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Abstract: This paper provides an overview about the time-linearized analysis of motion-
induced and gust-induced airloads with the next-generation CFD solver framework CODA.
Two approaches for obtaining time-linearized airloads are presented: the linear frequency do-
main solver which solves the linearized discretized RANS equations for the time-linearized
response, and a system identification method which obtains the time-linearized aerodynamic
response from nonlinear time-accurate simulations. Both methods are applied for typical two-
dimensional and three-dimensional test cases including the NACA 64A010 airfoil, the AGARD
LANN wing and the NASA CRM transport aircraft model employing pitching oscillations and
sinusoidal gust encounter. By comparison of both approaches, the consistent and accurate im-
plementation of the LFD solver and the time-accurate integration scheme in the CODA frame-
work for time-linearized forced motion and gust encounter simulations is verified.

1 INTRODUCTION

Computational fluid dynamics (CFD) methods based on the Reynolds-averaged Navier-Stokes
(RANS) equations have become essential tools in aircraft design for assessing loads and sta-
bility due to their ability to account for nonlinearities in modelling transonic or separated flow.
However, the vast parameter space investigated in aircraft design and the high computational
effort of unsteady RANS-based CFD methods limits their application. Time-linearized airloads
provide a cost-effective way to incorporate unsteady RANS methods in industrial applications,
while retaining the fidelity of the RANS flow solution [1].

The time-linearized airloads are obtained from the aerodynamic response due to small-amplitude
harmonic perturbations around a steady flow. This method is well suited for flutter onset pre-
dictions, where the linear, time-invariant dynamics of the aeroelastic system is relevant. For
gust loads prediction, time-linearized airloads can offer mostly conservative estimates [2] and
enhance the industrial loads process [3].
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The time-linearized aerodynamic response can directly be solved in the frequency domain after
linearization of the discretized RANS equations under the assumption of harmonic perturba-
tions. This linear frequency domain (LFD) solver requires the construction of the Jacobian
matrix of the discretized fluxes and utilizing a robust linear solver [4]. An alternative method is
to use the technique of system identification where the steady flow is perturbed by a forced ex-
citation of very small amplitude. Since this response in the time domain can then be considered
linear, the frequency response can be derived from the resulting data [5, 6].

The next-generation CFD framework CODA [7] comes with improved capabilities regarding
the implementation and modelling of the discretized flow. In particular, through the use of au-
tomatic differentiation (AD) of the implemented equations, the flux Jacobian matrix required
for the LFD solver can be evaluated directly. This eliminates limitations from previous hand-
differentiated approaches [8] and expands the features of the LFD solver. Especially, more
turbulence models than variants of the one-equation Spalart-Allmaras (SA) [9] like Menter’s
two-equation SST k-ω model [10] are available. Furthermore, CODA is fully coupled with the
linear algebra framework Spliss [11], providing access to a range of advanced linear solvers such
as preconditioned GMRES [12]. The capabilities of CODA’s LFD solver have been demon-
strated and validated by Vevek et al. [13] through comparison with the DLR TAU-Code [14]
and experimental data.

The objective of this paper is to utilize both considered approaches for obtaining time-linearized
airloads in a unified setting, which allows to verify the consistent implementation of CODA’s
LFD solver and the unsteady time-integration scheme with moving meshes. The latter being the
only necessity for the system identification method. The paper is organized as follows. In Sec. 2,
the two approaches for retrieving the time-linearized airloads and their application in the CODA
framework are described. In Sec. 3, the results obtained by both approaches are compared for
pitching oscillations and gust encounter of the NACA 64A010 airfoil, pitching oscillations of
the AGARD LANN wing, and gust encounter of NASA Common Research Model (CRM).
Sec. 3 concludes this paper with a summary and outlook.

