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Abstract:

A validated aeroservoelastic (ASE) model allows, among other things, the extensive study of
system performance and characteristics, the verification of analytical predictions, the support of
flight envelope expansion during prototype testing, and the design of flight control laws. The
ASE stability analysis is another crucial component of the configuration optimization and certi-
fication process over the intended operational envelope. In this context, the flutter phenomenon
is a well-known example of a self-excited aeroelastic instability resulting from the interaction
between unsteady aerodynamic forces and structural vibrations. The investigation of flutter
through flight flutter testing is an essential part of aircraft certification. Significant amplitudes
of vibration can be induced, eventually resulting in the structure’s catastrophic failure. Instabil-
ities have been derived that exceed well beyond the basic bending-torsion flutter into complex
mechanisms involving ASE dynamics. With the guidance of accurate ASE models, a reliable
prediction of an aircraft’s susceptibility to flutter across its intended flight envelope is possible.

Using data from flight tests of the fixed-wing P-FLEX UAV with a 6m wing span, this paper
will demonstrate post-flight system identification results and, by extension, ASE model updat-
ing using modal parameters identified from Ground Vibration Test. Predictions provided by the
updated model regarding flutter boundary will be thoroughly assessed. An additional significant
topic is the post-flight verification of the open-loop flutter speed obtained through system iden-
tification using flight test data. This is achieved through the monitoring of aeroelastic damping
and qualitative comparison of the stability diagrams of the system’s poles at different flight
speeds. Finally, flutter boundary expansion enabled by the Active Flutter Suppression (AFS)
controller of the closed-loop system will be verified via post-flight analysis of the critical flight
flutter test data.
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1 INTRODUCTION

In consideration of the upcoming critical flutter test, it was essential to ascertain the precision
and reliability of the flutter speed predictions derived from updated theoretical model. In order
to guarantee a safe flight flutter test a number of flutter calculations have been performed. The
structural dynamics modal model was updated by using the eigenfrequencies and damping val-
ues that were identified in the Ground Vibration Test (GVT). Further, the GVT-identified modes
shapes were taken and mapped to the structural grids of the condensed model. By employing
this approach, it is possible to update the structural modal model, which is used directly in
the flutter calculations and controller design avoiding to intervene the full Finite Element (FE)
Model.

Subcritical and critical flight test data regarding flutter stability analysis of the fixed-wing P-
FLEX UAV have been examined via post-flight system identification. For system identifica-
tion an automatically running robust Stochastic Subspace Identification (rSSI) method is used,
which only needs the structural dynamic response data of the aircraft due to non-deterministic
natural and/or operational excitations which are provided by atmospheric turbulence and/or pilot
control inputs. The outputs of the method are the stochastic system matrices and consequently
the flight modal parameters. Flight test identified and predicted flutter speeds derived from the
updated model are compared in the context of model validation and clearance for flight flutter
testing.

Figure 1: FLiPASED demonstrator aircraft before flight test © DLR 2023
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2 FLIPASED DEMONSTRATOR AIRCRAFT

The FLiPASED aircraft (Fig.1) is a jet-powered UAV with a wing span of 7.1 m. It was manu-
ally operated within visual line of sight. The demostrator aircraft is equipped with an integrated
measurement system [1]. The usual air data, position and inertial parameters are being logged
on the aircraft. Attached to the front and rear spars are 12 inertial measurement units (IMU)
that records the structural accelerations and angular rates of the wings. The wing-mounted
IMUs measure translational accelerations in (x, y, z) direction on the leading edge and transla-
tional acceleration z and angular rates (ωx, ωy) on the trailing edge resolved in local coordinate
system of the sensors. Further, an off-c.g.-mounted IMU at the fuselage provides measured
translational accelerations aoff-c.g. = [ax,IMU-fuse, ay,IMU-fuse, az,IMU-fuse]

T and the rotational rates
Ωoff-c.g. = [pIMU-fuse, qIMU-fuse, rIMU-fuse]

