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Abstract: Artificial neural networks (ANN) are known for solving complex problems and 

detecting nonlinear relationships between the variables of a database in a fast and accurate manner. 

Moreover, their storage memory optimization makes them an attractive tool for aeronautical 

applications such as flight control algorithms, health monitoring of structural components and 

flight simulators [1]. In order to study the feasibility of applying feedforward backpropagation 

networks to dynamic loads problems, two applications on a military transport aircraft have been 

analysed: 

1. Assessment of potential aircraft overloading in hard landings events, where classification 

neural networks were used. 

2. Prediction of Fatigue continuous turbulence loads, where regression neural networks were 

used. 

The following procedures have been explored for the proper development of these neural 

networks: 

1. Exploration of the database inputs and outputs. This includes an initial assessment of the 

relevance of the input parameters, the selection of the suitable outputs to be monitored and the 

identification of the densest regions in the database. 

2. Neural training and hyperparameter tuning using Keras/TensorFlow 2.0 [2]. Sensitivity 

studies are performed to select the combination of the parameters that specify the details of 

the learning process which provide the best results, either for predicting a single or multiple 

outputs simultaneously. The definition of the cost function and metrics is of special relevance. 
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3. Interpolation and extrapolation capabilities assessment. Evaluations on the ability of the 

trained networks to predict results from inputs not used in the training, which are inside or 

outside the limits of the variable space in which they have been trained, were performed. 

4. Performance evaluation with recorded flight data. Influence of the errors coming from 

conservative estimations of the neural networks on the fleet operations is evaluated. 

The extension of this methodology to other dynamic loads problems such as fatigue discrete gust, 

taxi loads, and other overloading events will be explored in the future. 

1 INTRODUCTION 

A military transport aircraft experiences dynamic loads through its full life cycle. In- or post-flight 

monitoring of these loads are usually needed to support in-service events (severe turbulence, hard 

landing, etc.) or fatigue life consumption among other applications. A reliable and accurate loads 

monitoring is sometimes computationally expensive and ANNs based on calculated loads 

databases are expected to reduce the computational cost while keeping high reliability. 

Main objectives of this paper are: 

1. To explore the quality of the loads databases of dynamic landings and continuous 

turbulence for their usage with ANNs techniques. 

2. To develop ANNs-based fast assessment tools for dynamic landing classification and 

continuous turbulence loads prediction using neural networks. 

3. To design the generation of significant testing cases. 

Section 2 explains the methodology common to both dynamic landing and continuous turbulence 

applications, covering the database quality exploration and the ANNs training process. Section 3 

and 4 address the hard landing detection application and the fatigue turbulence loads prediction, 

respectively, describing the particularities of the methodology applied to these cases. Finally, 

Section 4 summarizes the conclusions extracted from both applications and defines future tasks 

where ANNs could be used. 

2 METHODOLOGY 

The process for both dynamic landing and continuous turbulence applications is common and 

composed of the following three steps:  

1. Exploration of the quality of an already existing database. 

2. Training the ANNs with this database to generate a simplified model. 

3. Validation of the ANN-based model with artificial or real testing cases. 

2.1 Database exploration 

Two of the key drivers of the final performance of the neural networks are the quantity and the 

quality of the data used for the training process. Since the method is part of a supervised learning 
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process, both input and expected outputs need to be provided during learning. A bad distribution 

(sparsity) of the samples or the lack of data could lead to unproper training. To avoid future 

problems, it is key to identify this data scarcity and propose algorithms to populate the database or 

even regenerate it based on the findings. In this paper some techniques applied for database 

exploration are described: 

• Histograms give a graphical representation of the independent distribution of each input 

parameter and the extreme values.  

• Pearson correlation coefficient [3] measures linear dependence between two random 

variables. This metric would give a value between -1 and 1 that measures the strength and 

direction of the relationship. Value -1 means perfect anticorrelation, 0 no correlation at all 

and 1 for perfect correlation. This coefficient only works well under linear relationships 

between variables, and it is given by the expression 

 
𝑟 =  

∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛
𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2 ∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

𝑛
𝑖=1

 (1) 

where 𝑥𝑖 are the values of one of the input parameters in a sample, 𝑥̅ the mean of the values 

of the input parameter, 𝑦𝑖 the values of the output in a sample, 𝑦̅ the mean of the values of 

the output and 𝑛 the number of points in the database. 

2.2 ANN training and hyperparameter tuning 

In general, dynamic loads problems are known to have an inherent complex physics, present non-

linearities and require numerical simulations to solve them. The main goal of the ANNs is to create 

loads-prediction simple models with minimum penalties on the accuracy of the results. The branch 

of machine learning used for this goal is supervised learning. The model is trained by adjusting 

ANNs internal weights to obtain the desired outputs knowing the inputs.   

The type of artificial neural network chosen is feedforward backpropagation [4] which can handle 

complex datasets and capture nonlinear relations. The algorithm (Figure 1) consists of defining an 

objective function that would measure the distance between the predicted output and the desired 

output, also known as loss function. This function is used by the optimizer to adjust the weights of 

each layer of the neural network in a direction that minimizes the loss. In the training loop the 

weights are randomly initialized and several iterations are needed to reach the weights that 

minimize the error. However, having the minimum error between predicted and desired outputs 

does not guarantee the neural network is able to generalize and perform well on unseen data.  
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Figure 1: Feedforward backpropagation algorithm 

There are parameters that can be tuned to obtain the optimal ANN performance, known as 

hyperparameters, and can be grouped in two categories: 

ANN design parameters: activation functions, number of neurons and number of layers. 

