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Abstract: Shape sensing techniques enable the real-time reconstruction of wing displacements
based on measured strain. As wing designs become more flexible, they may at some point ex-
hibit geometric non-linear deformation. This eventually leads to erroneous displacement esti-
mates if applied methods rely on the assumption of linear deformation. In this research, the
Incremental Modal Method (IMM) is presented which accounts for the change of the employed
mode shapes due to structural deformation. The method is applied on the finite element model
of a high aspect ratio wing undergoing geometric non-linear deflections in flap-wise bending. In
the process, a setup of virtual strain sensors is presumed which is representative as instrumenta-
tion in experiments. Along a reference line of the wing, the displacement estimates of IMM are
compared to results obtained using the Modal Rotation Method (MRM), another shape sensing
scheme recently developed for the non-linear regime. For the chosen segmentation and virtual
instrumentation of the investigated wing, IMM proves to be a promising candidate for real-
time displacement reconstruction in experiments, provided that mode shapes in intermediate
deflected states can be determined.

1 INTRODUCTION

The displacement reconstruction of wing-like structures based on strain, commonly referred
to as shape sensing, is a prospective method for monitoring the state of deformation when-
ever a direct measurement is not feasible. A large number of methods have been established
and the majority of available techniques can be categorised in three different groups: methods
exploiting the kinematics of structural elements such as beams [1], methods minimising error
functionals in the framework of inverse finite elements [2], and methods that linearly superpose
basis functions to reconstruct displacements [3,4]. These methods all have in common that they
only allow displacement predictions for linear deformations of the structure.
An observed trend in aircraft design to reduce lift-induced drag is to increase wing aspect ratio.
As wings with longer spans are more susceptible to large deflections, their aeroelastic behavior
is prone to being influenced by geometric non-linearities. In this context, the source of non-
linearity is classified geometric if changes of the system behaviour are caused by significant
alteration of the geometry with respect to its initial state. Such non-linear behaviour may occur
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as gust or manoeuvre load response, but it can already be encountered in cruise conditions of
very flexible aerial vehicles [5]. The aforementioned traditional shape sensing methods applied
on such problems lead to erroneous assessment of the deformation. To overcome this issue, new
approaches tailored specifically to geometric non-linearity have been presented recently, where
either modal rotations [6, 7] or static non-linear deflection curves [8] of the structure are used
for the deformation reconstruction. These prerequisites are derived from a Finite Element (FE)
model of the structure.
Among other flight dynamic scenarios, in both flight and wind tunnel tests, data is collected at
stationary test points within the test envelope. These test points serve as linearisation points to
determine the modal parameters of the aeroelastic system and to assess flutter stability [9]. For
flexible wings, different test points are typically associated to different states of deflection. Fol-
lowing the idea of [10], it may thus be prospective to exploit methods that have been developed
for linear deformation in an incremental sense also for the geometrically non-linear regime.
In this way, the deformation reconstruction could be accomplished solely based on measured
quantities.
In the present research a shape sensing method belonging to the third mentioned category, using
mode shapes as basis functions (cf. [3, 11]), is extended to incremental use. Employing mode
shapes in a linear combination for displacement reconstruction is particularly fruitful, since this
fulfils the modal approach. In contrast to the original method, the proposed technique utilises
strain and displacement mode shapes determined in different states of deformation. In the con-
text of an aeroelastic experiment, the stationary points of the test envelope represent these states,
which are connected to each other in an incremental procedure in order to achieve deformations
in the geometrically non-linear regime. The method is therefore denoted Incremental Modal
Method (IMM).
In order to demonstrate the above described process, IMM is applied to simulation results of
an FE model of a test wing undergoing large deflections. The wing is intended to be used
for validation of the method in future experiments. On that account, strain data is considered
at positions on the wing which are representative as test instrumentation. Displacement esti-
mates are computed for a reference line of the wing and then evaluated by means of the true
non-linear deformation provided by the FE model and estimates of the Modal Rotation Method
(MRM, [6, 7]), which has recently been presented as method for application at large displace-
ments of slender structures. The theory of the relevant methods and the framework of this
comparative study are explained in the following.

2 MODAL METHODS FOR GEOMETRICALLY NON-LINEAR DEFORMATION

From the various existing displacement reconstruction methods based on strain measurements,
both IMM and MRM exploit the modal approach. In the first case, the displacement estimate re-
sults directly from linear superposition of displacement mode shapes, whereas the other method
superposes curvature modes to rotation angle changes collected in rotation matrices. In order to
apply aforementioned methods in an experiment, it is presumed that the structure being analysed
is equipped with strain sensors, enabling real-time measurements as the structure experiences
deformations either from quasi-static or dynamic loads.