2 BACKGROUND AND METHOD

The aeroelastic governing equations can be formulated as the second-order, linear equations of
motion coupled with the aerodynamic forces. This equation can be transformed in terms of
generalized coordinates by the matrix of structural eigenvectors Φgh as well as transformed into
the frequency domain by assuming harmonic modal displacements with amplitudes q̂ around a
steady state:

−ω2Mhhq̂(ω) +Khhq̂(ω) = ΦT
ghHgaf̂a = f̂(ω) = A(ω)q̂(ω), (1)

where Mhh and Khh are the generalized mass and stiffness matrices. This gives rise to the
time-linearized aerodynamic force distribution f̂a, which can be projected onto the generalized
coordinates by the matrix of structural eigenvectors transferred to the aerodynamic coordinates
with the spline matrix Hga. The generalized aerodynamic force (GAF) matrix A(ω) gathers
the aerodynamic responses due to oscillating individual mode shapes enabling the superposi-
tion of the individual force contributions. Therefore, the computation of the time-linearized
aerodynamic force distribution and subsequently the generalized aerodynamic force around a
steady flow field for a set of mode shapes is necessary for the time-linearized analysis and loads
recovery. Moreover, the GAF matrix can be extended to include the contributions of sinusoidal
gusts [2], where the gust field is introduced as additional negative grid velocities [15]. In the
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aeroelastic context, the angular frequency ω is normalized to the so-called reduced frequency:

ω∗ = ω
L

U∞
, (2)

with a characteristic length L and the free-stream velocity U∞.

In CODA, the integral forces are obtained by integration of the face boundary flux over the
wall boundaries [16]. For consistency, the cell-local quantities of the pressure coefficient cp and
vector of skin friction coefficient cf are obtained similarly from the face boundary flux. Hence,
the aerodynamic force acting on a surface cell can be determined by

fa = q∞ (cpna+ cfa) (3)

where n is the normal vector of the surface cell, a the surface cell area and q∞ = ρ∞U2
∞/2 is

the free-stream dynamic pressure. By providing the displacement vectors of a structural mode
shape at the surface cell centers, the forces can be projected onto the generalized coordinates
yielding the generalized aerodynamic force.

For both the LFD solver and the system identification, it is necessary to obtain the steady state
of the finite-volume discretized flow with CODA first. The steady flow solution is obtained by
employing the linearized implicit Euler method with cell-local time stepping, determined by
the CFL number. The nonlinear iterations are solved by a Newton-Krylov solver, where the
resulting linear systems are solved by a preconditioned GMRES up to a requested reduction
in linear residual before updating the flow solution for the next iteration. The adoption of an
implicit solution scheme facilitates large local time steps which is achieved by a employing a
switched evolution relaxation (SER). SER increases or decreases the CFL number after every
iteration based on the current residual reduction [17]. For all considered cases a nonlinear
residual reduction of 10−10 is achieved.

2.1 System identification method

The method of system identification relies on performing nonlinear time marching simulations
accurately representing the flow dynamics resulting from external excitation. By choosing very
small excitation amplitudes, the linear, time-invariant response is virtually found as the nonlin-
ear time domain response. This allows to compute the time-linearized response as the transfer
function between the Fourier transformed excitation signal δ and the response signal. Using the
example of the pressure coefficient, this can be written as

ĉp(ω) =
DFT(cp(t)− cp)

DFT(δ(t))
, (4)

where the discrete Fourier transformation (DFT) is computed by the Fast Fourier Transfor-
mation algorithm [18]. Subtracting the steady state from the time signal, normalizes the zeroth
frequency content. In the linear region, the discrete spectrum of the excitation signal determines
the obtained spectrum of the time-linearized response. Hence, a short-time pulse excitation re-
sults in a broadband response, where the time step size determines the maximum obtainable
frequency according to the Nyquist theorem. The total simulation period determines the min-
imum frequency and thus, the frequency resolution. A single frequency can be obtained by
exciting with a pure sinusoidal signal and computing the transfer function for a single period of
this frequency. However, the validity of the assumed linearity must be ensured by an amplitude
study.
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For performing unsteady time-domain simulations, CODA provides a family of diagonally im-
plicit Runge-Kutta (DIRK) time integration schemes, which enables time-accurate simulation
in a dual time manner by nesting the linearized implicit Euler method with local time stepping
as employed for the steady flow solution. In this work, a two-stage second-order scheme [19]
is used. The accuracy of the time integration is determined by both the time step size and the
convergence of the inner nonlinear iterations. To minimize the computational effort, the number
of inner iterations is limited by either a fixed number of iterations or by an achieved nonlinear
residual reduction. Moreover, the matrix-vector products with the flux Jacobian matrix in the
inner Newton-Krylov solver are computed with one-sided finite differences. This results in a
performance gain which can become quite significant when computing hundreds of time steps.
The inner GMRES is preconditioned with an incomplete lower-upper (ILU) factorization with
zero fill-in [20] and stopped after a linear residual reduction of 0.1.

