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Abstract: In the present paper, aeroelastic phenomena of a smart wing in supersonic and hypersonic flows are investigated to represent the flutter alleviation due to piezoelectric effect. Using nonlinear aerodynamic model, a smart wing with pitch and plunge DOFs is simulated. The equations of motion can be obtained by using the Lagrange’s equations and the Kirchhoff’s law. To calculate aerodynamic forces acting on the smart wing in supersonic flow, piston theory can be implemented to model airflow by a quasi-steady compressible method. The complete nonlinear aeroelastic smart wing system can be obtained and divergence and flutter speeds are calculated accordingly.
introduction
Aeroelastic analysis of a modern wing in supersonic and hypersonic regimes is crucial. The ability to control the aeroelastic instability due to flexibility is very important to reach the desired high aerodynamic performance in a wing design [1, 2]. Obviously, one important aeroelastic analysis is flutter resulting from merging of two or more vibration modes during flight. The flutter phenomenon can reduce the flight envelope or even make a redesign of the wing necessary. Appearing flutter can compromise not only the long-term durability of the wing structure, but also the flight performance, operational safety, and energy efficiency of the aircraft. Hence, postponing flutter is crucial for the modern airplane [3-7].
Using smart materials in wing structures has been performed for many years. Although there are different smart materials, piezoelectric materials have received the most attention. Considering the direct and inverse piezoelectric effects of piezoelectric materials, they can perform as sensors and/or actuators on a wing, respectively. In fact, they can be used as actuators and dampers to manage the aeroelastic behaviour of the wing. One effective way to avoid redesign the wing is to use piezoelectric materials to significantly delay the flutter [8]. Adding a shunt circuit to a piezoelectric material can create a piezopatch to modify effectively the wing aeroelastic behaviour. Previously, there were practical limits in the low frequency range like the one typically existing in aeroelastic phenomena due to the large required inductance in passive aeroelastic control. However, nowadays, it is possible to have a small inductor integrated into a piezopatch dedicated to aeroelastic control [9-12]. Since standard inductors usually have too large internal resistance for resonant shunt application, they are not a practical component to integrate into a piezopatch. Implementing closed magnetic circuits with high permeability materials allows the design of large inductance inductors with high quality factors.
The use of shunted piezopatch permits to have damping augmentation in wing structure without causing any instability yet. In addition, they need little to no power and are simple to apply. Their necessary hardware is the piezoelectrics and a simple electric circuit including a capacitor, inductor, and resistor. The shunted piezopatch can control aeroelastic vibration of wing by consuming the energy created from wing vibrations. In fact, it can reduce the vibrations of specific modes and frequencies.
In this paper, the effect of piezoelectric material on increasing the flutter speed in supersonic and hypersonic flow is investigated in detail by considering a simple aeroelastic system. The system is a 2D double wedged wing with piezoelectric patch which has plunge and pitch degrees of freedom (DOF) as well as with high-speed nonlinear aerodynamic forces. The objective of this work is to represent the role of piezoelectric patches that can influence substantially a simple aeropizoelastic system. Section 2 explains high speed smart wing model by driving the governing equation of motion of the wing. In section 3, high speed nonlinear aerodynamic model is presented to obtain applied aerodynamic load on the wing. Section 4 includes high speed nonlinear aeroelastic model to obtain aeroelastic system equations. Solving procedure is represented in section 5 by implementing amplitude-based iteration scheme on the nonlinear aeroelastic system of equations. Finally, results are given in section 6.
High Speed Smart Wing Model
A smart wing including plunge and pitch degrees of freedom is shown in Fig. 1. The model contains a double wedge airfoil with two piezoelectric patches one in the plunge DOF and the other one in the pitch DOF. The system has the plunge and pitch degrees of freedom (DOF) indicated by , ,  and , respectively. The equations of motion can be obtained by using the Lagrange’s equations and the Kirchhoff’s law as
















Fig. 1 A high-speed smart wing with pitch and plunge DOF
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The plunge electromechanical coupling, , depends on the plunge coupling coefficient, , and the plunge capacitance, , and it can be calculated by . In addition, the pitch electromechanical coupling, , depends on the pitch coupling coefficient, , and the pitch capacitance, , and it can be calculated by .
Considering nonlinear piston theory, the lift and moments in Eq. (1) can be obtained in the following section.
1. High Speed Nonlinear Aerodynamic Model
To calculate aerodynamic forces acting on the smart wing from low supersonic to hypersonic speeds up to the limit of Newton flow, piston theory can be implemented to model airflow by a quasi-steady compressible method [13, 14]. Consider a supersonic airflow with density , pressure , and airspeed . The airflow has the sound speed , compressibility ratio , and Mach number . The upper or lower surface pressure distribution of the wing can be defined by piston theory as follows

where  denotes the downwash velocity and subscripts  and  represent the upper and lower surface, respectively. The application of piston theory is for airflow with high Mach numbers, small disturbances, and quasi-steady conditions. It is possible to satisfy these three conditions if at all times [15]

where  is the reduced frequency. Usually, the lower Mach number limit is . Using the instantaneous wing shape, the downwash velocity, , can be calculated as