2.1 Incremental Modal Method

For all reconstruction methods based on the modal approach, the structure can be described as
a system with N degrees of freedom, where the displacements u can be expressed by means of
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a linear combination of mode shapes ϕr and modal coordinates qr:

u(t) =
N∑
r=1

ϕrqr(t) = Φq(t). (1)

Φ collects the mode shapes in columns being the modal matrix and the components of q indicate
the quantitative participation of each mode to the overall deformation. u is an approximation,
if Φ contains a reduced set of modes. Just as the displacements can be described by the modal
approach, it is possible to specify strain by a corresponding linear combination:

ε(t) =
N∑
r=1

ψrqr(t) = Ψq(t), (2)

where Ψ represents likewise the strain modal matrix. The components of ε are measured during
the application of the shape sensing. As the positions for displacement output, for example the
position of accelerometers, are in general different from strain sensor locations, the components
in Ψ cannot be derived from Φ in general. But if both the displacement mode shapes and strain
mode shapes are scaled with respect to the same modal masses, the modal coordinates are
unique and thus the equations can be rearranged to obtain

û(t) = ΦΨ†ε(t) = Tε(t) (3)

as a displacement estimate. The pseudo-inverse Ψ† of the strain basis functions in combination
with the displacement modal matrix can be summarised in a matrix T that conducts the linear
mapping from strain to displacement. In view of Eq. (3), the spatial resolution of the displace-
ment estimate depends on the dimension of the displacement mode shape vectors. Their size
is either steered by the number of the measurement degrees of freedom in modal testing or the
nodal degrees of freedom from FE discretisation. The maximum number of modes considered
in the linear combination is typically bounded by the number of strain sensors employed during
the test, as they determine how many modes are distinguishable from each other with the chosen
strain sensor distribution [11].
Modal matrices can be calculated from finite element analysis or identified in modal testing;
also a hybrid combination of modal matrices determined either in tests or from FE analysis is
possible. For commercial aircraft, a Ground Vibration Test (GVT) is usually conducted to de-
termine the modal parameters and amongst them mode shapes. The experimentally determined
mode shapes represent a favourable basis for shape sensing, because the FE model may under-
lie flawed modelling assumptions, which are typically corrected in a model update using GVT
results. Nevertheless, even mode shapes identified in a GVT or modal test describe the system
behaviour under the influence of gravity and thus in a state of insignificant deformation.
Regardless whether the mode shapes are obtained in a test or from a model, in case of geo-
metrically non-linear deformation, the approach described above is limited by the fact that the
modal basis is valid for an undeformed structure. Figure 1a illustrates the 1st bending mode
of a wing displayed on a reference line. The mode has been determined in a normal modes
analysis of an FE model and its shape characterised by components that point exclusively in the
z-direction; the same applies for higher order flap-wise bending modes. It is a general property
of the modal reconstruction method that deformations due to uniaxial bending loads are com-
piled with high participation of respective bending modes. Consequently, these mode shapes
used as basis functions for deformation reconstruction cannot reproduce any displacement in
span-wise direction, which is however typically observed in the geometric non-linear regime.
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(a) Undeformed structure (b) Pre-deformed structure

Figure 1: 1st flap-wise bending of a wing displayed at the aerodynamic center as reference line. The arrow size
corresponds to the magnitude of individual components of the mode shape vector.

With increasing deflection of the wing, the components of individual mode shapes is subjected
to changes. In Figure 1b, the 1st bending mode shape is displayed in a deflected state. The mode
shape has been obtained from a normal modes analysis following a non-linear static simulation
of the wing and it is plotted on the deformed reference line. The eigenvector now exhibits com-
ponents in y-direction that can contribute to span-wise displacements if the mode is employed
in the reconstruction scheme. In an aeroelastic test scenario, sensors that are attached to the
wing surface and initially measure in z-direction would be rotated due to the deflection. Con-
sequently, they could also measure span-wise contributions in the mode shapes.
For displacement reconstruction of wing-like structures undergoing large deflections during ex-
periments, a technique is proposed here, where deformations are estimated from one load or
deformation increment to the next. During the reconstruction process, the modal basis is ad-
justed incrementally from one state to another as well, in order to account for changes in the
mode shapes attributed to the deformation. The procedure is an analogy to the solution strategy
in non-linear FE calculations. If the intermediate states to actually reach a certain state of defor-
mation are the aforementioned quasi-stationary linearisation points that are commonly part of
the test envelope, the method would operate model-free solely based on measured data. Based
on these considerations, IMM delivers displacement estimates according to:

û1 = T 0(ε1 − 0) = T 0∆ε1

û2 = u1 + T 1(ε2 − ε1) = u1 + T 1∆ε2 = T 0∆ε1 + T 1∆ε2
...