T . A noseboom sensor provides the dynamic pressure,
the altitude, the indicated airspeed VIAS, NB, the angle of attack αNB and the angle of sideslip
βNB. Figure 2 shows the configuration of the IMUs’ placement on the FLiPASED aircraft [2].
The measurement coordinate systems of the sensors are illustrated in Figure 3.
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Figure 2: Sensor locations on FLiPASED aircraft [1]
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Figure 3: Measurement coordinate systems of the sensors on FLiPASED aircraft [1]

3 NONLINEAR SIMULATION MODEL: THE FLEXIBLE AIRCRAFT

The equations of motion for an unrestrained flexible aircraft can be separated into rigid body
motion and elastic body motion, which describe the aircraft’s response to external loads such
as the aerodynamic and thrust forces. The aircraft rigid body motion is given by the nonlinear
Newton-Euler EoM where the aircraft is considered as a rigid body with a constant mass mb

and constant mass moment of inertia Jb:[
mb

(
V̇b + Ωb × Vb −TbEgE

)
JbΩ̇b + Ωb × (JbΩb)

]
= ΦT

gbP
ext
g (t) , (1)

where Vb = [u v w]T and Ωb = [p q r]T are the translational and angular velocity of the
aircraft center of mass with respect to the body frame of reference. The subscript ”b” denotes
”rigib body” part of the motion (b-set). The vector gE = [0 0 g]T represents the gravita-
tional acceleration in an earth fixed frame of reference ”E” and the matrix TbE transforms the
gravitational vector in ”E” to the body fixed frame of reference. In the right hand side of the
equation P ext

g (t) denotes the sum of all nonconservative external loads acting on the aircraft
structure. The transpose of the modal matrix Φgb consisting of rigid body modes about the
center gravity transformes the load vector P ext

g (t) into the body frame of reference [4].

For the airframe’s elastic motion, linear elastic theory is applied when small perturbations re-
sulting from the airframe’s flexibility are assumed. The external loads P ext

g (t) acting on the
structural grids ”g-set” are dependent on flexible motion, as well as atmospheric disturbances,
for example, from discrete gust [5]. The effect of the external loads on the structural dynamics
is therefore given by the equations of elastic motion in modal coordinates:
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Mff üf + Bff u̇f + Kffuf = ΦT
gfP

ext
g (t) . (2)

where Mff is the modal mass matrix, Bff is the modal damping matrix and Kff is the modal
stiffness matrix. The subscript ”f ” stands for ’flexible’ part of the motion (f-set). uf , u̇f , üf

are flexible modal deformations, velocities and accelerations respectively. The transpose of the
modal matrix Φgf consisting of flexible mode shapes transformes the load vector P ext

g (t) into
the modal form, i.e. into the ”f-set”.

This nonlinear model provides the basis for the derived models for flutter calculations used in
this study, which will be detailed upon in subsequent sections.

4 MODEL UPDATING USING MODAL PARAMETER FROM GVT

As mentioned in the beginning the structural dynamics model was updated by using modal pa-
rameters, i.e. mode shapes, eigenfrequencies and damping values that were identified in the
GVT as listed in the table 1. The experimental modes shapes were taken and mapped to the
structural grids of the condensed model, e.g. for the structural grids belonging to the wing
structure, the mapping war realized by employing radial basis functions such as the commonly
used Infinite Plate Spline [6]. The plots below show the first symmetric wing bending mode
identified from GVT (Fig. 4) and its mapped counterpart (Fig. 5). By using this approach, it
is possible to update the structural model in modal form, which is used directly in the flutter
calculation and controller design avoiding to intervene the full Finite Element (FE) Model. The
updated model was then incorporated into the flutter calculation, detailed in the next section,
using the p method, a classical flutter method. The FLiPASED project deliverable D3.9 [7]
contains more details about the GVT procedure and the results that were achieved.

