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Abstract: In this study, a novel dynamically linearized Euler time-domain approach is used to
compute the generalized aerodynamic force from a CFD simulation. The aerodynamic forcing
term is implemented in a theoretical/computational nonlinear aeroelastic model to assess the
dynamic response of a flexible clamped-clamped panel considering the pressure profile due
to different shock wedge angles. One benefit of this approach is the possibility to perform
the same analysis to solve the Navier-Stokes Equation via RANS simulation and consider the
viscous boundary layer effect for near transonic regimes. Different shock wedge configurations
will be explored in this study in the CFD/ROM simulation and the aeroelastic solution using
an inviscid solver. These results will also be compared with the same structural configuration
considering a modified Piston Theory model, exploring the limitations and opportunities of this
simpler and faster solution.

NOMENCLATURE

a, b, h panel length, width, and thickness, respectively
Qm,k generalized aerodynamic force
qm, q̇m generalized coordinates for displacement and velocity, respectively
w physical panel deformation
ŵ physical dynamic panel deformation around the mean deformation (w̄(t))
M∞ Mach number
p∞ free stream static pressure
U∞ free stream velocity
ρ∞ free stream density
λ∗ nondimensional dynamic pressure (λ∗ = ρU2

∞a
3/D)

x, y and z spatial coordinates
t time
ψm structural modes
χ (small) amplitude for panel deformation
f, ω frequency in Hz and rad/s, respectively
k reduced frequency (k = ωa/U∞)
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1 INTRODUCTION

Shock-Wave/Boundary-Layer Interactions (SWBLI) in supersonic and hypersonic flows is a
topic that is usually explored experimentally or computationally using CFD when it comes to
aeroelastic instabilities [1–3]. The importance of this topic is understanding the physical as-
pects of the phenomenon and what it means for the structural integrity of the aircraft during
flight. Brouwer et al. and Spottswood et al. developed and presented a detailed benchmark
for a supersonic wind tunnel measurement, for configurations with and without shock impinge-
ment, [1, 4–6]. Different shock wedge angles allowed the visualization of attached and bubble
separation during the elastic deformation of the thin clamped-clamped panel, besides proving a
thorough benchmark for aeroelasticians to perform numerical simulations, [7,8]. The clamped-
free configuration is also explored by aeroelastic experimentalists in different Mach numbers
by Curral et al. and Vasconcelos et al., [9, 10].

The analytical (and/or numerical) implementation of nonlinear aerodynamic behavior into the
aeroelastic solution has always been a challenge in the field of fluid-structure interactions
mainly because of the time scale difference between the fluid and structural solver. Configura-
tions with shock impingement case and/or viscous boundary layer presents a more challenging
scenario where the expected simplified assumptions, i.e. isentropic inviscid flows, can no longer
be applied. For an elastic plate, the traditional aerodynamic method in a supersonic aeroelastic
analysis is the Linear Piston Theory (LPT), which is known to be a good approximation for
M∞ ≈ 2.0 and above. However, the LPT is limited in terms of the Mach number considered
in the analysis, the neglect of the 3D effect in the unsteady flow behavior, and the assumption
of uniform flow over the panel surface. In other words, using this linear and local LPT model
does not include the nonlinearity of more complex flows, such as configurations with shock
impingement or near-transonic regimes.

An extended (or improved) version of the Piston Theory (Enriched Piston Theory) was devel-
oped by Brouwer and McNamara [11] and has already been shown to model the local pressure
obtained by experimental results [12]. The Enriched Piston Theory is based on CFD steady-
state training data, such as RANS, to account for the flow nonlinearities. By doing so, it pro-
vides the aeroelastic response faster than the direct implementation of the two-way coupled
fluid-structural model. Using CFD time marching FSI simulations, Boyer et al. and Visbal et
al. explored the modeling of inviscid and viscous implementations on a pinned-pinned square
plate, [13–15]. They discussed the implications of solving a two- or three-dimensional shock
impingement problem, as well as the effects of different pressure ratios before and after the
shock impingement on the aeroelastic solution. Laguarda et al. [16] also explored FSI with a
flexible panel including an oblique shock and the turbulent boundary layer effect using a loosely
coupled implementation. Johnson et al. [17] go one step further implementing wall-modeled
large eddy simulation (WMLES) to assess the effect of fluctuation pressure on the aeroelastic
solution using a one-way coupled method with an analytical structural model. The dominant
parameters in the solution are characterized and the authors identify the sensibility of the aeroe-
lastic model to the LES-rich flow information. Although the latter is still limited by the time
scale required to run an LES solution, the advantage of this method is the simpler implementa-
tion of the coupling step between fluid and structure.