ûn =
n∑

i=1

T i−1∆εi. (4)

In these expressions, εi corresponds to the total measured strain after deformation increment i.
For a displacement estimation in a presumably geometrically non-linear case, the deformation
history is divided into n steps and a modal basis in the form of strain and displacement mode
shapes gathered in transformation matrices is required for all previous increments.

2.2 Modal Rotation Method

MRM is a modal method that accounts for large-deformation non-linearity of complex slender
structures. The reconstruction principle is based on modal rotations that are derived by modal
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analysis of the undeformed FE model. In this research, the non-linear bending behaviour of
the investigated wing is described solely in the yz-plane (cf. Figure 1), i.e. the 2D represen-
tation of the method is implemented. According to MRM, the structure is segmented along its
longitudinal axis in s sections, and the modal matrix consisting of m modes

Φ =



ϕy11 . . . ϕy1m

ϕz11 . . . ϕz1m

ϕθx11
. . . ϕθx1m...

...
ϕys1 . . . ϕysm

ϕzs1 . . . ϕzsm

ϕθxs1
. . . ϕθxsm


(5)

specifies the mode shape components of each section. By means of modal curvature κx, the
changes of the bending rotations ϕθx over the segments are

∆ϕθx = κx∆y =
∂ϕθx

∂y
∆y, (6)

where ∆y corresponds to the length of the segment. Typically a segment is terminated by grid
points and the change of bending rotations can directly be assessed as difference of the modal
rotations at these locations, for instance

∆ϕθx11
= ϕ

(e)
θx11

− ϕ
(s)
θx11

, (7)

where the superscripts correspond to the start and the end nodes of the segment, respectively.
For all segments, the rotation increments can be collected in a modal matrix:

∆Φθx =

∆ϕθx11
. . . ∆ϕθx1m...

...
∆ϕθxs1

. . . ∆ϕθxsm

 . (8)

It is stated that the curvature and thus the change of rotation angles along the longitudinal axis
of the geometric non-linear deformed structure is obtainable by a linear superposition of the
gathered modes:

∆θx = ∆Φθxq. (9)

This is the key idea of MRM as, in contrast to displacements, the local curvature and therefore
the rotation increments over different segments are kept small if the structure is sufficiently
discretised. The corresponding modal coordinates q in Eq. (9) can be derived by an iterative
load correction approach (cf. [6]) or using the strain based modal approach (cf. Eq. (3)); the
latter is done in present research according to

q = Ψ†ε(t). (10)

From Eq. (10) it follows that the pseudo-inverse used to calculate the modal coordinates of
MRM resembles to the one which is used in IMM in the first deformation increment. The
bending rotation increments computed from linear superposition are employed in matrices

∆Rj =

[
cos∆θxj

−sin∆θxj

sin∆θxj
cos∆θxj

]
(11)
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describing the rotation between segments (j− 1) and j. From the root of the structure outboard
towards the tip, the rotation of a certain segment is obtained via multiplication:

Rj = Rj−1∆Rj. (12)

The nodal coordinates x of each segment in the deformed state are calculated by rotation of
every segment and summation from the root:

xj = xj−1 +Rj∆lj, (13)

with
∆lj =Xj −Xj−1 (14)

defining the length vector of the j-th segment of the undeformed structure, i.e. the initial config-
uration. This procedure is comparable to the multi-body system, where the different segments
are connected to each other via rotational degrees of freedom. Finally, the estimated displace-
ment vector can be resolved according to

û = x−X. (15)

In contrast to IMM, the displacement estimate computed with MRM does not rely on updating
of mode shapes over the deformation history. The results are however constraint to the reference
line in which the modal rotations are defined.