2.2 Linear frequency domain solver

The LFD solver is derived by the linearization of the RANS equations in semi-discretized form,
which can be written in terms of the state vector W of the conservative variables for the finite-
volume discretized fluid as

d(MW)

dt
+R(W,x,v) = 0, (5)

where R is the residual vector accounting for the the inviscid and viscous fluxes, M is the
integration matrix consisting of the discretized cell volumes, x are the grid node coordinates
and v is the vector of grid node velocities. The linearization entails expanding R(W,x,v)
in the Taylor series of first order around the steady state W, x and v, with R approximately
zero. Under the assumption of harmonic excitation of angular frequency ω with amplitudes x̂,
v̂ resulting in a harmonic response of amplitude Ŵ, the linearized discrete RANS equation can
be written as a linear system of equations for the unknowns Ŵ as(

iωI+ ∂WR̃(W,x,v)
)
Ŵ = −M

−1
∂x(MR̃)(W,x,v)x̂− ∂vR̃(W,x,v)v̂, (6)

where R̃ = M−1R is normalized by the cell volumes as it is employed in CODA. The left-hand
side includes the flux Jacobian matrix ∂WR̃(W,x,v), which is available by AD. Moreover, R̃
accounts for the additional flux from cell volume changes resulting from grid node velocities
by implementing a geometric conservation law.

The right-hand side is evaluated as approximations to the directional derivatives by the central
finite differences

∂x(MR̃)(W,x,v)x̂ ≈ 1

2ε

(
M+εR̃(W,x+ εx̂,v)−M−εR̃(W,x− εx̂,v)

)
, (7)

∂vR̃(W,x,v)v̂ ≈ 1

2ε

(
R̃(W,x,v + εv̂)− R̃(W,x,v − εv̂)

)
, (8)

with M±ε = M(x± εx̂) being the cell volumes of the deformed mesh.

The amplitudes x̂ and v̂ are defined by the type of excitation. If the time-linearized response to
a mode shape is computed, x̂ is the vector of displacements and the grid velocities are the time
derivatives of the grid coordinates: v̂ = iωx̂. In the case of gust encounter, the grid does not
deform, x̂ = 0, and the grid velocities account for the sinusoidal gust field, see [6], resulting to

v̂ = −v̂gust exp

(
iω

x0 − x

U∞

)
, (9)
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with the gust vector v̂gust defining the direction and amplitude of the gust field, and the gust
reference position x0 determining the phase shift.

In this work, the linear system of Eq. 6 is solved, with a restarted GMRES using the ILU pre-
conditioner [20] without fill-in reaching a reduction in the linear residual of 10−8. The required
matrix-vector products with the flux Jacobian matrix are computed with the memory-efficient
AD variant. By a change of variables, the obtained amplitudes of the conservative variables are
transformed to amplitudes of the primitive variables [21] from which further time-linearized
quantities can be obtained. Hence, for computing the time-linearized pressure coefficient ĉp, a
small-amplitude perturbed steady flow state is constructed which enables the computation of the
pressure coefficient by the face boundary flux as employed in CODA. From this, ĉp is obtained
by a one-sided finite difference with a step size of 10−3. Following Eq. 3, while neglecting the
viscous force terms, the time-linearized force acting on a surface cell can be written as

f̂a = q∞ (ĉpna+ cp∂x(na)x̂) , (10)

where the second term accounts for the harmonic contribution of the surface-area weighted
normal vector in case of grid deformation. The change in the surface-area weighted normal
vector is again approximated by a one-sided finite difference to

∂x(na)x̂ ≈ 1

ε
(n(x+ εx̂)a(x+ εx̂)− n(x)a(x)) . (11)

3 RESULTS

3.1 NACA 64A010 pitching oscillations

The NACA 64A010 is a symmetrical airfoil and is a commonly used two-dimensional aeroelas-
tic test case [4]. The flow parameters are based on the CT8 case [22] where forced sinusoidal
pitching motion was experimentally performed in transonic flow.