The advantage of solving FSI problems using a combination of numerical and analytical meth-
ods is the possibility of exploring different configurations and their sensibility to different pa-
rameters at a faster pace than when using a numerical solver only. For similar reasons, the
development of Reduced Order Model (ROM) methods combining these two approaches in the
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aeroelastic context has been an important goal in the field. Among the many ROM options
available in the literature, including the Enriched Piston theory previously mentioned, the In-
dicial Response offers a good performance in capturing some aerodynamic nonlinearities to be
included in the modeling process, both for simple and complex geometries [18]. The present
authors made use of the Dynamic Linearized Time-domain Approach (DLTA) [19] to assess
different shock configurations on an elastic panel and compare the solution performance using
a modified version of Piston Theory. This new approach is based on the Indicial Theory, where
the unsteady flow is modeled with a linear behavior (due to a small perturbation to the system)
about a nonlinear steady state of the flow. Once this “linear” information is obtained from a nu-
merical solution, i.e. CFD model, the generalized aerodynamic force in the aeroelastic solution
is reconstructed inside the aeroelastic solver, as a function of the Mach number, the structural
boundary conditions, and the mean aerodynamic conditions [20].

The goal of this study is to explore the capabilities of this method when solving a problem
with shock impingement acting on the flexible panel. One can argue that, for systems with
shock impingement, viscosity can play an important role in the dynamic of the panel, and the
authors agree with this statement. Still, in the present paper, the numerical solver is chosen
to be inviscid (Euler) to facilitate the interpretation of the results as a function of the shock
impingement only, and the cases selected were based on previous experimental configurations
where Shock-Wave/Boundary-Layer Interactions (SWBL) results were not found [1]. Another
goal of this study is to explore the contribution of the steady forcing term due to a static pressure
differential on the panel dynamic response.

2 THEORETICAL MODEL
2.1 Structural Model
The structural model in this study was based on the nonlinear von Karman plate equations,
presented in detail in [21,22]. The boundary conditions of the elastic plate in this study assume
all four edges of the panel to be fully clamped, enforcing no in-plane displacement on the
structure at the plate boundary. The mode shapes assumed in the study are presented in Eq. 1.
Note that in Eqs. 2 and 3, the first root is zero, so m = 2 is the first mode shape of the clamped
beam. For the y-direction, the shape function was shifted half the width of the panel, in order
to have the central line the x-axis, [23]
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2.2 Dynamically Linearized Domain Approach (DLTA)

The Dynamically Linearized Time-domain Approach [19] is based on the assumption that,
given a small magnitude of a known structural displacement experienced by the elastic panel,
one can model the generalized aerodynamic force by the linear expression presented in Eq. 4:

Qm,k(t) = qm(t)Am,k + q̇m(t)Bm,k +

∫ t

0

qm(τ)Em,k(t− τ)dτ (4)

The Am,k, Bm,k, and Em,k(t) matrices are determined for a given set of aerodynamic param-
eters, e.g. Mach number, etc. Also, Eq. 4 is valid for small panel deformations compared to
the panel chord, which is true for the clamped-clamped configuration. Because of structural
nonlinearities, the panel deformation is restricted to be in the order of its thickness before any
structural failure. The same may not be true for a clamped-free configuration, however. The
deformation expected for this second case is on the order of the panel length for the aeroelastic
instability, which may lead to nonlinear aerodynamic behavior, even with a uniform freestream.

For each m structural mode required, a CFD solution is run using a known enforced motion to
the structure with a small amplitude deformation (χ) to obtain an unsteady distribution, repre-
sented in Eq. 5 as ∆pm(x, y, t).

Qm,k (t) =

∫∫
(pm (x, y, t)− p∞)

ρ∞U2
∞

ψk (x, y) dydx =

∫∫
∆pm(x, y, t)

ρ∞U2
∞

ψk (x, y) dydx (5)

With this known Qm,k (t), the matrices Am,k, Bm,k, and Em,k(t) in Eq. 4 can be found and the
unsteady aerodynamic generalized forces can be reconstructed inside the aeroelastic solver for
any generalized coordinate qm(t) and q̇m(t). A more detailed explanation of the method and
its derivations is presented in [19], but Eqs. 6 and 7 are obtained from a CFD run with a step
change on the panel deformation (qm(t)), and Eq. 8. from a step change on the panel velocity
(q̇m(t)).