ANN training parameters: 

• Distribution of the training, validation and test sets. The training set includes all the 

database points used to update the ANN weights. The validation set includes all the 

database points used to assess, and consequently stop, the training process. Finally, the test 

set data includes any database point that does not participate neither directly nor indirectly 

in the training process. This set acts as the final and most reliable evaluation of the 

performance of the ANN.  

• Loss function, i.e., the function to be optimized. Some of the most common loss functions 

for regression problems are MAE (Mean Absolute Error) and MSE (Mean Square Error) 

and, for classification problems, the Cross Entropy Loss function is usually used. 

• Optimizers. They set the strategy to change the weights and the learning rate to minimize 

the loss function. For this work, Adam [5] (Adaptive Moment Estimation) is selected; this 

algorithm is a mixture of two other algorithms: 

o AdaGrad (adaptative gradient) [6], which improves the optimization of the loss 

function, adapting to the difference in curvature that may exist in the different 

directions of the objective function. It eliminates the need to adjust the learning 

rate, since it updates itself during the process and is specific to each of the features, 

thus eliminating one of the hyperparameters to be set.  

o RMSProp (Root Mean Square Propagation) [7]. Its mathematical formulation 

makes the gradients of past iterations less relevant than the gradient of the current 

iteration. Thus, the oldest gradients are eventually forgotten. This way, the term 

that updates the weights does not get smaller and smaller in each iteration, which 

avoids the algorithm to stop updating. 

• Batch size. Sample size to get the gradients between iterations during training. If 

computational resources are limited, the ANN can be trained using mini-batches and 
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predict the update on the weights and biases before composing a final value for a global 

update. 

• Number of epochs, i.e., the iterations of the training process. The choice of this 

hyperparameter is one of the most complex selections, since it is difficult to know 

beforehand the number of epochs that will be necessary to train the network correctly. For 

this reason, callback functions are used, which are called repeatedly during the training of 

the ANN and are responsible for ending the ANN training process at the most appropriate 

point. The callback function chosen is the Early Stopping algorithm, which stops the 

iterations before performance starts decaying. 

In addition to ANN training parameters tuning, some good practices [8] are followed during the 

training process: 

• Reorganize the training set so successive samples are rarely in the same region or 

belong to the same class. 

• Normalize the input data to avoid privileged directions. 

• Decorrelate input variables to avoid redundant training on dependent variables. 

• Weights and biases initialization to random variables to avoid initial activation function 

saturation and increase the learning speed. 

• Stop the training process whenever a minimum error in the validation set is reached 

(see Figure 2). Overfitting means the network memorized the training data and 

underfitting that the capacity of the network is not enough to minimize even the training 

error. 

 

Figure 2: Training and validation errors evolution 

3 APPLICATION 1: HARD LANDINGS LOADS ASSESMENT 

Dynamic landing is a manoeuvre where the vertical velocity of the airplane is quickly reduced to 

zero when the wheels strike the ground. The process can be summarized as a transfer of kinetic 

and potential energy of the sinking airplane to internal energy in the shock absorption system, 
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where it is finally dissipated. This rapid change in velocity, and thus in application force, excites 

the lower vibration modes of the structure. Therefore, the structural dynamics characteristics of 

the structure must be taken into account. 

The severity of a monitored load is determined using the criticality factor CF, which is defined as: 

 𝐶𝐹 =  
𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑 𝐿𝑜𝑎𝑑

𝐿𝑖𝑚𝑖𝑡 𝐿𝑜𝑎𝑑
 (2) 

A monitored load is said to be critical whenever CF ≥ 1 and supercritical when CF ≥ 1.25, which 

corresponds to component plastic deformation. A hard landing will occur if any of the monitored 

loads is at least critical. The objective of the ANNs is to detect whether a hard landing has occurred 

and identify the affected components.  

Note that, for this application, knowing the exact value of the CF is not critical but detecting 

precisely if it exceeded the limit threshold. Too conservative predictions imply aircrafts that did 

not suffer any damage to be grounded, and too lax predictions imply damaged aircraft flying. There 

must be a compromise between them, driven by the industry requirements. In this matter, the 

second case is the most important one. No operator is willing to fly with an unknown damaged 

aircraft, but they are willing to sacrifice a very small percentage of flights close to be critical to be 

declared as critical in a false alarm.  

3.1 Dynamic Landing database exploration 

The database explored for dynamic landings has around 90000 cases with seven inputs: (1) landing 

weight, (2) fuel weight, (3) load factor, (4) sink rate, (5) pitch angle, (6) roll angle and a (7) signal 

for spoilers. The output of this database is the criticality factors of 35 selected monitored loads and 

the incremental load factor of the landing. Inputs and outputs are depicted in Figure 3. 

 

Figure 3:Inputs/Outputs from the database 

Figure 4 depicts the distribution per component of these critical stations. Wing and engines are 

usually the most affected components in dynamic landing events. 
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Figure 4: Frequency of critical station loads by aircraft component 

The histogram distribution of the input parameters of the database is depicted in Figure 5. With 

these individual histograms it is observed that the main input parameters are fairly covered. 

However, this does not imply that all the possible combinations between parameters are addressed. 