Table 1: Flow parameters for NACA 64A010 case.

Parameter Value
Mach number 0.8
Reynolds number 12 · 106
Reference temperature 300 K
Angle of attack 0 deg
Reference length L = c 1 m

The computational mesh used for this analysis is a three-dimensional mesh spanning one cell
perpendicular to the airfoil section. At the sides symmetry boundary conditions are applied to
model two-dimensional flow. The mesh consists of a structured grid of hexahedrons resolving
the boundary layer and a unstructured grid of prisms for the farfield, see Fig. 1b. The computa-
tional mesh comprises 21454 nodes in total.

Tab. 1 lists the flow parameters and Fig. 1a shows the obtained steady pressure coefficient dis-
tribution employing two different turbulence models: SA-neg [9] and SST [10]. Both cases are
computed employing a second-order Roe upwinding scheme with an entropy-fix coefficient of
zero and local time stepping with SER CFL ramping (ranging from 10 to 5000). The gradients
are calculated by the Green-Gauss method. In case of the SST model, the two transport equa-
tions are decoupled from the mean flow and spatially discretized with first order to improve the
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robustness and accuracy of the flow solution. The steady flow exhibits strong recompression
shocks at the centers of the upper and lower side. Both turbulence models give almost the same
results in terms of the pressure distribution with the same shock position and strength.

a b

Figure 1: NACA 64A010 case (a) steady pressure coefficient distribution obtained with SA-neg and SST turbu-
lence models, (b) near-wall mesh.

Based on the obtained steady flow fields, unsteady pitching simulations around the airfoil’s
quarter point are performed in the time domain and by employing the LFD solver in order to
obtain the time-linearized aerodynamic responses. In the time-domain, sinusoidal pitching os-
cillations with varying frequencies and a broadband pulse excitation are carried out by rotating
the mesh and employing a dual time-stepping to advance in physical time. The time step size is
chosen by setting the number of samples per period of the pitching frequency. The sinusoidal
excitations are computed with 64 samples per period, while for the broadband pulse signal a
time step size of 64 samples for a reduced frequency of 1 is chosen. The inner iterations are
stopped after reaching a reduction in the nonlinear residual of 10−5 for each stage of the DIRK
scheme. For the broadband pulse computation the number of inner iterations is limited to a
maximum of 10 per stage in order to avoid computational cost. This limit is reached after the
pulse excitation, where the excitation signal is zero. However, the achieved residual reduction
is close to the target reduction. For the inner time step size, a CFL number of 106 is used. The
amplitude of the pitching excitations is chosen to 10−5 deg, which is ensured to be in the linear
region. The same small amplitude is chosen for the step size ε for computing the right-hand
side of the LFD equation via the finite central differences, cf. Sec. 2.2.

In the following analysis, the forces and pressure coefficients are computed as described in
Sec. 2. Fig. 2 shows the excitation signals together with the dynamic lift response for the pulse
and the sinusoidal excitation with a reduced frequency of 0.3. For the sinusoidal case, the lift
coefficient approaches a constant sinusoidal response. Hence, each sinusoidal excitation is sim-
ulated for 5 periods to improve on the accuracy of the frequency response. Although, typically
not more than 3 periods are required for an adequate accuracy, which can be determined by
employing a sliding window method for computing the transfer function. For the lift coefficient
due to the pulse excitation a broadband response is observed. The pulse response is simulated
to achieve a resolution of reduced frequency of 0.01, which requires 3200 time steps.