Qm,k (0) = Am,kχ→ Am,k =
Qm,k (0)

χ
(6)

Em,k (t) =
1

χ

(
Q̇m,k (t)− Q̇m,k (0)

)
(7)

Qm,k (0) = Bm,kχ→ Bm,k =
Qm,k (0)

χ
(8)

For the shock configuration, an additional step is required to process the unsteady aerodynamic
pressure obtained from the CFD solver, once the solution will have the steady component of
the shock on the rigid panel. Because the steady pressure due to the shock impinging on the
surface (psteady(x, y)) is not affected by the enforced motion of the structure, the steady pressure
distribution is removed from the unsteady ∆pm used to obtain the Am,k, Bm.k, and Em,k(t)
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matrices, Eq. 9. The components inside the parenthesis in Eq. 9 lead to a steady component,
QShock

k , that represents the static pressure term in the model, Eq. 10.

∆pm(x, y, t) =
pCFD
m (x, y, t)− psteady(x, y)

χ
+
(
psteady(x, y)− p∞

)
(9)

QShock
k =

∫∫ (
psteady(x, y)− p∞

)
ψkdydx (10)

This study will explore the case with a cavity coupled to the panel. Equation 10 is then modified
to Eq. 11; another way of correlating the two expressions is to consider pc = p∞ in Eq. 10. The
cavity in this study is assumed to have an infinite depth to avoid acoustic modes affecting the
dynamic response of the panel, but the model still accounts for a cavity pressure to control the
∆p across both sides of the structure.

QShock
k =

∫∫ (
psteady(x, y)− pc

)
ψkdydx (11)

2.3 Modified Piston Theory (MPT): including the shock effect based on the CFD steady
pressure solution

It is possible to consider the shock impingement pressure as a local and instantaneous phe-
nomenon acting on the panel using the isentropic relations to obtain a modified version of the
Linear Piston Theory terms. This approach does not consider the effect of the elastic deforma-
tion of the panel on the shock impingement location, though. Still, if one desires to consider the
shock effect as a local and instantaneous behavior and use the Modified Piston Theory (MPT)
as the unsteady aerodynamic model in the aeroelastic solution, Eqs. 12 to 14 present the ex-
pressions needed for it, where the local parameters are obtained based on the steady pressure
distribution over a rigid panel:

Qm,k (t) = qm (t)Sm,k + q̇m (t)Dm,k (12)

Sm,k =
ρ∞U

2
∞

M∞

∫∫
γpsteady (x, y)Mdist (x, y)

∂ψm (x, y)

∂x
ψk (x, y) dydx (13)

Dm,k =
ρ∞U∞

M∞

∫∫
psteady (x, y)

√(
γ

RairT0

)[
1 +

(
γ − 1

2

)
M2

dist (x, y)

]
·

ψm (x, y)ψk (x, y) dydx

(14)

with the Mach distribution being defined as:

Mdist (x, y) =

√√√√[(
psteady (x, y)

p0

)−(γ−1)/γ
]

2

γ − 1
(15)
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2.4 Final Nonlinear Aeroelastic Model

The aeroelastic equation of motion to be solved in this study is presented in Eq. 16. The linear
portion of the plate model is represented by the three first terms in the expression. The fourth
term expresses the nonlinear stiffness due to the in-plane boundary condition imposing no in-
plane displacement at the edges of the panel. The fifth term is presented in more detail in Eq. 17,
and it expresses the unsteady aerodynamics coupled to the dynamic response of the panel. The
sixth term expresses the static pressure differential between both sides of the panel, including
the steady pressure shock.

Mm,kq̈k (t)+Cm,kq̇k (t)+G
(2)
m,kqk (t)+D

(2)
m,k,sqk (t) qr (t) qs (t)+Q

Aero
k (t)+QShock

k = 0 (16)

QAero
k (t) =

N∑
m=1

QAero
m,k (t), and QAero

m,k (t) = ρ∞U∞Qm,k(t) (17)

3 RESULTS AND DISCUSSION

The equation of motion presented in Eq. 16 was solved using the Dynamic Linearized Time-
domain Approach (DLTA) to compute the generalized aerodynamic forces based on an Euler
solver. Table 1 presents the flow and structural parameters for the aeroelastic solution. The
plate material is AISI 4140 Steel. Figure 1 shows the geometry for each shock case explored
in this study, with θ being the shock wedge angle. For all three cases (θ = 2◦, 4◦, and 8◦), the
shock impingement location was set to be the same at ximp/a ≈ 0.4. Note that the height of the
wedge is selected for each θ, such that the shock impingement is nearly the same. The plate is
ideally clamped to a wall and all the other three sides of the control volume are set to a pressure
field with the initial conditions being presented in Table 1. In this study, the flutter boundary is
sought by increasing the total pressure - and consequently the stagnation pressure and density -
holding the Mach number and the total temperature (i.e. stagnation temperature) fixed, [24].