3 CASE OF APPLICATION

The reconstruction methods described above are applied to the FE model of a high aspect ratio
wing with symmetric cross-sections. The wing has a swept and tapered design; in comparison
with conventional laboratory structures such as straight beams and flat plates it therefore ex-
hibits properties that commonly impair the accuracy of the displacement reconstruction. In the
following, the properties of the model and the simulation setup are presented before reconstruc-
tion results of a specific bending load case are discussed.

3.1 Model properties

The laboratory model of the wing consists of shells and shear webs built from sandwich-
structured composites as well as ribs that stiffen the cross-sections at regular intervals. The
dimensions of the geometry are summarised in Table 1. The geometry is discretised with 8949
elements, by the majority with 4-noded shell quadrilaterals associated with composite proper-
ties specifying the laminate lay-up. The FE model has been created with the DLR-AE in-house
parametric model generator ModGen [12] in MSC.NASTRAN. A top view of the model is dis-
played in Figure 2. As the laboratory wing is being built for multiple purpose, it contains a
folding wing tip, which is not of relevance for this investigation. The hinge of the wing tip
is visible as a gap of 0.1m at two-thirds of the wing span. The connection over the hinge is

Table 1: Wing parameters.

Parameter Value
half span 5m

planform area 3m2

aspect ratio 16.67
sweep angle 29◦
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modelled entirely rigid in the shape sensing analysis.
From the mesh, one can recognise the location of virtual strain sensors for the representation
of strain mode shapes and for in-situ strain information during the deformation history used to
compute modal coordinates as stated in Eq. (10). Strain is assessed in 5 cross-sections on shell
panels that are connected with the leading and trailing edge, respectively. The instrumented
sections start at y = 0.75m with equidistant increments of 1m in-between. The orientation
of the collected strain corresponds to the first axis of the elementary coordinate system, which
lies in the direction of the local sweep. Both the pressure and suction side of the wing are in-
strumented at locations symmetric to the xy-plane. In total, 20 virtual strain channels are thus
available; a similar distribution of strain sensors could be used to evaluate bending moments as
part of a load monitoring of the wing [13].

rigid hinge

strain sensor

rib
y

x

load introduction

Figure 2: Finite element model of the investigated wing. The positions of virtual strain sensors are indicated on
the shell panels. In steps of .5m, ribs stiffen the cross-sections. The incontinuity at about two-thirds of
the wing length is rigidly modelled.

The shape sensing methods presented in section 2 are compared in a geometrically non-linear
state which is determined by means of a NASTRAN SOL400 static simulation. For this pur-
pose, the wing model is clamped at the root and, as indicated in the mesh plot, forces are
introduced as point loads in the aerodynamic center (i.e. quarter chord) of three cross-sections
at 2m, 3.5m, and 5m. At these locations forces of equal amplitude are applied as dead loads,
that is in negative z-direction irrespective of the instantaneous deformation of the structure.
The load introductions points on the reference line are connected to the nodes on the shell con-
tour via RBE2 rigid body constraints. Above described setup is selected, because it represents
a conceivable structural test scenario rather than being physical meaningful with regard to the
pressure distribution of aerodynamic loading. This approach is considered as appropriate, as the
primary aim is to evaluate the displacement reconstruction while the cause of the deformation
is of minor relevance.

3.2 Reconstruction results

In the course of the non-linear FE calculation, the applied forces and therefore the deflection of
the wing increase. A load case producing a tip deflection of up to 23% with respect to the half
wing span is considered in the following. The deformation of the structure leads to changes in
the modal parameters, i.e. both the eigenfrequencies and the eigenvectors. This is illustrated
in Figure 3 for the first ten modes whose denotation is listed in Figure 3c with ascending fre-
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(a) MAC of displacement mode
shapes

(b) MAC of strain mode shapes (c) Frequency variation

Figure 3: MAC values of mode shapes and related frequency changes with respect to the undeformed state for
increasing bending deflection in z-direction.