The wing geometric shape and its displacements in two DOF, plunge  and pitch , have contributions to the instantaneous wing shape. The wing instantaneous shape can be presented by [16, 17]


where  is the upper and lower surface geometric shape of the wing.
Using , one can calculate the pressure difference across the wing. Then the time dependent lift and moment around the wing pitch axis are obtained by


respectively. Due to existing the irrational exponent  in Eq. (2), there is no analytical solution for . To overcome this problem, a binomial expansion can be applied to the bracket term in Eq. (2) which leads to

Implementing a correction factor  to  in Eq. (2) and (7), piston theory can be applicable throughout the low subsonic to hypersonic flow. Then Eq. (7) becomes

where only terms up to third order are considered in the modified equation. If the airfoil is symmetric or its thickness is negligible,  in Eq. (4) and (5). Then the pressure difference is reduced to

where  is the dynamic pressure of free stream. If the airfoil thickness is negligible,  can be written as

Substituting Eq. (9) into Eqs. (6), the lift and moment include 10 nonlinear terms and are calculated
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where



1. High Speed Nonlinear Aeroelastic Model
The complete nonlinear aeroelastic smart wing system can be obtained by substituting Eqs. (11) and (13) into the equations of motion, Eq. (1) as follows


where  is the structural mass matrix,  is the structural damping matrix,  is the aerodynamic damping matrix,  is the structural stiffness matrix,  the aerodynamic stiffness matrix. Those matrices are defined as







There are many nonlinear terms in these equations with weak nonlinearity. The order of the linear and nonlinear aerodynamic coefficient terms are the same magnitude and ,  and  are small. Moreover, if , all of the  matrix elements are positive therefore, plunge hardening stiffness and plunge and pitch hardening damping can be created by the aerodynamic nonlinearity.
To calculate static divergence, one needs to consider  in Eqs. (17) then

which in expanded form become

Considering the second and fourth equations, one can derive the static divergence as

which by solving the nonlinear Eq. (27), the divergence velocity can be found , the static divergence velocity at different pitch displacements . If , since the entire term in the first bracket is positive, the static divergence can only happen when  or . By considering the piston theory, the aerodynamic center lies on the half-chord then  is the distance between the half-chord and the pitch axis. In other words, static divergence or pitchfork bifurcation cannot happen if the pitch axis lies forward of the half-chord.
To estimate the smart wing limit cycles, equivalent linearisation needs to be applied to Eqs. (17). Due to having multiple nonlinearity, it needs to modify the methodology. To do so, the complete nonlinear aeroelastic system limit cycles are approximated by the following sinusoidal responses




where  and  are the plunge and pitch amplitudes, respectively, and  is the limit cycle frequency. Now all the nonlinear terms in  needs to be written as a first order Fourier series

The Fourier coefficients can be presented as



where the notation ,  and so on, represents the vector ,  and so on ith element, for . Since all the terms are polynomial, they are easy to integrate which leads to ,

In the nonlinear terms, six terms contribute to nonlinear damping since only involving the  coefficient, while the other four terms contribute to nonlinear stiffness. The complete nonlinear term  in Eqs. (17) can be given as follows

For instance, the resulting vector first element which is the lift equation nonlinear term will be



Stiffness and damping terms include the sine and cosine terms, respectively. Moreover, grouping them also leads to plunge stiffness and damping and pitch stiffness and damping terms. To do so, if the  order in a term is higher than that of , one can consider it as a plunge term. The lift equation nonlinear term can be presented as follows



The same way can be implemented to the moment equation nonlinear term. Then the complete nonlinear term can be represented as the sum of equivalent linear damping and stiffness by substituting from Eqs. (28)

where


and  and  are the matrices of the equivalent linear damping and stiffness, respectively. To obtain the complete equivalent linear aeroelastic system, it needs to substitute Eq. (35) into Eqs. (17)


In the present work, there are several nonlinearity of stiffness and damping including both of the DOF of system. Totally there are four unknowns as the two amplitudes  and , the flutter speed of the equivalent linear system  and the flutter frequency of the equivalent linear system . One of the ways to solve the problem is to use the amplitude-based iteration scheme explaining in the next section [18, 19].
Amplitude-Based Iteration Scheme
In the amplitude-based iteration scheme, one of the amplitudes,  or , can be chose as the master amplitude; here  is selected as the master amplitude. All values of  from  to  are considered and for each value, it needs to guess a value of  and . To obtain the equivalent linear system flutter speed and frequency, the guessed values of  and  are substituted into Eqs. (38). Also, the response amplitude of  at flutter, , is calculated. Obviously, the flutter values  and  are not equal to the guessed values  and . This iteration is continued until reaching , where