Table 1: Aerodynamic and structural parameters.

a b h E ρ µ T0 M∞
0.254 m 0.127 m 0.635 mm 200 GPa 7850 kg/m3 0.284 295 K 2.0

The θ = 4◦ configuration is the same as the experimental setup presented by Brouwer et al. [2]
in terms of the panel dimensions, structural properties, shock impingement location, shock
wedge geometry and location. This study, however, focuses on the effect of the shock impinge-
ment presence in the dynamic response of the panel, which means that no static temperature
differential will be considered. Additionally, this study focuses on exploring the response of the
panel to different ∆p configurations, which means the cavity pressure for this study is different
from the one used in [2]. On the structural side, the aeroelastic response is sensitive to in-plane
boundary deformations, having a great impact on the final panel response for this wind tunnel
case, [25]. For this study, zero in-plane boundary displacement of the panel is considered for
simplicity. The θ = 2◦ and 8◦ cases are also presented here to expand the discussion on the
shock impingement case and the capabilities of the DLTA implementation. Figure 2 shows the
first nine structural mode shapes considered for this study; only odd modes were used in the
span direction due to the symmetry considered in Subsection 2.1.

6



IFASD-2024-016

x

zM∞, p∞, T∞

Pressure Farfield

θ = 8ο
θ = 4ο

θ = 2ο

Figure 1: Schematics for the shock wedge location in the and the flexible panel location. For all cases, the shock
impingement is set to be at ximp/a ≈ 0.4.

Figure 2: Mode shapes of the thin panel considered in the simulation.

Figure 3 shows the steady pressure distribution for the three shock configurations. Since the
shock edge is modeled as a finite body on the control volume, there is an expansion region after
it that decreases the pressure field on the panel after the shock impingement location.

3.1 Effect of the shock impingement pressure on the elastic panel and the unsteady aero-
dynamics

The shock impingement on the elastic panel leads to an aerodynamic steady flow nonlinearity
that needs to be accounted for in the aeroelastic solution of the system. Figures 4 and 5 present
three (non-dimensional) different properties obtained from a steady CFD solution for the three
shock wedge cases considered in this study. First, consider the local static pressure over the
panel chord, Fig. 4. Due to the pressure jump across the panel, it is expected that the total
stiffness of the elastic system increases as well as the dynamic pressure for the flutter onset,
mainly due to the forced deformation imposed locally on the panel from the ∆p distribution,
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with ∆p = plocal(x, y)− pc.

Figure 3: Steady pressure with shock impingement over a rigid panel. From left to right, first row: θ = 2◦ and
θ = 4◦, second row: θ = 8◦.

Figure 4: Local static pressure from the steady CFD solution at mid-span of the panel.

However, noting the dynamic pressure and Mach number for the same shock configurations in
Fig. 5, one can also expect that the critical flutter dynamic pressure will decrease since the flow
is more likely to cause an aeroelastic instability in the post-shock region, i.e. smaller Mach num-
ber and an increased local dynamic pressure. The balance between these two opposite trends
(panel stiffened by the ∆p effect, and a flow more likely to cause structural instability) will be
explored in future sections, but this shows the complexity of studying shock configurations in
the aeroelastic setting.

The benefit of using the Dynamic Linear Time-domain Approach in cases like this is the possi-
bility of including the unsteady aerodynamic terms in the aeroelastic solution while considering
nonlinear and 3D aerodynamic effects in the solution. Figures 6 and 7 show how the pressure
over the panel is affected at different times due to the step-change enforced motion on the first
structural mode shape of the panel, for the three different shock wedge angles. In these results,
∆p = plocal(x, y, t) − psteady(x, y). This same behavior can not be captured using linear and
local aerodynamic solutions (LPT), or an enhanced LPT using implementations based solely
on steady-state flow results. For all three cases, the peak after ximp/a ≈ 0.4 represents the
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(a) (b)

Figure 5: Aerodynamic properties from the steady CFD solution at mid-span of the panel. a) Local dynamic
pressure, and b) Local Mach number.

shock location moving due to the panel deformation after the first time step of the numerical
aerodynamic solution, increasing as the shock wedge angle increases. The same behavior was
captured experimentally in [5], where the RMS of the unsteady surface pressure signal presents
a peak at the shock location.

