the nonlinear rotational spring.

2.3 Test Data Reduction
Analysis of data obtained in the wind tunnel tests is based on the time history of control surface
position. The test model was fitted with an RVDT (Rotary Variable Differential Transformer)
mounted along the control surface hinge line to measure its angular position. Then, the reading
of the RVDT transducer corresponds directly to the angular position of the control surface.

The transducer used in the tests is made by Metrolog and designated as RVDT RSYN-8-30. It
can measure angles in range −30o ≤ β ≤ 30o, in an environment with vibrations up to 20g, and
in temperatures in the range −55oC ≤ T ≤ 105oC.

Transducer signal is analyzed using the Fourier transform to obtain the main oscillation fre-
quency of the control surface. This frequency is relatively constant along the signal acquisition
time and can be determined within an acceptable accuracy by taking a fragment of the measured
signal for a certain test condition.

On the other hand, the oscillation amplitude presents a certain variation with time for a particular
test condition. Therefore, a time window of the signal is selected and an average amplitude is
calculated for this window. One must be careful to choose the signal window, striving to find a
representative window for the evaluation of the LCO amplitude.

The additional parameter that appears in the preloading analyses is the control surface equi-
librium position. This parameter can be experimentally obtained by computing the average in
time, along the chosen time window, of the control surface position signal.

3 RESULTS
3.1 Control-surface Equilibrium Position
The evaluation of the aerodynamic moment around the control-surface hinge line was done
by using the Vortex Lattice Method (VLM) of Drela [4]. The geometry discretization was
done according to Fig. 6. A symmetry condition was used at y = 0 to simulate the boundary
condition at the wind tunnel wall. 988 panels were used in the half-wing and 512 for the wind
tunnel walls.

The modeling of the wind-tunnel test section was done by assuming that the walls are parallel
to the x-axis and orthogonal to each other, forming a rectangular cross section with 2.1 m height
and 3 m width. The length of the cross section was set to 4 m.
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Figure 6: Discretization used for the half-wing and wind tunnel walls.

The half-wing itself was discretized with 26 horse-shoe vortices along the chord and 38 along
the span, as it is illustrated in Fig. 7. This model was used, also, for the evaluation of the
half-wing aerodynamics without the wind tunnel wall influence.

Figure 7: Details of the half-wing model discretization.

Tables 1 and 2 contain the results obtained for the lift (CL) and moment coefficients around
the control surface hinge line (CH). Two discretizations of the half-wing were studied for
convergency evaluation of the aerodynamic coefficients. It can be noticed that there is a small
variation of the aerodynamic coefficient values, indicating that the convergency is acceptable.
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Table 1: Simulations with wind tunnel walls for zero angle of attack.

α = 0 nc = 24 and nb = 30 (half-wing) nc = 26 and nb = 38 (half-wing)
nc = 16 and nb = 8 (walls) nc = 16 and nb = 8 (walls)

β CL CH CL CH

(o)
-2 -0.02613 1.901×10−4 -0.02622 1.898×10−4

-1 -0.01307 9.504×10−5 -0.01311 9.492×10−5

0 0 0 0 0
1 0.01307 -9.506×10−5 0.01312 -9.493×10−5

2 0.02614 -1.901×10−4 0.02623 -1.899×10−4

Table 2: Simulations with wind tunnel walls for zero control-surface deflection.

β = 0 nc = 24 and nb = 30 (half-wing) nc = 26 and nb = 38 (half-wing)
nc = 16 and nb = 8 (walls) nc = 16 and nb = 8 (walls)

α CL CH CL CH

(o)
-2 -0.17864 1.522×10−4 -0.17868 1.514×10−4

-1 -0.08941 7.621×10−5 -0.08943 7.580×10−5

0 0 0 0 0
1 0.08955 -7.628×10−5 0.08957 -7.587×10−5

2 0.17919 -1.525×10−4 0.17923 -1.517×10−4

Additionally to the simulations with the inclusion of the wind tunnel walls in the mathemati-
cal model, calculations without the wind tunnel walls were performed, simulating a free-flow
condition. Results of these computations are shown in Tabs. 3 and 4.

Table 3: Simulations without the wind tunnel walls for zero angle of attack.

α = 0 Vortex Lattice Method CFD - Euler
nc = 26 and nb = 38 (half-wing) simulations

β CL CH CH

(o)
-2 -0.02532 1.889×10−4 1.430×10−4

-1 -0.01266 9.447×10−5 6.113×10−5

0 0 0 -2.000×10−5

1 0.01266 -9.448×10−5 -1.011×10−4

2 0.02533 -1.890×10−4 -1.842×10−4

Table 4: Simulations without the wind tunnel walls for zero control-surface deflection.