Note that when there is a low load factor, the frequency of appearance is almost double to high 

load factors. This is because this database was designed to account for dynamic landing rebounds. 

In rebounds, most of the lifting force is destroyed by the activation of the spoilers during the first 

impact, making low load factors to appear. In this case, the database accounts for the cases with 

and without spoilers for low load factors. 

 

Figure 5: Dynamic landing database input parameters histograms 

In order to define a measure of uncertainty of the database, at each sample the sensitivity to 

changing all input parameters one unit was computed as the sum of squares of the individual 

components. Since the unit parametric change could be changed forward or backward, the one 

producing the maximum ∆CF is chosen. The global change in CF for each sample is then defined 

as: 

 ∆𝐶𝐹𝐺𝐿𝑂𝐵𝐴𝐿 = √∆𝐶𝐹𝐿𝑊
2 + ∆𝐶𝐹𝐹𝑊

2 + ∆𝐶𝐹𝐿𝐹
2 + ∆𝐶𝐹𝑆𝑅

2 + ∆𝐶𝐹𝑃𝐴
2 + ∆𝐶𝐹𝑅𝐴

2 + ∆𝐶𝐹𝑆𝑃
2  (3) 

The error is assumed to be: 
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 Δ𝐶𝐹𝐸𝑅𝑅𝑂𝑅 =
Δ𝐶𝐹𝐺𝐿𝑂𝐵𝐴𝐿

2
 (4) 

which accounts for the worst uncertainty that could be achieved when trying to predict the output 

of an interpolated point. If this error is large, it means the ANN-based interpolation capability has 

great uncertainty. For a linear interpolator near the region of interest (CF ~ 1), and analyzing the 

most critical CF of every point, an average error of 20% is expected with the current Dynamic 

Landing database density. This shows that a regression neural network may present similar 

problems to predict exact CFs. 

Due to high uncertainty when measuring the sink rate, this parameter was substituted by the 

increase in the load factor at the moment of impact. For a certain wing monitored load, the 

following Pearson correlation coefficients were obtained and shown in Figure 6. 

 

Figure 6: Inputs/output Pearson correlation coefficients heatmap for a wing monitored load 

As a general trend, input parameters present little correlation between them. Having inputs as 

uncorrelated as possible is desirable to avoid redundancies that may decrease the performance of 

the ANNs. Note that the landing weight and fuel weight are correlated parameters, but it is key to 

have them both since the same landing weight could be achieved with different fuel weights, which 

are critical for the wing loads. Spoilers are inversely correlated to load factor, which account for 

the rebound cases where the load factor is low. Incremental load factor is strongly correlated to 

the load factor. However, both of them are needed to account not only for the potential energy but 

the kinetic energy of the impact. 

Finally, note that all the inputs contribute to some extent in the criticality factor of this wing 

monitored load. Landing weight and pitch angle are related to the magnitude of the pintle loads 

that excite the dynamic response, the roll angle determines the lateral component of this excitation, 
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both fuel weight and the spoilers determine the dynamic response of the wing, and the load factor 

related inputs drive the total energy of the impact. 

3.2 ANN training and hyperparameter tuning (Regression vs Classification) 

The monitored-loads critically factors CFs can be assessed by two approaches: 

1. Quantitative description of the criticality, by predicting the numerical values of the CFs 

using regression-type ANNs or 

2. Qualitative description of the criticality, by classifying the load criticality using 

classification-type ANNs, which groups the CFs in three different classes according to their 

numerical values.  

For the first approach, the results of the regression ANN are depicted in a 45° scatter plot, shown 

in Figure 7, that compares the target outputs and the predicted outputs of the ANN in terms of CF. 

False positives are defined as the points that are not critical in reality, but are predicted as critical 

by the ANN, whereas the opposite applies to false negatives. The variability of the predictions is 

large and, to reduce the number of false negatives to zero, the CF output of the ANN should be 

shifted 0.4 units as depicted in Figure 7. This would force to declare stations with CF = 0.6 as 

critical, increasing dramatically the number of false positives. 

 

Figure 7: Regression neural network performance in training 

For the second approach, the results of the classification ANN are depicted in the form of 

histograms depending on the pairs predicted-target output. The classification is divided in three 

classes: class 0 when CF < 1, class 1 when 1 ≤ CF < 1.25 and class 2 when CF ≥ 1.25. This leads 

to 9 possible different combinations of predicted-target outputs, which are labeled as (predicted 

class)/(target class). Figure 8 depicts histograms on CF of all the possible combinations, being the 



IFASD-2024-171 

 
10 

first row the correctly classified cases (00, 11 and 22), the second row the false negatives (01, 02 

and 12) and the third row the false positives (10, 20 and 21). 

The presented case has a displaced classification threshold of 10% in CF, which means that most 

of the cases above CF = 0.9 will be declared as critical. However, note that with just this 10% 

adjustment, there is only one false negative 01 during training. 

 

Figure 8: Classification neural network performance in training 

The classification ANNs has been chosen over regression ANNs for several reasons: 

• The variability in the predictions. For regression networks even if training, validation and 

testing mean average prediction errors could be below 10% criticality (±0.1 in CF), there 

were outliers ranging up to 40% variability in criticality factor (±0.4 in CF). This would 

mean that a station with CF = 0.6 would need to be declared as critical (CF = 0.6±0.4), 

which is unacceptable. For classification network, the risk lies on the misclassification, 

which could be improved, although accuracies in classification over 90% were obtained 

with simple networks. 