(a) (b)

Figure 6: Time lapse for the pressure distribution over the panel chord, at mid-span, given a step change in the first
mode shape of the panel, for a) θ = 2◦, and b) θ = 4◦. The time step is ∆t = 5e−5s over 39 steps.

The shock impingement displacement will directly impact the calculations of the Em,k(t) since
it requires the transient aerodynamic solution for each structural mode to characterize the mem-
ory and non-locality of the aerodynamics. Figure 8 presents the results for E1,1(t), but the same
conclusions can be drawn for to the remaining modes. Figure 8a shows the aerodynamic pres-
sure distribution over the panel after the first time step of the transient solution for the three
shock wedge cases, given a step change in the first structural mode. All three shock cases show
the same pressure behavior before the shock location; as expected, the main difference is the
magnitude after the shock displacement, which varies as θ increases. These characteristics are
enhanced for the following time steps in the CFD solution, as seen in Figs. 6 and 7, and lead
to the E1,1(t) shown in Fig. 8b. The shape of the influence matrices for the θ = 2◦ and 4◦ con-
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Figure 7: Time lapse for the pressure distribution over the panel chord, at mid-span, given a step change in the first
mode shape of the panel, for θ = 8◦. The time step is ∆t = 5e−5s over 39 steps.

figurations are not quantitatively different from the no-shock case, which means that the shock
presence does not affect the memory and non-locality of the flow. The θ = 8◦ configuration,
however, is different due to the ”oscillatory behavior” seen in the E1,1(t) function, even after
s = tU∞/a = 2. Further study of this configuration and results is needed.

(a) (b)

Figure 8: a) Pressure distribution at mid-span and over the panel chord at the first time step after the enforced step
change in the first mode shape of the panel, and b) Influence Matrix for mode (1,1) for the no shock and
shock cases (all three θ values considered).

3.2 Instability Mechanism: steady static pressure distribution vs. unsteady pressure cou-
pling with the flexible structure

One can explore different scenarios for the static pressure term, and obtain some conclusions
from this particular instability mechanism and its relationship to the steady shock pressure dis-
tribution. Three different scenarios for the aeroelastic system will be explored, in addition to
the three different shock angles. For all cases, the elastic panel has one side towards the aero-
dynamic flow and the other towards an acoustic cavity with infinite depth. Figure 9 illustrates
each one of the cases considered: Case 1) QShock

k is based on the shock distribution pshock and
a cavity pressure pc = p∞: the resulting static pressure differential will have ∆p ̸= 0 only for
the post-shock region of the panel; Case 2) QShock

k is based on the shock distribution pshock and

10
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a cavity pressure pc = ⟨⟨pshock(x, y)⟩⟩: this configuration assumes that ∆p ̸= 0 for the entire
area of the panel, for a given cavity pressure that is above the freestream static pressure; and
Case 3) QShock

k is based on the shock distribution pshock and a cavity pressure pc = pshock: this
configuration assumes that the cavity pressure has the same pressure profile as the aerodynamic
steady solution with the shock impingment, leading to ∆p = 0 for the entire area of the panel.
Although the last case is not realistic (it is not possible to replicate this configuration in a wind
tunnel experiment) it provides the opportunity to assess the influence of the static pressure dif-
ferential in the dynamic response of the elastic panel, and how it can influence the instability
mechanism.

(a) (b)

(c)

Figure 9: Schematics of different configurations for the aeroelastic system explored in this study. a) Case (1): pc =
p∞, with ∆p ̸= 0; b) Case (2) pc = ⟨⟨pshock(x, y)⟩⟩, with ∆p ̸= 0; and c) Case (3): pc = pshock(x, y),
with ∆p = 0.

3.2.1 Shock Wedge θ = 2◦

Figure 10 presents the RMS of the dynamic displacement for the panel (ŵ relative to the mean
deformation) normalized by the panel thickness, and the reduced frequency at the same location,
for the θ = 2◦ configuration. Depending on the QShock

k case, the panel peak displacement is
located at a different position over the chord. The respective response location is indicated in
Table 2 and it is valid for all results presented in this study.

Table 2: Location of the peak displacement for each QShock
k case.