The complete step of the procedure is represented as
1. Where  and , the maximum pitch amplitude of interest, choose pitch amplitude values  for .
2. The solution for  is known as a limit cycle vibration with zero amplitude which occur at the Hopf point, i.e. the linear flutter speed.
3. Guess ,  for the ith amplitude .
4. Using the equivalent linearized system of Eqs. (38), calculate the flutter speed , flutter frequency  and plunge amplitude .
5. From Eq. (39), calculate .
6. If  and , increment i and go back to step 3.
7. If , set ,  and continue from step 4.
Numerical Example
For the high-speed smart wing shown in Fig. 1, considering the following parameters and using equivalent linearisation, estimate the bifurcation behaviour.
	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	


By setting  and , therefore,  and . It assumes the structural damping matrix as , the speed of sound is constant at , and . Because of locating the pitch axis in front of the half-chord at , there is no static divergence in the system. In the next step, the flutter speed of the underlying linear system is calculated. To calculate the flutter speed, the Hof test function needs to be detected as [13, 20]

where  and  are the jth complex conjugate eigenvalues pair and  is the complex eigenvalues total number. Hence, the Hopf test function, , represents the product of the real parts of the complex eigenvalues. A Hopf bifurcation, subcritical or supercritical, can occur when one of bracket term in Eq. (40) is equal to zero. Moreover, the Hopf test function becomes negative when the fixed point is unstable and vice-versa. Figure 2 demonstrates the smart wing underlying linear system is stable at low speeds and becomes unstabilised at the first flutter point at . However, the regular wing underlying linear system is unstable at low speeds and becomes stabilised at the first flutter point at . The smart wing has a second flutter point at , after which the system becomes stable. However, the regular wing possesses a second flutter point at , after which the system becomes unstable.
[image: ]
Fig. 2 Underlying linear system flutter test function
Since the first flutter points for both smart and regular wings are below the piston theory validity limit, , are not acceptable solutions. Hence, the second flutter points for both smart and regular wings become acceptable solutions. Implementing a piezoelectric patch on a wing can increase its flutter speed to , which shows  increase from the regular wing value and the corresponding frequency , indicating  increase from the regular wing value.
The amplitude-based iteration scheme is implemented at flutter point  as explained previously. The pitch amplitude  is considered as the master amplitude and between  and  200 nonlinear spaced values of  is selected and  is chosen as the convergence tolerance. The resulting limit cycle pitch and plunge amplitudes and frequency are depicted in Fig. 3.
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Fig. 3 Pitch and plunge amplitude and frequency of limit cycle with nonlinear aerodynamics
The vertical lines show the piston theory validity limit, . To indicate the instability of the limit cycles, all curves are plotted in dashed lines. Both the amplitudes of the pitch and plunge are zero at the linear flutter speed, only to increase with decreasing speed. The maximum amplitude of pitch  for both the smart and regular wings occurs at 45˚ which is much higher than the usual maximum angle values investigated with piston theory; usually the validity of the pitch limit for piston theory is equal or less than 30˚ [14]. It is noticed that the smart wing maximum pitch amplitude is  happing at  however, the regular wing maximum pitch amplitude is  occurring at , as shown in Fig. 3a. Furthermore, the rate of reduction of the pitch amplitude in the smart wing is lower than the one in the regular wing. Figure 3b depicts the smart wing maximum plunge amplitude is  which happens at  however, the regular wing maximum plunge amplitude is  which occurs at , as depicted in Fig. 3b. The rate of reduction of the plunge amplitude in the smart wing is higher than the one in the regular wing.
The piston theory nonlinear terms do not cause instability in the smart wing by creating a subcritical Hopf bifurcation occurring at the linear flutter speed in the equivalent linearization. However, using the equivalent linearization can create instability in the regular wing at the linear flutter speed. Near the Hopf point, the resulting limit cycle oscillations are most dangerous because their amplitude is small then they can be easily increased.
As depicted in Fig. 3, the analysis of equivalent linearization is performed for pitch amplitudes up to . However, the amplitude-based algorithm cannot converge if . In other words, the smart wing pitch amplitude of limit cycle reaches a maximum value of  at  but when airspeed decreases pitch amplitude decreases; similarly, the regular wing pitch amplitude of limit cycle reaches a maximum value of  at  however, after decreasing airspeed pitch amplitude decrease.
To manage that problem, airspeed-based iteration scheme is considered as an alternative solution algorithm.

CONCLUSIONS
In this paper, it has been investigated aeroelastic phenomena of a smart wing in supersonic and hypersonic flows to represent the flutter alleviation due to piezoelectric effect. A smart wing with pitch and plunge DOFs is simulated by using nonlinear aerodynamic model. The equations of motion can be obtained by using the Lagrange’s equations and the Kirchhoff’s law. To calculate aerodynamic forces acting on the smart wing in supersonic flow, piston theory can be implemented to model airflow by a quasi-steady compressible method. The complete nonlinear aeroelastic smart wing system can be obtained and divergence and flutter speeds are calculated accordingly. The results indicate a considerable achievement in dynamic aeroelastic behavior of a wing.
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