• Improvements to enhance the accuracy on classification ANNs can be easily implemented. 

To improve the previous prediction on the regression, it would be needed either to displace 

the outputs 0.4 in the conservative sense or retrain with more density of the database. To 

improve the classification ANNs, two strategies can be considered: 

o The frontier between classes could be displaced, thus increasing the amount of 

training data for each class. The weights assigned to each of the classes could be 

changed or a secondary independent artificial station could be used to make the 

classification more robust. 

o Although the three classes indicate if the event is non critical, critical or 

supercritical, it could be possible to reduce the classes into non critical and critical 
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(binary classification) in case not enough density of data is found for training three 

classes. 

The architecture decided for the classification ANN was a shallow neural network with two hidden 

layers and ReLU activation functions with 32 neurons each. 

The sets distribution was chosen to be ~90% training, 20% of the region of interest for validation, 

and 5% for testing as depicted in Figure 9, where the three classes 0 (CF<1), 1 (1 ≤ CF < 1.25) 

and 2 (CF ≥ 1.25) are also shown. The region of interest is defined as a region with criticality 

factors (CF) between 0.9 and 1.25, the purple rectangle intersecting classes 0 and 1 in Figure 9. 

This validation region is used to find the optimal point during the training process. The optimal 

point for this application is composed by the weights and biases of the ANN that minimize the 

classification error in this region. 

 

Figure 9: Training, validation and test sets distribution 

Adam optimizer and full sample size (batch) were considered for the training process. 

In the hard landing database, there is a high predominance of class 0. However, this tool is being 

developed for hard landings, and class 1 and 2 are expected to be properly captured. A personalized 

cost function is created based on the categorical cross entropy (CCE) [9]. An inverse weighting 

term was implemented to give the same importance to all of the classes. This guarantees that the 

borders between classes are well defined and thus, misclassifications tend to be minimized. The 

weighted categorical cross-entropy (WCCE) was formulated as follows 

 𝑊𝐶𝐶𝐸 =  ∑ −

1
𝑛𝑖

∑
1
𝑛𝑖

𝑁
𝑖=1

(𝑦𝑖 ∗ log(𝑝𝑖))

𝑁

𝑖=1

 (5) 

where 𝑁 is the number of classes, 𝑦𝑖 is the real probability of belonging to class 𝑖 (assuming either 

0 or 1 value), 𝑝𝑖 is the probability (expressed in [0,1] interval) given by the neural network to 

belong to class 𝑖 and 𝑛𝑖 as the number of samples in class 𝑖. Note that the function is minimized 

whenever the probability predicted by the network to belong to the correct class is high 

(log(1) = 0). 
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For those monitored loads where the supercritical region (class 2) has little data to train, it was 

chosen a binary classification network instead. Binary classification has a cost function named 

binary cross-entropy (BCE) [10] that takes already into account the different data density. 

 𝐵𝐶𝐸 =  
1

𝑁
∑ −(𝑦𝑖 ∗ log(𝑝𝑖) + (1 − 𝑦𝑖) ∗ log (1 − 𝑝𝑖))

𝑁

𝑖=1

 (6) 

The main goal of the ANN can be summarized into having as much correctly classified values as 

possible. 100% accuracy is not feasible, since the borders are the most confusing regions of 

classification for these networks. At the borders, there is usually a high incidence of false positives 

on the left part and false negatives on the right part, that decrease when moving far from it. 

Figure 10 shows the frontier of critical values needs to be moved to CF = 0.9 to avoid 

misclassification on CF > 1. This inherently implies a sacrifice in terms of false negative 

declarations of the values between 0.9-1.0, but also false alarms to the left of the border.  

 

Figure 10: Misclassifications at frontiers between classes 

This frontier displacement varies depending on the monitored loads. However, after the training 

process, most of them showed that a displaced threshold of CF = 0.9 was enough to have null false 

negatives over CF = 1.01. Table 1 summarizes the percentage of false positives coming from at 

least one of the monitored loads when setting the frontier at CF = 0.9.  

Table 1: Average training percentage of false positives in different CF intervals 

0.70-0.75 0.75-0.80 0.80-0.85 0.85-0.90 

0.4% 4.0% 25.2% 69.9% 

This trend is considered acceptable since the decay occurs quickly. Around 30% of the cases are 

properly predicted between 0.85-0.90 and around 75% between 0.80-0.85. The remaining intervals 

present a negligible percentage of false positives. In terms of false negatives, none appeared above 

1.01 in any of the sets.  
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3.3 Interpolation and extrapolation capabilities 

Once neural networks are compliant with the cases in the database on the three sets, a more detailed 

testing with new artificial data is performed near the region of interest.  

The interpolation points are chosen to be intermediate points in every input parameter. The aim of 

these points is to check the nullity of false negatives above the limit CF when the network 

interpolates. 10000 points are generated between CF = [1.01,1.25]. 

The extrapolated points are generated to cover specific directions: lower sink rate, lower load 

factor, and lower and higher roll angles. The aim of these points is to check the extrapolation 

performance of the network including false positives and false negatives. 10000 points are 

generated between CF = [0.65,1.35]. 

Linear interpolation and extrapolation strategies are followed to have an estimated CF. If the 

estimated CF lies within a certain range defined by the user, then the point is valid and the 

simulation will be performed to get the exact CF.  