QShock
k case x/a

”w/o shock”, ∆p = 0 0.75
pc = p∞, ∆p ̸= 0 0.60

pc = ⟨⟨pshock(x, y)⟩⟩, ∆p ̸= 0 0.65
pc = pshock(x, y), ∆p = 0 0.75
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(a) (b)

Figure 10: Aeroelastic result for the θ = 2◦ shock and no-shock cases. a) RMS of ŵ(t)/h (LCO), and b) reduced
frequency.

(a) (b)

Figure 11: Aeroelastic result with pc = p∞ (∆p ̸= 0), λ∗ = 3486.76, θ = 2◦. a) Mid-span deformation time
history, and b) RMS of the full panel response modal composition, (q̂n(t) + qstaticn )rms/h.

For all values of λ∗ considered, an LCO behavior is only seen when ∆p = 0, which indi-
cates that for shock wedge angle, the static pressure term QShock

k ̸= 0 dominates the response
by suppressing the flutter onset. Interestingly, however, when ∆p ̸= 0, although the final dy-
namic response of the panel is a static deformation due to the static pressure term, the unsteady
aerodynamics shifts the deformation shape of the panel from the ”first mode-shape”, since the
deformation is formed with the localized pressure gradient from the shock impingement, to a
”second mode-shape”, as presented in Fig. 11a. This shift in the deformation shape is also seen
in the modal composition of the response at a later time, Fig. 11b, where one can see that the
participation of the (2, 1) mode, as well as the (3, 1) mode, becomes as relevant to the final
response as the (1, 1) mode.

3.2.2 Shock Wedge θ = 4◦

As the shock wedge angle increases, the dynamic response of the plate starts to have LCO
behavior even for ∆p ̸= 0. Figure 12 shows the RMS of the dynamic deformation of the panel
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ŵ and the RMS for the panel full deformation for θ = 4◦, following the same convention as
previously mentioned in terms of peak location, Table 2. All cases ofQShock

k now show an LCO,
with the flutter on-set starting at different λ∗. As the free stream dynamic pressure increases
further beyond the onset flutter, however, the LCO is suppressed for the ∆p ̸= 0 configurations
once the static pressure term stiffens the panel enough. In terms of the reduced frequency, Fig.
13, Cases (1) and (2) present higher frequencies than the ”no shock” configuration and Case
(3), ∆p = 0. Figures 14 to 16 show the mid-span deformation time history for the same value
of λ∗ and the three different cases for the cavity pressure, pc, as well as the modal composition
for each case.

(a) (b)

Figure 12: Aeroelastic result for the θ = 4◦ shock and no-shock cases. a) RMS of ŵ(t)/h (LCO), and b) RMS of
the panel response including the mean deformation, (ŵ(t) + wstatic)rms/h.

Figure 13: Reduced frequency of the panel deformation, θ = 4◦.

In terms of the modal composition of the responses presented in Figs. 14 to 16, one can see
that when considering the contribution of the total panel response, i.e. including the static
deformation of the panel due to the ∆p and the dynamic deformation of the panel around the
static deformation ((q̂n(t) + qstaticn )rms/h), the first and second modes in the chord direction,
(1, 1) and (2, 1), dominate the response. But when the modal weights are considered only
for the dynamic oscillation of the panel around the mean deformation (q̂n,rms(t)/h), higher
modes dominate the response, which correlates with the high reduced frequencies seen in Fig.
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13. Figure 16 is a special case. When ∆p = 0, there is no static deformation of the panel,
leading to the same modal contribution when assessing q̂n,rms(t) and (q̂n(t) + qstaticn )rms. For
this case, the oscillation is seen only at the post-shock region, which is consistent with the
previous observation on the increase in the local dynamic pressure and decrease of the Mach
number in this region, Fig. 5.

(a) (b)

Figure 14: Aeroelastic result with pc = p∞ (∆p ̸= 0), λ∗ = 3486.76, θ = 4◦. a) Mid-span deformation time
history, and b) RMS of the full panel response modal composition, (q̂n(t) + qstaticn )rms/h, (top figure)
and the dynamic deformation, q̂n,rms(t)/h, (lower figure).

(a) (b)

Figure 15: Aeroelastic result with pc = ⟨⟨pshock(x, y)⟩⟩ (∆p ̸= 0), λ∗ = 3486.76, θ = 4◦. a) Mid-span deforma-
tion time history, and b) RMS of the full panel response modal composition, (q̂n(t) + qstaticn )rms/h,
(top figure) and the dynamic deformation, q̂n,rms(t)/h, (lower figure).