Table 1: Modal parameters obtained from GVT (used for model updating)

Description Mode # Eigenfrequency f [Hz] Damping ratio ζ [%]
2n wing bend-s 6 2.938 1.10
3n wing bend-a 7 7.220 0.79
wing tors-s 9 10.744 0.95
wing tors-a 10 11.155 1.07
4n bending-s 11 12.023 0.72
2n wing inplane-s 13 14.846 1.19
v-tail rock 12 12.501 3.36
5n wing bend-a 17 20.383 1.78
6n wing bend-s 20 25.860 1.82
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Figure 4: GTV mode (2n wing bend-s) Figure 5: GTV mode mapped to FE model

5 SIMULATION MODEL FOR FLUTTER CALCULATION

This section will introduce the simulation model that is employed for the flutter calculation.
Additionally, the flutter equations formulated as a system of first-order ODEs in state-space
form, will be derived, which are necessary for the application of the p method. The generalized
equations of motion for a linear aeroelastic system in time-domain can expressed in a matrix
form as

[
Mbb 0
0 Mff

]
︸ ︷︷ ︸

= Mhh

üh +

[
0 0
0 Bff

]
︸ ︷︷ ︸

= Bhh

u̇h +

[
0 0
0 Kff

]
︸ ︷︷ ︸

= Khh

uh =
1

2
ρV 2Qhh(s̄,Ma)uh (3)

which describes a system of nh = nb + nf linear ordinary differential equations (ODEs) with
nh generalized degrees of freedom (DoFs) described by uh =

[
ub , uf

]T where ub are the
rigid-body DoFs consisting of translation of the aircraft’s center of mass and rotations of the
mean-axis frame with respect to the inertial frame. Mbb is the 6x6 rigib-body mass matrix. Note
that the rigid-body and elastic degrees of freedom are inertially decoupled in Eq. 3; however,
they are coupled through aerodynamics. Note that other external loads acting on the aircraft
structure which are not dependent on the aircraft motion uh, such as thrust, forces resulting
from pilot control inputs or atmospheric disturbances are disregarded on the right hand side of
the Eq.3 which are irrelevant for the flutter calculation.

The right hand side of the equation (6) denotes the generalized unsteady aerodynamic forces
P aero
h (t) with

P aero
h (t) =

1

2
ρV 2Qhh(s̄,Ma)uh (4)

where ρ is the density of atmosphere, V is the true airspeed and Qhh(s̄,Ma) is the generalized
unsteady aerodynamic influence coefficient (AIC) matrix which is a function of the nondimen-
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sional Laplace variable s̄ and the Mach number Ma. The AIC matrix can be derived by several
aerodynamic theories, such as DLM. In this paper, the subsonic unsteady aerodynamic forces
have been modeled by means of DLM. Based on small disturbance hypothesis, DLM solves
the linearized potential flow equation and obtains the aerodynamic forces under the assumption
that aerodynamic surfaces oscillate harmonically. The nondimensional Laplace variable s̄ is
denoted s̄ = g + ik where g is the damping and k is the reduced frequency. On the assumption
of harmonic aerodynamic loads the nondimensional Laplace variable s̄ becomes:

s̄ = s
cref
2V

= iω
cref
2V

= ik (5)

where ω is the frequency of vibration and cref the reference chord. Note that the dependence
on the Mach number of the AIC matrix will be omitted from now on for conciseness.

The generalized AIC matrix Qhh(ik) ∈ Cnh x nh in Eq. 3 is a set of matrices which are cal-
culeted for a set of suitable values of reduced frequency k. Thus, in order to compute AIC for
any desired reduced frequency and perform time domain analysis (state-space representation),
the AIC matrix in the frequency-domain has to be transformed into the Laplace domain and
consequently into the time domain. One possible way is to fit the frequency dependent AIC
matrix with rational functions in a least-squares sense. This method is called Rational Function
Approximation (RFA). In this paper the Roger’s formulation [?] is used to approximate the AIC
matrix Qhh(ik):

Qhh(ik) = Qhh(s̄) ≈ Q0
hh + s̄Q1

hh + s̄2Q2
hh +

np∑
i=1

QLi
hh

s̄

s̄+ βi

. (6)

The RFA equation (6) can be interpreted as a general two-part approach for aerodynamic loads
based on quasi-steady and lag contributions. Q0

hh, Q1
hh and Q2

hh are Rnh x nh real coefficient
matrices representing the contribution of acceleration, velocity and displecement of the rigid
and flexible degrees of freedom on the aerodynamic loads denoting the quasi-steady part of the
approximation. The QLi

hh ∈ Rm x m matrices with the predefined poles βi, i = 1, 2, ..., np, are
responsible for the lagging behavior of the unsteady flow. This is referred to time lag effect.