β = 0 Vortex Lattice Method CFD - Euler
nc = 26 and nb = 38 (half-wing) simulations

α CL CH CH

(o)
-2 -0.17148 1.446×10−4 9.535×10−5

-1 -0.08583 7.240×10−5 3.777×10−5

0 0 0 -2.000×10−5

1 0.08596 -7.247×10−5 -7.820×10−5

2 0.17199 -1.449×10−4 -1.370×10−4
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For simulations without the wind tunnel walls, only computations with the finer discretization of
the half-wing were carried out, since, for the previous case, there was no significant difference
from the studied discretizations. Figures 8 and 9 show the aerodynamic loadings given by the
Vortex Lattice Method.

Figure 8: Aerodynamic loading for zero angle of attack and control surface deflection of 1.0 deg.

Figure 9: Aerodynamic loading for zero control surface deflection and 1.0 deg angle of attack.

One notices that the aerodynamic loading due to the control surface deflection only is concen-
trated in the control surface region (Fig. 8) and the aerodynamic loading due to the angle of
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attack only (presented in Fig. 9) is distributed along the span (green line) as expected. For the
cases including the wind tunnel walls, the observed behavior was identical.

The influence of the wind tunnel walls can be observed in Figs. 10 and 11. These figures also
show the results obtained from a CFD code in which an Euler formulation (without viscous
effects) was used. One important difference between analyses with VLM and CFD is that the
wing profile thickness is considered only in the latter.
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Figure 10: Moment coefficient variation with control surface deflection.
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Figure 11: Moment coefficient variation with angle of attack.

Doing the computation of the aerodynamic hinge moment coefficient derivatives, one ends up
with the data presented in Tab. 5.
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Table 5: Results for the computation of control-surface aerodynamic hing-moment coefficient derivatives.

Method CH0 CHα CHβ

VLM (half-wing) 0 -4.147×10−3 -5.413×10−3

VLM (half-wing + tunnel) 0 -4.365×10−3 -5.446×10−3

CFD-Euler (half-wing) -2.00×10−5 -3.328×10−3 -4.686×10−3

Some comments regarding the coefficients shown in Tab. 5 are relevant. All of them are es-
timated assuming a geometry perfectly symmetric for profiles of the half-wing sections. In
reality, the profile geometries present some manufacturing distortions and imperfections. Even
the wind tunnel flow in the wind-tunnel test section may present asymmetries and distortions as,
for instance, an uneven velocity distribution. However, the only coefficient actually sensitive to
these imperfections is CH0. Therefore, it becomes quite unreasonable to use the value estimated
for the CH0 coefficient.

On the other hand, the use of the Euler methodology in the computations, with a better level of
fidelity to the wing profile geometry, revealed an important difference in derivatives CHα and
CHβ with respect to the ones obtained with VLM. Wind tunnel walls, on their turn, did not have
a significant influence in the aerodynamic moment coefficient derivatives.

The tested wind tunnel model (half-wing) has the parameters presented in Table 6.

Table 6: Data related to the tested wind tunnel model.

Parameter Value
S 1.08185 m2

l 0.39126 m
ρ 1.1 kg/m3

g 9.81 m/s2

m 1.3455 kg
xCG 0.0253 m
δ1 -1.715o = -0.02993 rad
δ2 1.715o = 0.02993 rad
Kβ 6.125 N.m/rad

The size of control-surface freeplay was measured following an Embraer internal procedure and
the corresponding report is the one described in Ref. [5]. Figure 12 contains the measurement
result.

Applying the values presented in Tab. 6 in the various equations discussed in this text, one
obtains:

a =
ρSl

2Kβ

= 0.038018 s2/m2 c =
mgxCG

Kβ

= 0.054534 rad

Case δ2 < βeq

βeq =
c+ δ2 − a(−CH0 − CHαα)V

2

1− aCHβV 2
=

0.084466− 0.038018(−CH0 + 0.003328α)V 2

1 + 0.00017815 V 2

14
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Figure 12: Force against displacement graph related to the control-surface freeplay measurement.

Case δ1 ≤ βeq ≤ δ2

βeq =
c− a(−CH0 − CHαα)V

2

−aCHβV 2
=

0.054534− 0.038018(−CH0 + 0.003328α)V 2

0.00017815 V 2

One notices that CH0 has a significant influence in the equilibrium position of the control sur-
face. However, this coefficient is reasonably difficult to evaluate since it is highly affected by
manufacturing imperfections in the model (assymmetries) and wind tunnel test section irregu-
larities, as mentioned previously.