The distribution of these testing sets is shown in Figure 11. Note that for the interpolation cases, 

around 1000 cases gave simulated values between 0.59 ≤ CF ≤1.00, which differ from the 

estimated CFs. For the extrapolated cases, they follow the estimated CF distribution except for 

100 cases over CF ≥ 1.35 in the simulations. 

 

Figure 11: Interpolation (left) and extrapolation (right) points distribution with estimated and simulated maximum CF 

The overall summary of misclassifications is shown in terms of confusion matrices: the target class 

is stated in columns and the predicted class in rows. Figure 12 (left) shows the overall confusion 

matrix of the interpolation points. The count refers to the overall aircraft criticality, which means 

the maximum criticality obtained in any of the monitored loads. Note that 82% of the interpolated 

points are properly classified as critical. Around 11% are falsely classified as critical, which is the 

result of having around 1000 points in simulation between 0.59 ≤ CF ≤ 1.00 and displacing the 

classification threshold to 0.9. Finally, there is 15 points classified as false negatives. Most of them 

were landings with high kinetic energy but very high load factor, making the network struggle 

with the predictions of these limit cases. In fact, the probabilities of the most critical monitored 

loads were 60% and 40% of belonging to non-critical and critical regime, respectively. To correct 

for these 15 cases without affecting the false positives, the increment in load factor was increased 

a 5% to be conservative.  
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Figure 12: Interpolation (left) and extrapolation (right) points confusion matrices 

Figure 12 (right) shows the overall confusion matrix of the extrapolation points. In this case 

extrapolation does not present any false negatives and the false positives are concentrated in the 

expected regions (CF = [0.85,1.01]). The 11 cases appearing in predicted 2 and target 0 

combination are all above CF = 0.92 and in limit parametric conditions. They are treated as 

expected false positives, since their class was expected to be 1 due to the displaced threshold to 

0.9. For all other points the conclusion is the network extrapolates properly within the region of 

interest. 

3.4 Hard landings in-service events 

The performance of the ANNs has been tested in two applications: 

• Severity identification of the dynamic landings of the entire fleet over 2021. 

• Identification of the affected aircraft component in particular hard landing events. 

3.4.1 Severity identification of the fleet dynamic landings over 1 year 

Classes 0, 1 and 2 defined in the ANNs are labelled as Load Severity Indexes (LSIs) in the argot 

of hard landing events. The order of magnitude of yearly hard landings is 104, whereas the order 

of magnitude of hard landings received that year is 100. Therefore, all landings predicted with an 

LSI > 1 by the ANN are false positives. LSI = -1 means the ANN inputs were beyond the validated 

limits, and thus could not be computed. They are automatically classified as severe due to the 

uncertainty.  

Table 2 depicts the most critical LSIs predicted by the ANNs for all the landings occurring over a 

year. No false positives appear on landings without rebounds. However, a 0.3% of those landings 

are considered uncertain due to landing parameters outside the limits and would need to be 

simulated.  

The set of landing with rebounds presents ANN-predicted false positives LSI > 1 due to the severity 

of the landing parameters. For rebounds, spoilers are active and the aircraft is not in balanced 

conditions with lift vs. weight ratio L/W < 1. This creates an extra potential energy contribution 

that makes the mechanical energy of the second impact more severe. 
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Finally, checking at the overall percentage of false positives and out of bound parameters, it is 

concluded that giving false alarms over 1.1% (sum of LSI = -1 and LSI > 1) of the landings over a 

year is a reasonable percentage. 

Table 2: Overall Load Severity Index predicted by the neural networks using real landing parameters over a year 

Case Percentage LSI = -1 LSI = 0 LSI > 1 

First impacts 80% 0.3% 99.7% 0.0% 

Rebounds 20% 1.2% 96.1% 2.7% 

Total 100% 0.5% 98.9% 0.6% 

3.4.2 Identification of the affected aircraft component in particular hard landing events 

Two hard landings are shown on this paper: one without rebound, and the other one with a first 

impact and a subsequent rebound. The 35 monitored loads are grouped into 11 aircraft zones, and 

the maximum criticality factor (calculated with ad-hoc simulations) of the corresponding 

monitored loads is considered for each group. These calculated CFs are compared with the 

maximum ANN-predicted LSI, which are shown with 3 different colors: green, red and black, 

corresponding to non-critical, critical or supercritical component, respectively. Note that input 

parameters are normalized. 

Figure 13 shows the results for the first hard landing without rebound. The overall severity of this 

landing is classified as 1 (red) by the ANN. However, the simulated values show that the landing 

is not critical because all the CFs < 1. In fact, the maximum is 0.97. Recap the classification 

threshold is displaced and false positives are expected near CF = 0.9 leading to expected false 

positives.  

 

Figure 13: Landing #1 first impact simulated CFs and estimated classification LSIs 
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Results for the 1st impact of the second hard landing are shown in Figure 14. The overall severity 

of this impact is classified as 2 (supercritical) by the ANN. The maximum calculated CFs is 1.29 

and all of the components are classified critical (red background) or supercritical (black 

background) by the ANN. 

 

Figure 14: Landing #2 first impact simulated CFs and estimated classification LSIs 

Results for the rebound of the second hard landing are shown in Figure 15. The overall severity of 

this landing is classified as 2 (supercritical) by the ANN. The only misprediction occurs in the 

right-wing section 2 where the calculated criticality factor (CF) is 1.44 and the ANN prediction is 

LSI = 1. However, it was stated that false negatives appearing between critical-supercritical classes 

are acceptable. 