For time domain representation the equation system in (6) can be rearranged as follows [?]

Qhh(s̄) ≈ Q0
hh + s̄Q1

hh + s̄2Q2
hh +D(s̄I−R)−1Es̄ (7)

where
D =

[
QL1

hh QL2
hh . . . Q

Lnp

hh

]
∈ Rnh x (nh·np), (8)

R = diag
([
−β1I − β2I . . . − βnpI

])
∈ R(nh·np) x (nh·np), (9)

E =
[
I I . . . I

]T ∈ R(nh·np) x nh . (10)

For the lag states xL ∈ Rnlag x 1 the following ODE with u̇h as input can be derived [?]:

ẋL =

(
V

cref/2

)
RxL + Eu̇h (11)

The resulting generalized aerodynamic forces are then

P aero
h (t) =

1

2
ρV 2Qhh(ik)uh ≈ 1

2
ρV 2

[
Q0

hhuh +

cref/2

V
Q1

hhu̇h +

(
cref/2

V

)2

Q2
hhüh + DxL

] (12)

7



IFASD-2024-XXX

The equations 4, 5 and 12 can be rearranged in a state-space form parametrized over flight speed
V as follows:

u̇h

üh

ẋL

 = A(V )

uh

u̇h

xL

 (13)

with the system matrix A(V )

A(V ) =

 0 I 0
−(Mhh)

−1Khh −(Mhh)
−1Bhh

1
2
ρV 2(Mhh)

−1D
0 E 2V

cref
R

 , (14)

where

Mhh = Mhh − ρ
c2ref
8

Q2
hh , (15)

Bhh = Bhh −
cref
4

ρVQ1
hh , (16)

Khh = Khh −
1

2
ρV 2Q0

hh . (17)

.

For a given value of the air speed V , the aeroelastic system’s modal parameters can be deter-
mined using eigenvalue decomposition of the system matrix A(V ) (Eq. 14)

A(V ) = ΦΛΦ−1 (18)

where Φ is the square nh(2 + np) x nh(2 + np) matrix whose ith column is the eigenvector ϕi

of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues
(system roots), Λi,i = λi, with

A(V )ϕi = λiϕi (19)

.

The modal parameters fi (undamped eigenfrequencies) and ζi (damping ratios) can be recovered
from the system roots λi as follows:

λi = −ζiωi + iωi

√
1− ζ2i ⇒ fi =

|λi|
2π

, ζi = −Re(λi)

|λi|
. (20)

This method of solving the flutter equation formulated as a first order ODE in a state-space form
(Eq. 13), where the roots of the system matrix can be determined directly, will be called the p
method (transient method) [8]. In this study the p method was employed for the determination
of the flutter results for the simulation model.
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6 POST-FLIGHT SYSTEM IDENTIFICATION RESULTS

In the context of model validation and clearance for flight flutter testing, identified and predicted
flutter speeds derived from the updated model are compared. A post-flight system identifica-
tion employing non-critical flight test data from FT32 was used for obtaining the experimental
prediction of the open-loop flutter speed and the validation of the updated simualtion model.
For the post-flight system identification an automatically running robust Stochastic Subspace
Identification (rSSI) method is used, which only requires structural responses of the aircraft due
to non-deterministic natural excitations which are provided by atmospheric turbulence. The
outputs of the method are the stochastic system matrices and consequently the flight modal
parameters.