Fig. 3 and Fig. 4 present the time-linearized response in terms of the lift coefficient and pres-
sure coefficient distribution using the SA-neg and the SST model. For each model, the time-
linearized response is shown obtained through broadband pulse excitation, by sinusoidal ex-
citations of eight frequencies, and by the LFD solver for 16 frequencies. For both turbulence
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Figure 2: Time-domain response of the lift coefficient Cl for the pitching NACA 64A010 with a broadband pulse
and sinusoidal excitation signal δ in degree (SA-neg).

models, excellent agreement is found in between the three employed techniques showing the
accurate and consistent implementation of the nonlinear time domain and the linear frequency
domain flow solvers in CODA. Moreover, there is an excellent agreement for the local quantity
of the pressure coefficient. For the SST model, the same level of accuracy between the meth-
ods is achieved. In terms of the lift coefficient response no significant differences are observed
between both turbulence models. However, the response in the pressure coefficient at the shock
position exhibits a much stronger response for the SST model than for SA-neg. This indicates
that for other integral forces like the moment coefficient differences between the models may be
observed. Furthermore, it shows that the unsteady response can be different for both turbulent
models, although the steady pressure coefficient distribution is very similar.

The results confirm the capability of CODA’s LFD solver to work with the SST turbulence
model by utilizing the AD implementation within CODA. This demonstrates the advantage of
the availability of AD in a CFD framework as the SST model is not available for the LFD solver
of the DLR TAU-Code.

a b

Figure 3: Frequency response with SA-neg model for the pitching NACA 64A010, obtained via a broadband pulse,
sinusoidal excitation and LFD solver (a) of the lift coefficient Ĉl over reduced frequency and (b) the
pressure coefficient distribution ĉp for ω∗ = 0.3.
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a b

Figure 4: Frequency response with SST model for the pitching NACA 64A010, obtained via a broadband pulse,
sinusoidal excitation and LFD solver (a) of the lift coefficient Ĉl over reduced frequency and (b) the
pressure coefficient distribution ĉp for ω∗ = 0.3.

Finally, Fig. 5 shows the comparison between CODA and DLR TAU-Code for the pitching
NACA 64A010. The same computational grid is analysed with the DLR TAU-code which is
a cell-vertex based finite-volume solver and here employed with the central Jameson-Schmidt-
Turkel (JST) scheme [23] using the SA-neg model. The frequency response is obtained by
employing the LFD solver of the DLR TAU-Code [4]. The steady pressure coefficient distribu-
tion agrees very well with CODA with small differences in the vicinity of the shock as shown
in Fig. 5a. The shock is slightly more diffused for the TAU solution which also becomes visible
by comparing the frequency response of the pressure coefficient distribution for ω∗ = 0.3, see
Fig. 5b. The unsteady pressure coefficient near the shock is also more diffused and produces
a lower peak amplitude. This effect is likely attributed to the coarse mesh in combination with
the difference of using the Roe upwinding scheme in CODA and the JST scheme in the DLR
TAU-Code.

a b

Figure 5: Comparison between CODA and DLR TAU-Code for the pitching NACA 64A010 with SA-neg (a)
steady pressure coefficient distribution, and (b) pressure coefficient distribution ĉp for ω∗ = 0.3 obtained
from LFD solvers.
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3.2 NACA 64A010 gust encounter

The time-linearized gust response for the NACA 64A010 is investigated in this section. This
case is based on the pitching case of the previous section, Sec. 3.1, and uses the same computa-
tional grid as well as the same flow parameters. Thus, the steady flow solution for the SA-neg
turbulence model can be reused in order to perform time-linearized vertical gust encounters
with the LFD solver as well as in the time domain.

In the time domain, a broadband pulse excitation as well as single frequency excitations are
performed with propagating gust fields which are induced every time step through the grid ve-
locities, cf. Sec 2. The time step sizes are determined by computing 64 samples per period of the
excitation frequency, which is chosen to 1 for the broadband pulse excitation. As in the pitching
case, the inner iterations for each DIRK stage are stopped after a nonlinear residual reduction
of 10−5, while the pulse has a limit of 10 iterations. The CFL number for the inner iterations is
106. The amplitude of the gust field is expressed as a corresponding angle of incidence, which
results from the gust’s propagation velocity, typically the free-stream velocity U∞. Hence, this
angle in radian is obtained by the ratio vgust/U∞. This scaling allows to compare the obtained
time-linearized gust response with the response for the pitching airfoil which are presented in
radian in Sec. 3.1. For very low frequencies, both types of time-linearized response converge.
The excitation amplitude is chosen to 10−5 rad. This is confirmed to be in the linear region by
an amplitude study and the same value is taken for obtaining the right-hand side of the LFD
solver via central differences.