 

Figure 15: Landing #2 rebound simulated CFs and estimated classification LSIs 
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Overall, NNs estimated values of LSIs are in good agreement with the simulated results of CFs. 

Classification ANN show an adequate performance for the detection of hard landing events: a 

reduced number of false positives appear when analyzing the whole fleet over a year, and a proper 

overall LSI prediction and identification of the affected components in real hard landings is 

obtained by using ANNs. 

4 APPLICATION #2 : FATIGUE TURBULENCE LOADS PREDICTION 

A regression ANN is applied to the prediction of atmospheric turbulence loads in different 

monitoring stations of the military transport aircraft. The ANN database used is the one used by 

the aircraft structural health monitoring system or SHMS. 

4.1 Database exploration 

The databases are associated with vertical and lateral turbulence events. They are analytically 

calculated using the mass, structural and unsteady aerodynamics models used for dynamic load 

certification calculations and using the Von Kármán atmospheric turbulence model. They consist 

of 11 input parameters, two associated to the flight point and nine to the mass state, and the forces 

and moments in each monitoring stations. The exploration of this database has been carried out by 

subjecting the input variables to a Pearson correlation study, as exposed in Figure 16, and by 

obtaining its histograms, shown in Figure 17 and Figure 18. 

Pearson indicator shows most of the input parameters are uncorrelated. Since the number of inputs 

is not high, it was decided to keep all of them and test the results of the ANN using this number of 

inputs. 

 

Figure 16: Pearson correlation coefficients for the input magnitudes 

The histograms of the input variables show how most of the variables present a sparse behaviour. 

This is due to the fact that the database was designed to be used by a linear interpolator, so the 

intermediate values with linear behaviour can be interpolated without major problems. This will 

be a test of the neural network's ability to interpolate into these empty areas of the database. 
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Figure 17: Flight point variables space distribution 

 

Figure 18: Mass point variables space distribution 

4.2 ANN training and hyperparameter tuning 

Fatigue loads are continuous values; thus, a regression neural network is employed to predict these 

values for a propeller-driven Military Transport Aircraft. In order to find the hyperparameters that 

optimize the final result, a sensitivity study of the network hyperparameters was carried out. These 

sensitivity studies have been performed both for an ANN that predicts a single magnitude and for 

an ANN that predicts multiple magnitudes.  

The two main loads to which the wing is subjected are shear force and bending moment, but 

bending moment is more likely to be the main design criterion in the majority of wing designs, 

particularly important in the design of wing spars [11]. The maximum loads on the wing are seen 

at the wing root, so the first magnitude studied is the bending moment, in wing root for the single-

output ANN and in different monitoring stations for the multiple-output ANN. It has been decided 

to work with 72 different hyperparameter combinations, shown in Table 3. 
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Table 3. Hyperparameters combination summary for the sensitivity studies 

HYPERPARAMETER SINGLE-OUTPUT MULTIPLE-OUTPUT 

Number of hidden layers 2 2 

Neurons in hidden layers 4 8 16 8 16 32 

Activation functions Tanh Linear Tanh Linear 

Split ratio 70/25/5 75/20/5 80/15/5 70/25/5 75/20/5 80/15/5 

Optimizers SGD Adam SGD Adam 

Loss function MAE MSE MAE MSE 

Metrics MAE MAE 

Epochs Early Stopping Early Stopping 

Batch size Full sample Full sample 

The distribution of points for training, validation and test sets is random, to ensure the points within 

the sets cover the entire data space and prevent training and evaluating the model in specific 

regions, which can lead to biased results. For that reason, the combinations have been run three 

times and the results of the three iterations have been averaged. The performance of the ANNs is 

characterize by two properties: (1) the percentage of points of the test set predicted with an error 

equal to or less than 5%, and (2) the average number of epochs that the network needed to perform 

the training. The results of these two properties are attached in Figure 19 for a single-output (wing 

root bending moment) ANN. It was considered adequate for the model to predict at least 90% of 

the test points with such error, which is indicated by the red line.  

 

Figure 19: Percentage of points within the test set predicted with error ≤ 5% (continuous) and average epochs of 

training (dashed) for all combinations of hyperparameters 
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For the multiple-output ANN, the bending moment has been studied in five different monitoring 

stations, but since the approach is the same as for the single-output ANN, the sensitivity study 

plots will be omitted. The models that have provided the best results to predict the bending moment 

in wing root and in different monitoring stations are presented in Table 4. 

Table 4. Combination of hyperparameters of the chosen to predict single and multiple outputs 

Output Neurons hidden layers Activation function Optimizer Loss function Split ratio 

Single  8 Tanh/tanh/linear Adam MSE 75/20/5 

Multiple  32 Tanh/tanh/linear Adam MSE 80/15/5 

The ANN configuration chosen for both single- and multiple-output problems is used to predict, 

not only the bending moment, but also other aircraft magnitudes, in order to test the ANN 

capability. In this paper we will present results, using a single- and multiple -output ANN, for: 

• Wing shear force, bending and torsional moment at five different monitoring stations. 

• Bending moment, lateral force and torsional moment at VTP tip and root. 