Considering this difficulty to estimate CH0 with some degree of accuracy and the observation
that it has a significant influence on the control-surface equilibrium position, a value of CH0 =
−0.0002 was chosen since it better correlates the numerically computed equilibrium position
with the one observed experimentally.

3.2 Analysis of LCO characteristics - Frequency Domain

The mathematical model used to evaluate the unsteady aerodynamics, based on the Doublet
Lattice Method (DLM), is shown in Fig. 13. The flow conditions, in this case, are subsonic
and no adjustment or correction to the coefficients estimated by DLM was used. During the
tests, all foreseeable measures were taken (besides constant monitoring) to avoid any other
type of nonlinearity, such as flow detachments, to arise and interfere with the eventual LCO
characteristics.

The finite element model created to estimate the structural dynamics behavior of the wind tun-
nel model is represented in Fig. 14. The elements used are basically beams with an specified
stiffness and point masses placed at appropriate positions to represent a spatial mass distribu-
tion.

The equilibrium positions calculated with the previously presented methodology are shown in
Fig. 16. Results measured in the wind tunnel are marked with black diamonds and data obtained
with the present methodology are represented by blue circles.

One can verify that, when comparing theoretical data with the ones obtained with the method-
ologies here described, theoretical methods are able to estimate well the equilibrium position of
the control surface subjected to gravitational force and freeplay.
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Figure 13: Half-wing geometry discretization used for the Doublet Lattice Method.

Figure 14: Schematic of the finite element model used for the Structural Dynamics.

An example of the time history of the control-surface position during the wind tunnel tests is
given in Fig. 15. One clearly notices an oscillation of the control surface around an equilibrium
position. Time histories, for various test conditions, were treated with Fourier analysis to obtain
LCO amplitude and frequency.

Charts with LCO amplitudes and frequencies are illustrated in Figs. 17 and 18, respectively.
They present LCO amplitudes and frequencies estimated with the frequency domain approach,
represented by orange circles for DF1, by blue circles for DF2, and the values estimated from
the data measured in the wind tunnel tests shown in black diamonds. The equations used for the
estimation were the ones described in Section 2.1. The describing function, Eq. (13), obtained
for the preloading condition gives approximately the same results as Den Hartog’s equation,
already widely validated for estimating LCO amplitudes without preloading.

In a preliminary manner, one notices that the predictions of LCO characteristics obtained with
the describing function for the preload condition give results which are compatible with those
obtained in the wind tunnel tests using a flexible model and fitted with a control surface with
freeplay. All estimated experimental values are close but lower than the ones predicted with the
describing function. This could be attributed to a number of factors as, for instance, the presence
of some friction in the freeplay mechanism and some structural damping in the aeroelastic
system.
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Figure 15: Control surface position variation measured and DFT analysis for V = 90 m/s.
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Figure 16: Comparison of control-surface average positions computed and measured.
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Figure 17: Comparison of LCO amplitudes estimated and measured.
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Figure 18: Comparison of LCO frequencies estimated and measured.
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4 COMMENTS AND CONCLUSIONS

This work contains the methodology developed and used to predict and analyze LCO character-
istics present in a flexible model of a wing with freeplay and preloading in its control surface. A
wind tunnel test, using a flexible model of a half-wing fitted with a control surface and freeplay,
was carried out to verify the results of the developed methodology.

The flexible model was designed to be able to present the nonlinear response known as LCO
when installed in the wind tunnel test section and within the operational conditions of the wind
tunnel in which the maximum velocity is around V = 120 m/s. An important characteristic
of this test is that, due to restrictions related to the wind tunnel balance, the model had to be
installed on the lateral wall of the test section, generating a condition of preloading on the
control surface due to the action of its own weight.

Another characteristic of this test is that, due to the aerodynamic loading, the equilibrium po-
sition of the control surface is altered as a function of the flow velocity inside the wind tunnel
test section, making it possible to have equilibrium positions inside the freeplay deadspace re-
gion. Consequently, it was necessary to adapt specific describing functions for this condition,
since the literature, at the time of this wind tunnel test, only treated cases with the equilibrium
position outside the freeplay deadspace region.

The results for predictions of control surface equilibrium positions and LCO amplitudes and
frequencies were all within an acceptable range and indicate the possibility of using the present
describing function and methodology to predict LCO characteristics under freeplay and preload-
ing conditions.
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