Fig. 6 shows time-linearized gust response in terms of the lift coefficient up to a reduced fre-
quency of 1.5 and the pressure coefficient distribution for ω∗ = 0.3. Likewise to the pitching
case, excellent agreement is found between the solutions of the LFD solver and the results ob-
tained from the time domain. This verifies the application of CODA’s LFD solver as well as the
time-accurate simulations for the time-linearized gust encounter.

a b

Figure 6: Frequency response with SA-neg model for the NACA 64A010 gust encounter per gust angle in radian,
obtained via a broadband pulse, sinusoidal excitation and LFD solver (a) of the lift coefficient Ĉl over
reduced frequency, and (b) the pressure coefficient distribution ĉp for ω∗ = 0.3.

3.3 LANN wing pitching oscillations

The AGARD LANN wing [24] is a commonly used aeroelastic test case representing a tapered
wing of a transport aircraft in transonic flow with a supercritical airfoil section. It is a semi-span
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model with an aspect ratio of 7.92, a quarter-chord sweep angle of 25 deg, and a semi-span of
s = 1 m. The root chord length is 0.3608 m and the mean aerodynamic chord is 0.268 m.
The flow parameters investigated in this section are based on the CT5 case [24] where forced
sinusoidal pitching motion around a y parallel axis was experimentally performed in transonic
flow. The pitching axis is located by x = 0.224 m and z = 0 m, with the leading edge point at
the wing root laying at the origin.

Table 2: Flow parameters for LANN wing case.

Parameter Value
Mach number 0.82
Reynolds number 5.43 · 106
Reference temperature 273 K
Angle of attack 0.6 deg
Reference length L 0.268 m
Reference area aref 0.2526 m2

The computational grid, shown in Fig 7, is a hexahedron-dominant mesh with 17906 wall sur-
face nodes and a total of 809277 grid nodes. The farfield extends in a semi-sphere around the
origin with a radius of 1000 m. At the x-z plane, symmetry boundary conditions are applied.
Tab. 2 lists the investigated flow parameters. The steady flow solution is computed employing
a second-order Roe upwinding scheme with an entropy-fix coefficient of zero using the SA-
neg turbulence model. The solution is obtained in a two-staged scenario, where initially the
solution is approximated employing a constant reconstruction of the cell-face values, iterated
until a nonlinear residual reduction of 10−3 is achieved. Subsequently, this solution is further
converged with a limited linear reconstruction using a quintic spline limiter for bounding the
cell gradients, which are computed by the Green-Gauss method. The solution update in each
nonlinear iteration of the Newton-Krylov solver is damped employing a nonlinear positivity
filter. The SER ramp is used to regulate the CFL number for the local time stepping from 2
up to 3.4 · 105. The final residual reduction of 10−10 is achieved after a total of 154 nonlinear
iterations.

Figure 7: LANN wing computational grid

Around the steady flow solution, unsteady pitching simulations are performed in the time do-
main with a broadband pulse and single frequency excitations as well as by applying the LFD
solver in order to obtain the time-linearized response. The pitching motion is considered by
deforming the mesh with a scaled displacement field resulting from a linearized rotation around
the pitch axis as only very small rotation angles are investigated. For the time-domain simula-
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tions, the time step sizes result from sampling each excitation period with 64 samples, where
1 is set as the reference frequency of the broadband pulse excitation. The inner iterations are
performed with a CFL number of 106 and each DIRK stage is stopped after reaching a nonlinear
residual reduction of 10−3 or after 10 iterations for the pulse excitation. Within each stage, it
is observed that the number of required linear iterations of the GMRES solver increases as the
nonlinear residual converges, resulting in an increasing computational cost per magnitude of
nonlinear residual reduction. However, for maintaining accuracy a significant reduction is re-
quired. This may be relaxed employing a smaller time step size but for the cost of an increased
number of samples to be computed. The excitation amplitude is 10−5 deg, and the same value
is used as the step size for computing the right-hand side of the LFD equation, cf. Sec. 2.2.