quency. Due to the deformation, eigenfrequency changes of more than 20% can be expected;
edge-wise and torsion modes are particularly susceptible, which has also been observed for
other wing designs (cf. [14]).
In order to assess the change of mode shapes with increasing deflection, the Modal Assurance
Criterion (MAC) with respect to the eigenvectors of the undeformed structure is evaluated.
MAC values crucially depend on the sensor positions and degrees of freedom taken into ac-
count [15]. In order to calculate the displacement MAC, the translational degrees of freedom
in the quarter chord points are considered at equidistant intervals of 10% relative wing length.
Regarding the strain MAC, the strain mode shapes consist of components from the 20 virtual
strain sensors as depicted in Figure 2. In terms of the MAC, collinear modes indicate a value of
1 and orthogonal modes exhibit a value of 0. From both MAC comparison plots (Figures 3a and
3b) one can observe that the torsion modes and the 2nd edge-wise bending mode are subjected
to severe changes. The strain mode shapes of the torsion modes exhibit a particularly steep
gradient even below 10% tip deflection. The modes that are most relevant for the deforma-
tion reconstruction, namely the flap-wise bending modes, show however comparatively slight
changes. In this context, it should be noted that MAC represents a global measure to compare
eigenvectors. For this reason, local alterations of the mode shapes towards the tip of the wing, as
indicated in Fig. 1b, may only lead to minor changes in the MAC value. Overall, the diagrams
indicate that the mode shapes undergo significant changes with increasing deformation. This
necessarily leads to changes in the modal coordinates (Eq. 10) and therefore transformation
matrices (Eq. 4), which can be accounted for through the application of IMM.

3.2.1 Modal basis of the undeformed model

In principle, displacement estimates can be provided using the modal basis of the undeformed
structures even in cases of large displacements. As a starting point, this is accomplished for
different fractions of the total load and compared to the non-linear FE results in Figure 4. The
curves show the deflection of the wing in the yz-plane evaluated in the aforementioned quarter
chord points. The strain and displacement eigenvectors of the first ten modes are considered in
the reconstruction.
From the diagrams in Figure 4a one can observe a good agreement for lower force levels cor-
responding to a tip deflection below 10% semi-span; a greater deviation between the estimate
û and the true FE result u is however indicated for increasing deflection of the wing. A uni-
form characteristic of all estimates is the fact that no displacements in span-wise direction are
included. This is an inherent feature of the reconstruction using mode shapes of the undeformed
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(a) Deflection curves: estimates vs. non-linear FEM re-
sults

(b) Error of displacement in z-direction along span

Figure 4: Bending deflection estimates from modal method using mode shapes of undeformed wing in comparison
with FEA for different load states.

structure as they do not contain span-wise motion (cf. Fig. 1a). In Figure 4b the relative error

ϵz =
ûz − uz

uz

(16)

is depicted. An assessment of the displacement error in y-direction is not meaningful as no
displacement in this direction is predicted by the shape sensing method. It should be noted
that the graphs are drawn with respect to the initial configuration of concerning nodes. For
this reason, towards the wing tip the error yields ϵz > 0, although the deflection curves of the
estimates show a lower deflection compared to the FE curve.

3.2.2 Incremental reconstruction

In order to demonstrate the suitability of IMM for geometrically non-linear deformed structures,
the load case with the largest deflection is reconstructed with a different number of increments
and compared with MRM. For the latter, it is assumed that modal rotations are available at
the nodes of ten segments going through the aerodynamic center of the wing. This represents
a comparatively small number of segments which could possibly be realised by using inertial
measurement units in an experiment. For the application of IMM, the accelerometers are situ-
ated at the very same location. In Figure 5 the comparison of the methods is shown. Again, the
first ten mode shapes are used as the modal basis. The modal method using a modal basis of
the initial configuration is also considered meaning the number of increments to the full load is
equal to n = 1. For all the other cases, the total load is divided in equidistant force increments
and the mode shapes are determined after each step as required by Eq. (4). From the global
deflection curves one can tell that all estimates run fairly close to the non-linear FE solution. A
more informative view is obtained from Fig. 5b, where a close-up of the curves at the wing tip
is shown. Here, a non-monotonic convergence can be observed as the differences of the IMM
solutions at the tip amongst each other decrease with higher number of increments. A higher
number of increments does however not necessarily lead to convergence towards the numerical
FE results. The MRM solution lies in the tip region in-between the range of IMM results.
As soon as intermediate states are considered in IMM, span-wise displacements are predicted.
As a consequence, the solution accuracy significantly improves. Figure 6 describes how the rel-
ative displacement errors change with an increasing number of increments until the final state
of deformation is reached. Analogous to the error in bending deflection, the relative error of
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(a) Deflection curves from incremental procedure (b) Close-up at tip
Figure 5: Deflection estimates from incremental modal method in comparison with modal rotation method.

displacements in span-direction is defined by

ϵy =
ûy − uy

uy

. (17)