6.1 Post-flight system identification for non-critical flight test below open-loop flutter speed

Firstly, the non-critical flight test data from FT32 was used for the experimental prediction of
the open-loop flutter speed. This flight was performed using constant bank angle circles with
a radius of 800m at an altitude (ALT) of ca. 360 m and with an engaged autopilot keeping
the speed as constant as possible. The flight speed was increased incrementally increased from
44 m/s to 54 m/s. An output-only Operational Modal Analysis tool was implemented on a
secondary flight computer onboard to closely track online the flight modal parameters during
the flight test. The online modal analysis system is detailed in [9].

Figure 6: Flight speed profile FT32

Figure 7 demonstrates post-flight system identification results with respect to identified aeroe-
lastic eigenfrequencies and damping ratios for the flight points at 44, 46, 48, 50, 52, 53, and
54 m/s compared with their counterparts computed from GVT verified simulation model. An
excellent correlation of the flight modal parameters between model and flight test data has been
achieved. The damping evolution of the critical flutter mode (1st symmetric wing torsion) is par-
ticularly well captured, which confirms the expected open-loop flutter speed at approximately
55 m/s, or more precisely 55.2 m/s (flight test data) and 55.4 m/s (updated model).
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Figure 7: Comparison of flight modal parameters obtained from updated model and identifed from FT32

The flutter mode becomes dominant as the flight speed approaches the flutter speed, and the
damping decreases to nearly zero. Other modes become more challenging to track, and in this
case, they disappear, at least from the standpoint of theory. This phenomenon can be detected by
analyzing both the sum of output spectra of the measured responses and stabilization diagram
within modal identification. This is consistent with the results in [2], published in 2019, which
demonstrated this effect using simulated test data as illustrated in the figure 8 where only the
dominant flutter mode can be identified at the critical flutter speed.

Figure 8: Uncleaned stabilization diagrams at noncritical flight speed (left) and at flutter speed (right) obtained
through simulated flight test data from the study in [2]
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Analogous results have been achieved for the subcritical flight test FT32 shown in the subse-
quent figure 9. Only the dominant flutter mode (symmetric wing-tors. fflut = 8.7 Hz) is clearly
visible (”one-peak”) on the output spectra (blue graph) at nearly flutter speed of v = 54 m/s
which progressively start to become unstable as already confirmed through damping evolution
results.

V = 44 m/s V = 48 m/s

V = 52 m/s V = 54 m/s

Figure 9: Uncleaned stabilization diagrams for different flight speeds obtained from post-flight system identifica-
tion (FT32)

6.2 Post-flight system identification for critical flight test beyond open-loop flutter speed

The objective of FT35 was to assess the system’s performance at critical flutter velocities. Fi-
nally, flutter boundary expansion enabled by the AFS controller of the closed-loop system has
been confirmed via post-flight modal identification. Here the flight modal damping parameters
identified from FT32 (open-loop) and those extracted from FT35 (closed-loop with AFS con-
troller ON at flight points 50, 52, 54, 55, 56, 57, and 58 m/s) are compared. The results are
visualized in the figures 10 and 11.

From the plots shown in Fig. 10, it is evident that activating the AFS controller increases the
damping of the critical flutter mode (1st wing torsion), hence allowing the aircraft to operate at
speeds beyond its open-loop flutter speed. The stability diagrams obtained from FT35 can also
be used to confirm flutter stability, as they indicate that none of the eigenmodes, particularly the
first torsion mode, become dominant, resulting in an one-peak in the output spectra plot.
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Figure 10: Comparison of flight modal parameters obtained from FT32 (open-loop) and FT35 (closed-loop)

V = 54 m/s

V = 58 m/sV = 56 m/s

V = 50 m/s

Figure 11: Uncleaned stabilization diagrams for different flight speeds obtained from post-flight system identifi-
cation of the critical flight test FT35
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7 CONCLUSION

In this study, post-flight system identification results and predictions provided by the updated
model regarding flutter boundary have been thoroughly assessed. The open-loop flutter speed
has been successfully verified through post-flight modal identification. This is achieved through
monitoring of aeroelastic damping and additionally qualitative comparison of the stability dia-
grams of the system’s poles at different flight speeds. Finally, flutter boundary expansion en-
abled by the AFS controller of the closed-loop system has been verified via post-flight analysis
employing critical flight test data.
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