Although the panel response when ∆p ̸= 0 is dominated by high-frequency content, the LCO
is mostly periodic in the range of λ∗ assessed. Figure 17a presents the phase-plane plot of the
same configuration presented in Fig. 14 once the LCO is reached. At this value of λ∗, the LCO
response is already being suppressed by the increase in the static pressure differential, but when
looking at a lower λ∗ condition. Fig. 17b, it is possible to note a clearer oscillatory behavior,
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especially after the shock-impingment location. Figure 17b presents the mid-span deformation
time history with pc = ⟨⟨pshock(x, y)⟩⟩ (∆p ̸= 0), the same configuration in Fig. 15 but with
a lower λ∗. The comparison between these two results shows how stiffened the panel becomes
with a bigger λ∗ and how that affects the dynamics of the system.

(a) (b)

Figure 16: Aeroelastic result with pc = pshock(x, y) (∆p = 0), λ∗ = 3486.76, θ = 4◦. a) Mid-span deformation
time history, and b) RMS of the full panel response modal composition, (q̂n(t) + qstaticn )rms/h, (top
figure) and the dynamic deformation, q̂n,rms(t)/h, (lower figure).

(a) (b)

Figure 17: a) Phase-plane plot of the response presented in Fig. 14, pc = p∞ (∆p ̸= 0), λ∗ = 3486.76, θ = 4◦,
and b) Mid-span deformation time history with pc = ⟨⟨pshock(x, y)⟩⟩ (∆p ̸= 0), λ∗ = 2615.07, θ = 4◦.

3.2.3 Shock Wedge θ = 8◦

For θ = 8◦, the dynamic response of the plate becomes more chaotic and difficult to character-
ize. Figure 18 presents the RMS of the dynamic deformation of the panel and the RMS for panel
full deformation with θ = 8◦. Once again, LCO is seen for all pc cases, but with the flutter onset
earlier than the no-shock configuration. For the ∆p ̸= 0 cases, however, the identification of the
peak deformation is also more challenging. The content of high frequency when ∆p ̸= 0 was
already presented in Subsection 3.2.2, but the chaotic behavior of the panel response becomes
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more intense for higher θ’s.

(a) (b)

Figure 18: Aeroelastic result for the θ = 8◦ shock and no-shock cases. a) RMS of ŵ(t)/h (LCO), and b) RMS of
the panel response with the mean deformation, (ŵ(t) + wstatic)rms/h.

Figure 19 presents the reduced frequency for the panel when θ = 8◦. As one can see the results
are more complex than the θ = 4◦ case, both when ∆p ̸= 0 and ∆p = 0. Although the same
stiffening effect with the increase of the λ∗ occurs, the modal composition for all the results
has more than one or two dominant frequencies, leading to a chaotic LCO and the difficulty in
computing one value for k. Figure 20 presents the phase-plane plots for cases (1) and (2), i.e.
pc = p∞ and ⟨⟨pshock(x, y)⟩⟩ respectively, (∆p ̸= 0) at the same λ∗. One hypothesis for this
chaotic behavior for high θ is the ”oscillatory behavior” seen in the Influence Function Em,k(t)
for θ = 8◦, Fig. 8b. As previously mentioned, further study is needed for this configuration
to assess if this sustained oscillation in the Em,k(t) functions characterizes a physical fluid
instability, or if this shock wedge configuration requires a different numerical setup to obtain
the unsteady aerodynamic matrices, such as a refined mesh or a different aerodynamic solver.

Figure 21 presents the mid-span deformation time history and the RMS of the modal com-
position of the response for the same configuration presented in Fig. 20b. It illustrates the
complexity of the dynamic panel deformation and the dominance of at least four mode shapes
in the dynamic deformation of the panel around the static deformation due to ∆p.

Figure 19: Reduced frequency of the panel deformation, θ = 8◦.
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(a) (b)

Figure 20: Phase-plane plot of the response in the last 0.01s of the simulated response a) pc = p∞ (∆p ̸= 0),
λ∗ = 3486.76, θ = 8◦, and b) pc = ⟨⟨pshock(x, y)⟩⟩ (∆p ̸= 0), λ∗ = 3486.76, θ = 8◦.

(a) (b)

Figure 21: Aeroelastic result with pc = ⟨⟨pshock(x, y)⟩⟩ (∆p ̸= 0), λ∗ = 3486.76, θ = 8◦. a) Mid-span deforma-
tion time history, and b) RMS of the full panel response modal composition, (q̂n(t) + qstaticn )rms/h,
(top figure) and the dynamic deformation, q̂n,rms(t)/h, (lower figure).