For both methods ϵy is one magnitude larger compared to ϵz. Applying IMM, ϵy is nearly
constant along the wing span. Accuracy can be gained by increasing the number of increments;
using n = 9 increments closely approximates the true FE result. Regarding ϵz, increasing n
leads eventually to a converged path, as evidenced from the curves of n = 6 and n = 9, which
nearly lie on top of each other. The curves from IMM qualitatively resemble to the graphs in Fig.
4b, even though the modal basis is changed on the way to the final displacement estimate. A
higher number of increments does however not necessarily produce the most accurate estimate,
which is particularly recognisable at the tip. This behavior is admissible, as the superposition
of mode shapes already exhibits an error in linear problems. This error should be distinguished
from inaccuracies caused by an insufficient number of increments.
The MRM estimate is most inaccurate towards the root, and both errors curves exhibit the
similarity of a global minimum at the same position of 0.8 relative half span. This is possibly
due to the rotation of the segments that steer displacements in both directions.
Reconstruction results of shape sensing schemes that depend on a modal basis are in general
influenced by the number and the shape of the considered modes participating in the linear
superposition. For the investigated problem, this relationship is illustrated in Figure 7. The plots

(a) Error of displacements in y-direction (b) Error of displacements in z-direction
Figure 6: Relative displacement error along span with respect to the undeformed state.
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(a) Relative error at wing tip (b) Overall error norm
Figure 7: Relative displacement error displayed for different amount of mode shapes considered in the approxima-

tion.

can be interpreted as a sort of convergence study of the number of modes m and the number of
increments n required to obtain a certain accuracy. The tip displacement error specified with

ϵt =
1

|ut|

[
ûy,t − uy,t

ûz,t − uz,t

]
=

∆ut

|ut|
(18)

is outlined in Figure 7a (cf. Fig. 3c for order of modes). Since the modal rotation method is
likewise affected by changes in the choice of mode shapes, its results are presented in dashed
lines as well. The diagrams point out that an increase in increments in the scope of IMM leads
to an improvement of the accuracy at the tip irrespective of the number of modes considered.
Furthermore, for this rather simple uni-axial load case, a higher number of modes does not
necessarily lead to greater accuracy, as the kinematics of the deformation is likely covered by
a few flap-wise modes. In the setup presented with only ten segments, MRM turns out to be
more sensitive regarding the subsets of modes used for the reconstruction. In case of m = 6
modes, the error at the tip happens to be exceptionally high with a value larger than 1. There is
moreover for all mode combinations a threshold of increments where IMM yields more accurate
estimates.
A similar picture emerges when considering an error norm

∥ϵ∥ =

∣∣∣[|∆u1|, . . . , |∆ut|]T
∣∣∣∣∣∣[|u1|, . . . , |ut|]T

∣∣∣ (19)

that is defined over the entire wing length. Corresponding curves are depicted in Figure 7b. The
graphs indicate that the tip error is already a well-suited measure for the global performance of
the shape sensing methods applied.

4 CONCLUSION

In this research, the Incremental Modal Method (IMM) is introduced and applied to the recon-
struction of wing displacements under geometric non-linear bending deformations. The study
demonstrates that conventional modal reconstruction, which assumes linear deformation, fails
to provide accurate displacement estimates. By taking into account the changes in mode shapes
due to structural deformations, the IMM offers a promising alternative. Simulation results of the
FE model, equipped with virtual strain sensors, indicate that IMM can accurately track the de-
formation of the wing throughout its load history. This is accomplished by updating the modal
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basis at each deformation increment. When compared to the Modal Rotation Method (MRM),
IMM shows superior performance if the total deformations is subdivided in sufficient number
of increments. Moreover, IMM appears to be less sensitive to the composition of the modal
basis. The findings suggest that IMM can be effectively implemented in experimental setups
with appropriate strain sensor instrumentation, enhancing the accuracy of displacement recon-
struction for flexible aerospace structures. Several aspects require further investigation before
practical application of IMM can be realised in test campaigns. Key areas for future research
include noise analysis and the propagation of this uncertainty to the displacement estimates.
This topic is also related to the robustness of the method with respect to sensor failure or dis-
tribution of employed strain sensors. More complicated load cases must be evaluated to assess
the performance of IMM under a wider range of load conditions, in particular with focus on
torsion deformation. Overall, future work will focus on addressing these challenges to enhance
the robustness and applicability of IMM, before the method is validated on the laboratory wing
in an experiment.
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