Fig. 8 shows the steady and unsteady pressure coefficient distributions a two span-wise sections
for a pitching frequency of ω∗ = 0.15, which is close to the experimentally investigated 24 Hz.
The first section is close to the wing root, y/s = 0.2. From the steady pressure distribution two
recompression shocks are found on the upper side around x/c ≈ 0.2 and close to the center. The
two shocks stem from a λ-shock system which is found on the upper side of the wing [4]. At
the second section, closer to the wing tip at y = 0.65, only a single strong shock is observed at
x/c ≈ 0.35. These shock positions are also identified by the strong peaks in the time-linearized
response of the pressure coefficient distribution. The comparison between the LFD solution
and the results obtained in the time domain shows excellent agreement in the unsteady pressure
coefficient distribution at both span-wise sections.

Fig. 9 presents the time-linearized response in terms of generalized aerodynamic force for the
pitching motion. The generalized aerodynamic force fp is obtained by projecting the aero-
dynamic force distribution onto the surface displacements for the linearized pitching motion,
see Sec. 2. Hence, it resembles a moment of the force distribution around the pitch axis. The
time-linearized GAFs are normalized to f̂ ∗

p = f̂p/(q∞arefL) for a linearized pitching motion
of 1 rad. As for the local quantities, excellent agreement is found between the GAFs obtained
by the LFD solver and from the broadband pulse response in the time domain over the range
of reduced frequencies. Only for the zeroth frequency a small deviation is observed. This re-
sults most likely from the not fully converged response for the very low frequencies through the
broadband pulse excitation, since the simulation period must be long enough in order to obtain
the low frequencies. In this case, 1280 samples are computed for the pulse response resulting
in a frequency resolution of 0.05.

Taken together, the consistent implementation of the LFD solver and the time-accurate simu-
lations in CODA for time-linearized pitching motion of a three-dimensional wing in transonic
flow is shown.
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a b

Figure 8: Steady and unsteady time-linearized pressure coefficient distribution for the LANN wing pitching oscil-
lations with ω∗ = 0.15 at the span-wise sections (a) y/s = 0.2, and (b) y/s = 0.65.

Figure 9: Normalized, time-linearized GAF for the pitching motion of the LANN wing pitching oscillations.
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3.4 NASA Common Research Model gust encounter

In this section, the time-linearized gust response for the NASA Common Research Model
(CRM) is investigated employing the LFD solver and a single frequency excitation in the time
domain. The NASA CRM is a model of a typical civil transport aircraft designed for applied
CFD validation studies [25]. The computational grid is obtained from the grid collection of
the Fifth Drag Prediction Workshop [26]. The medium-sized grid L3 is taken from a series
of structured grids and converted to an unstructured grid of hexahedral cells suited for CODA,
see Fig. 10. The grid is a wing-body half model with 53569 surface nodes and has around
5.19 · 106 grid nodes in total. The grid is scaled to aircraft size with a semi-span of s = 29.38 m
and a mean aerodynamic chord of L = 7.00532 m. The farfield is discretized by a semi-sphere
around the aircraft with a radius of 800 m. For the x-z plane, symmetry boundary conditions
are applied.

Table 3: Flow parameters for NASA CRM case.

Parameter Value
Mach number 0.85
Reynolds number 5 · 106
Reference temperature 310.9 K
Angle of attack 3 deg
Reference length L 7.00532 m

The flow parameters of the NASA CRM case are listed in Tab. 3. The steady flow solution
is obtained by the second-order Roe upwinding scheme with an entropy-fix coefficient of 0.1.
Likewise to the LANN wing case, a two-staged scenario is applied with an initial solution
using a constant reconstruction for a residual reduction of 10−5, followed by a linear cell-wise
reconstruction using a quintic spline gradient limiter. The Newton-Krylov iteration updates
are locally damped by a nonlinear positivity filter. The CFL number ranges from 2 up to 106

through the SER ramping. The final residual reduction of 10−10 is obtained after 114 nonlinear
iterations.