To analyse the results obtained, the criteria in Table 5 are followed. First, a Kolmogorov-Smirnov 

test is performed to determine whether the target and predicted values come from the same 

statistical data distribution and are therefore similar. Secondly, the results of the ANN are plotted 

against the target ones around a straight line at 45°. To conclude that the network is working 

correctly, it is necessary to comply with both tests. An additional analysis of the distribution of the 

relative errors is then performed, as a method to confirm that the chosen ANN is working properly.  

Table 5. Summary of the steps to be followed in the evaluation of the regression neural network model 

Test Does it meet the test? 

Kolmogorov-Smirnov No Yes No Yes 

Scatter plot No No Yes Yes 

Error distribution Not applicable Not applicable Not applicable Applicable 

Outcome Refine and boost data and/or model Model works well 

A brief summary of these methods is presented herein. The Kolmogorov-Smirnov (KS) test 

calculates the cumulative distribution function of both distributions, compares them and calculates 

the maximum absolute distance between them, 

 𝐷𝑚𝑛 = 𝑚𝑎𝑥|𝐵(𝑥) − 𝐺(𝑥)| (7) 

where B(X) and G(x) are the distribution of the predicted and the target values, and 𝐷𝑚𝑛 is the KS 

statistic. Then, this value must be compared to a threshold value, the critical KS statistic, 𝐷𝑚𝑛,𝛼 



IFASD-2024-171 

 
21 

 𝐷𝑚𝑛,𝛼 = 𝑐(𝛼)√
𝑚 + 𝑛

𝑚𝑛
 (8) 

where c(α) represents the critical value of the Kolmogorov distribution evaluated at α, which is the 

significance level (probability of rejecting the null hypothesis when it is true). In this case, the null 

hypothesis states that there is no difference between two distributions, and therefore, both samples 

compared come from the same statistical data distribution. This null hypothesis is rejected when 

𝐷𝑚𝑛> 𝐷𝑚𝑛,𝛼. 

The critical value of the Kolmogorov distribution c(α) [12] is obtained by 

 𝑐(𝛼) = √−
1

2
𝑙𝑛(

𝛼

2
) (9) 

To verify the reliability of the study, it is necessary to calculate the p-value, a probability value 

which indicates that the results obtained are not due to chance. The aim is for this value to be as 

close to 1 as possible. 

The second evaluation of the model will be carried out by means of a scatter plot, in which the 

target values are compared with the values predicted by the network. In this way, what is sought 

is to observe how these results are distributed around a straight line at 45°.  

The evaluation of the error distribution is the third check performed, and only applies if the two 

previous tests have been satisfactorily accomplished. The error distribution will show how the 

relative error made when predicting the values of the test set with respect to the target values is 

distributed. The expected result of this test is that the error distribution follows a Gaussian 

distribution.  

Once the methods to evaluate the results obtained by the ANN are outlined, results for the single- 

and multiple-output ANN are presented below. First, evaluation of values predicted for the bending 

moment at the wing root and lateral force in the VTP tip of the propeller-driven Military Transport 

Aircraft studied are shown in Figure 20 and Figure 21, respectively. 
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Figure 20: KS test, scatter plot and error distribution for the bending moment at wing root 

 

Figure 21: KS test, scatter plot and error distribution for the lateral force at the VTP tip 

The value of the KS statistic for the bending moment at wing root (𝐷𝑚𝑛 = 0.0226) and for the 

lateral force at VTP root (𝐷𝑚𝑛 = 0.0198) are both lower than the critical value for 𝛼 = 5% 

(𝐷𝑚𝑛,𝛼 = 0.1022). This indicates that samples of predicted and target values belong to the same 

statistical data distribution for both cases, and the p-value obtained indicates that this result is 

reliable. Thus, it is concluded that first test of the ANN evaluation is satisfied. The figure on the 

middle shows that 97.5% of the points belonging to the test set of the bending moment are 

predicted within a 5% of error margin, and it has also been calculated that 90% of the points are 

within a margin of error of 2.9%. For the lateral force at the tip of the VTP, this percentage takes 

93.2% as a value, and 90% of the predictions lay within a 4.1% margin of relative error. The 

remaining magnitudes predicted by a single-output ANN for both wing and VTP are presented in 

Table 6 and Table 7, respectively. 
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Table 6. Summary of the results obtained for bending moment at each wing monitoring station (MS) using a single-

output neural network 

Monitoring 

Station 
Magnitude KS statistic KS p-value 

Test points with 

error < 5% 

Error margin where 90% of 

predictions lay 

Wing root 

Bending moment 

2.26E-02 9.99E-01 97.5% 2.9% 

Wing centre 1.98E-02 9.99E-01 96.6% 3.6% 

Wing tip 1.98E-02 9.99E-01 98.6% 2.7% 

Wing root Shear force 2.26E-02 9.99E-01 93.7% 4.2% 

Wing tip Torsional moment 3.33E-02 9.87E-01 98.6% 2.9% 

Table 7. Summary of the results obtained for the lateral force, bending and torsional moment at both monitoring 

stations of the vertical stabilizer, using a single output neural network. 

Monitoring 

Station 
Magnitude KS statistic KS p-value 

Test points with 

error < 5% 

Error margin where 90% of 

predictions lay 

VTP tip 

Lateral force 5.66E-02 9.99E -01 93.2% 4.1% 

Bending moment 2.54E-02 9.99E-01 96.3% 3.6% 

Torsional moment 2.26E-02 9.99E-01 93.2% 3.8% 

VTP root 

Lateral force 1.98E-02 9.99E-01 98.6% 2.9% 

Bending moment 3.68E-02 9.70E-01 97.5% 3.3% 

Torsional moment 2.26E-02 9.99E-01 92.9% 4.1% 

The prediction of the shear force, bending and torsional moment at different monitoring stations 

of the wing and the lateral force, bending and torsional moment at the VTP is very satisfactory, so 

the ANN chosen works well with magnitudes related to both vertical and lateral turbulence.  