3.3 Impingent Shock as a Local and Instantaneous Behavior: Using the Modified Linear
Piston Theory as the Unsteady Aerodynamic Model

The Dynamic Linearized Time-domain Approach method allows the inclusion and assessment
of the unsteady aerodynamics computed by a CFD solver into the aeroelastic simulation without
the need to run a full CFD solver for each aeroelastic simulation. However, it is worth com-
paring this new method with a more traditional one, such as the Piston Theory, or for the case
of a shock impingement, the Modified Piston Theory (MPT), introduced in Section 2.3. It is
possible to compare both methods in the current study since all configurations use M∞ = 2.0,
although it was already pointed out in another study [26] that for the effective aspect ratio of
b/a = 0.5, three-dimensional effects play an important role in the final unsteady aerodynamics
even for M∞ = 2.0, which are not included in the Piston Theory formulation. The comparison
presented here assumes that the nonlinear effect due to the shock impingement will dominate
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over the three-dimensional effects, once the pressure distribution at the mid-span of the panel is
assumed uniform in the span direction of the panel when computing the MPT matrices.

Figure 22 presents the comparison between the Modified Piston Theory and the Dynamic Lin-
earized Time-domain Approach with an Euler solver for two different scenarios. First, the
comparison is on the dynamic deformation of the panel, with pc = pshock(x, y), ∆p = 0. One
can see from Fig. 22a that the MPD overestimates the flutter onset for all shock angles, while
the DLTA presents a smaller value for flutter onset. Interestingly, similar LCO results are seen
for θ = 2◦ and 4◦ but not θ = 8◦ when ∆p = 0. The similarity for θ = 2◦ and 4◦ can be
traced back to Fig. 5, since the values for the dynamic pressure and the Mach number after the
shock are not much different between the two shock angles, both in terms of magnitude and
distribution. However, for θ = 8◦, the properties are distinct from the first two shock angles,
with a peak in the dynamic pressure that is almost twice the value seen for θ = 2◦, combined
with the behavior already discussed for the Em,k(t) function.

(a) (b)

Figure 22: Comparison between MPT and DLTA with an Euler solver. a) RMS of ŵ(t)/h (LCO) with pc =
pshock(x, y), ∆p = 0, and b) Static panel response due to the static pressure differential ∆p ̸= 0,
pc = p∞. All points were obtained at x/a = 0.75.

The second scenario for comparison is presented in Fig. 22b, where only the static panel re-
sponse due to the static pressure differential is presented. This comparison is motivated by the
fact that, when using MPT as the unsteady aerodynamic model, all values of λ∗ for all three
values of θ led to a static deformation. This can be attributed to the local flow characteristic of
the Piston Theory, which makes the static term stiffen the panel with a much lower λ∗ than it
did when using the DLTA implementation. But Fig. 22b indicates that even with the lack of
LCO when using the MPT in the aeroelastic formulation, the method can successfully obtain
the same static deformation for the panel for all shock angles in this study. This indicates that,
although the local solution of the MPT overpredicts the flutter onset when having a shock im-
pingement of the panel, it can model the panel behavior in pre-flutter λ∗. This is particularly
useful when correlating experimental results that are outside the flutter instability zone. How-
ever, this is not true for correlation with experimental results when LCO is seen. Figure 23
shows the corresponding reduced frequencies.
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Figure 23: Reduced frequency of the panel deformation, using MPT and DLTA with an Euler solver.

4 CONCLUSIONS AND NEXT STEPS
The effect of unsteady aerodynamics in panel flutter considering a shock impinging on the
surface is considered in this study to explore the capabilities of the Dynamic Linearized Time-
domain Approach using an inviscid CFD solver. In terms of the unsteady aerodynamic mod-
eling, it was shown that the DLTA allows the consideration of the shock displacement due to
the panel deformation in time. The study also introduced a new perspective on the effects of
the shock impingement and the instability mechanisms on a flexible panel in a M∞ = 2.0 flow,
exploring the effect of the static pressure distribution over the panel and the important role it
plays in the flutter onset for the different shock-wedge angles. Three shock wedge angles were
considered in this study, and the complexity of this type of aeroelastic modeling was noted.
Relevant next steps would include the following:

• Expand the methodology to include viscous effects using RANS CFD solutions, with and
without a shock impingement case.

• Investigate the unsteady aerodynamic modeling using DLTA for higher shock wedge an-
gles, particularly for the cases where there is separation of the flow.

• Vary the position of the shock impinging on the panel.
• Make a comparison of computational results to available experimental results.
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