Figure 10: NASA CRM computational grid DPW5 L3

A time-linearized vertical gust encounter is performed for a reduced frequency of ω∗ = 0.4
which corresponds to a gust length of 110.04 m. The single frequency excitation in the time
domain is simulated for 5 periods with 64 time steps per period. The CFL number for the
inner iteration is set to 108 and each stage of the DIRK scheme is stopped after a nonlinear
residual reduction of 10−3 or after 20 nonlinear iterations. Similar to the LANN wing case, the
computational cost noticeably increases with lowering the targeted residual reduction per stage
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as the number of inner iterations strongly increases. The gust amplitude and the step size for
computing the right-hand side of the LFD equation is chosen to 10−3 m/s.

The time-linearized pressure coefficient distribution is shown in Fig. 11 for two span-wise sec-
tions of the wing together with the steady pressure coefficient distribution. For the inboard
section at y/s = 0.2, the flow exhibits a shock in the aft part of the wing, which is also ob-
served closer to center at the more outboard section at y/s = 0.65. The shock positions are
then also found by the strong peaks in the time-linearized pressure coefficient distribution. Ex-
cellent agreement between the LFD solver and single frequency excitation is found for the
time-linearized pressure coefficient distribution, which shows the consistent implementation of
the LFD solver and the time-accurate simulations in CODA for a sinusoidal gust encounter of a
typical aircraft configuration.

a b

Figure 11: Steady and unsteady time-linearized pressure coefficient distribution due to a sinusoidal gust encounter
in (m/s) with ω∗ = 0.4 at spanwise sections (a= y/s = 0.2, and (b) y/s = 0.65.
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4 CONCLUSION

This paper investigates the motion-induced and gust-induced time-linearized airloads utilizing
the next-generation CFD framework CODA. Two methods for obtaining time-linearized air-
loads are presented and applied within the CODA framework for two- and three-dimensional
test cases. On the one hand, the implemented LFD solver is employed, which allows to solve the
linearized discretized RANS equations by providing the necessary right-hand side for grid mo-
tion as well as gust encounter for each frequency. On the other hand, the time-linearized airloads
are derived through system identification of the time-domain response due to grid motion and
gust encounter with very small amplitudes. This method is demonstrated for broadband pulse
signals, which yields the response for multiple frequencies, and for single-frequency sinusoidal
excitation.

The presented results include pitching oscillations of the NACA 64A010 airfoil and the AGARD
LANN wing. Both cases display excellent agreement in the time-linearized response between
the two approaches, for local quantities like the pressure coefficient distribution as well as for
integral forces. For the pitching NACA 64A010 airfoil, the same quality of agreement is found
for the SST k-ω turbulence model, demonstrating the enhanced feature set of the CODA frame-
work through AD. To the same extent, excellent agreement for the two approaches is presented
for the time-linearized gust encounters for the NACA 64A010 airfoil as well as for the NASA
CRM aircraft model. Taken together, the presented results demonstrate the consistent and accu-
rate implementation of the LFD solver and the time-accurate integration scheme in CODA for
time-linearized forced motion and gust encounter simulations.

Future work will address employing the LFD solver for more advanced cases like moderate flow
separation. Moreover, applying the LFD solver for transition transport models and other turbu-
lence models seems possible in the CODA framework through the AD implementation. Further-
more, increasing the efficiency of the time-accurate simulations for obtaining time-linearized
responses is investigated. The two-stage second-order DIRK scheme with the nested Newton-
Krylov solver employed in this work showed a significant computational demand which must
be met by an efficient setup of the Newton-Krylov solver for balancing the accuracy against
the computational cost. For example, DIRK schemes of higher order or Rosenbrock-Wanner
methods are available for investigation in the CODA framework. Additionally, possible perfor-
mance improvements from the implemented hybrid parallelization in CODA and Spliss are to
be investigated for the LFD solver as well as for the time-accurate simulations.
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