These magnitudes have also been predicted using a multi-output ANN. A total of 32 neurons in 

the hidden layers have been used to predict the VTP magnitudes, but a network of 48 neurons was 

needed to predict the shear force, bending and torsional moment in the five monitoring stations of 

the wing. Results of these are provided as a comparison of the margin of error within which the 

90% of the predictions lay between the single-output and the multi-output neural network, 

presented in Table 8 and Table 9. 
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Table 8. Comparison of margin of error within which the 90% of the predictions made by a single and multiple 

output neural network lay, for the bending moment of the wing at different monitoring stations 

Monitoring Station Magnitude Single output Multiple output 

Wing root 

Bending moment 

2.9% 3.5% 

Wing centre  3.6% 3.6% 

Wing tip  2.7% 4.8% 

Wing root Shear force 4.2% 4.5% 

Wing tip Torsional moment 2.9% 5.4% 

Table 9. Comparison of margin of error within which the 90% of the predictions made by a single and multiple 

output neural network lay, for the lateral force, bending and torsional moment of VTP tip and root 

Monitoring Station Magnitude Single output Multiple output 

VTP tip 

Lateral force 4.1% 3.8% 

Bending moment 3.6% 2.9% 

Torsional moment 3.8% 5.4% 

VTP root 

Lateral force 2.9% 3.9% 

Bending moment 3.3% 3.8% 

Torsional moment 4.1% 7.2% 

The multi-output ANN chosen to predict the loads at the wing and the VTP at their different 

monitoring stations provide good results, with the exception of the torsional moment for both 

components, whose prediction is slightly worse. In the case of the wing, the torsional moment had 

to be segregated from the shear force and the bending moment in a 16-neuron network. This may 

be due to the fact that the shear force (lateral force for the VTP) and the bending moment are 

closely related, while the torsional moment is a more independent magnitude. 

It can be seen how, by predicting the magnitudes with a single-output ANN, better results are 

obtained in general, since the network is trained specifically for that magnitude, without having to 

take into account relationships between different magnitudes. 

4.3 Interpolation capabilities of the ANNs. Comparison with linear interpolation 

techniques. 

This section presents a study of the ANN’s ability to predict loads at those intermediate points of 

the envelopes that were not defined in the databases. The aim is to observe whether the ANN has 

enough capacity to use a database that was originally created for using linear interpolation 

techniques (and not designed for ANN techniques), or whether it would be necessary to define 

intermediate points in these empty areas in order to generate a denser space of values in the 

database. For this purpose, the single-output ANN that predicts the bending moment at the wing 

root, stored together with the value of the weights and biases that optimize it, is used. Two cases 

have been studied: 

• A flight speed value not used to train the network with an altitude value used for training. 
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• A flight speed and altitude values that have not been used to train the network. 

These two new flight points were analyzed for all mass states available, which is shown in Figure 

22. The blue values represent the wing root bending moment vs flight speed (left) and vs altitude 

(right) within the test set predicted by the ANN, while the other points are the ones predicted for 

the new flight conditions. For one particular mass state, the value of the predicted wing root 

bending moment and its comparison with the values obtained by the simulations (target values in 

this case) are shown in Table 10.  

 

Figure 22: Prediction results for the two cases of unknown flight point for all mass states 

Table 10. Prediction results for the two cases of unknown flight point for a particular mass state 

Velocity Altitude Analytical value Predicted value Relative error [%] 

0.5 -0.2 0.656 0.675 2.9 

0.5 0.65 0.649 0.646 -0.4 

The error is below 1% for the point where the flight speed value is not used in the training process 

but the altitude is. This error increases up to 3% for the point where both the flight speed and 

altitude were not used in the ANN training process. However, the maximum error made in the 

prediction of the loads at these points are similar than the error made by the linear interpolator 

(3%) for this magnitude. The advantage of the ANN over the linear interpolator is the storage 

memory it requires, since the number of parameters stored for the ANN operation is two orders of 

magnitude less than those for the linear interpolator and the complete database. 
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5 CONCLUSIONS 

In this paper, the feasibility of using ANN to predict aircraft loads in dynamic landing and 

turbulence encountering events is evaluated. In general, target values (from loads analyses) are in 

good agreement with the predicted values obtained with ANNs. 

The already existing databases were populated enough to be trained by specific ANN suited to the 

applications. 

Classification neural networks fitted best the hard landing detection application. It was tested 

with fleet data over a year to show the percentage of false positives obtained is negligible with no 

false negatives. It was also tested with particular hard landing events to evaluate if the affected 

components were properly identified, being the result satisfactory. 

Regression neural networks have proven to be a viable alternative to traditional tools such as 

linear interpolators in predicting continuous turbulence loads, as the errors made by both tools 

are comparable, with the advantage of occupying two orders of magnitude less memory in case of 

considering its use on board the aircraft.  

The satisfactory results obtained for the described applications may imply the extension of the use 

of neural networks for other complex dynamic problems such as taxi loads or discrete gust events 

in the future. 
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