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Abstract: A versatile solver capable of predicting both flutter and buffet onset, while consider-
ing structural feedback, is introduced. The methodology involves computing the (generalized)
aerodynamic forces using a linear-frequency-domain (LFD) solver based on linearized unsteady
Reynolds-averaged Navier-Stokes equations (URANS) with an appropriate turbulence closure
model. A state-space model of the aerodynamic forces is generated through interpolation of
the frequency-domain samples, which is the basis of the p-L method. Eigenvalues correspond-
ing to fluid modes may be directly determined, eliminating the need for a priori pole selection
as required by traditional rational function approximation techniques. Consequently, the pre-
buffet frequency is accurately represented by the imaginary part of the fluid mode’s eigenvalue.
With this representation of the fluid modes, a flutter solver is derived, which is able to predict
both classical flutter and buffet onset values. The solver is applied to the supercritical OAT15A
airfoil in the pre-buffet region, verifying its capability to predict both flutter and buffet onset
values.

1 INTRODUCTION

Modern aircraft cruise at transonic Mach numbers due to the high flight efficiency in this regime.
Complex flow phenomena arise in this regime, leading to transonic aeroelastic phenomena with
distinct characteristics. Among these, flutter and transonic buffet are of significant importance.
Flutter is related to an aeroelastic instability typically caused by the coupling of two or more
structural modes under the action of the induced unsteady aerodynamic forces, resulting in pos-
itive damping in the aeroelastic mode. Certification specifications, as outlined in the paragraph
CS25.629 [1], require that aircraft be free of flutter in an extended flight envelope. This is de-
fined by a 15 percent increase in equivalent airspeed at constant Mach number and constant
altitude, covering all combinations of altitudes and speeds encompassed by the dive conditions
(VD/MD) versus altitude. Transonic (or shock) buffet is related to a Hopf bifurcation by which
a steady-state stable flow transitions into a self-sustained periodic solution at specific combi-
nations of Mach number and angle of attack values. It results from the interaction between a
shock wave and a boundary layer resulting in a shock motion.

The unsteadiness imposed by transonic buffet on the aircraft structure limits the flight envelope
and fatigue life. For a civil aircraft, a certain margin must be reserved between the cruise state
and the buffet onset boundary, which is computed neglecting the effect of the dynamic aircraft
deformation on the flow itself. Operational regulations [2] dictate that the buffet onset should be
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determined based on the normal acceleration experienced at the pilot station during flight tests.
Typically, a vibration value of ±0.05 g (with g the gravitational acceleration) has been used,
although the appropriate acceleration level may vary depending on the aircraft and the dynamic
response of the accelerometer. Additionally, a margin of 0.3 g to the buffet onset boundary is
recommended to ensure maneuver capability during flight. Accurately predicting buffet onset
is thus crucial for the design process. However, current industrial practice often relies on steady
RANS analysis with the 4α = 0.1 offset method. This method involves offsetting the linear
portion of the lift curve against angle of attack α by 0.1 (deg). The intersection of this offset
line with the actual lift curve is used to estimate buffet onset [3]. Unfortunately, this approach
neglects the flow unsteadiness and its interaction with the flexible structure, known to play a
key role in the determining buffet onset.

Previous work has considered the mutual interaction between a flexible structure and shock
buffet. It has been shown, particularly for a pitch-plunge (and variants thereof) typical section
aerofoil, that the introduction of an elastic structure has the ability to change the stability of an
otherwise stable flow [4]. Gao et al. [5] also observed this phenomenon of reduction of the flutter
onset by considering the heave or pitch degree-of-freedom (dof) separately. The consideration
of the fluid mode by previous studies [4–10] has provided a new perspective on understanding
transonic aeroelastic phenomena. Even though flutter and buffet onset must fulfill different
margin conditions as specified by regulations, this new perspective allows for the computation
of both phenomena within a unified framework. Due to the decreased flow stability in the
transonic regime, the pole representing the dominant fluid mode plays a fundamental role to the
fluid-structure interaction equation, resulting in different instability patterns as well as different
aeroelastic phenomena. The dimensionless frequency ratio between the structural mode and the
fluid mode is a key parameter affecting the characteristics of the coupled system. Furthermore,
it has been shown that the frequency lock-in phenomenon is caused by the fluid mode rather
than by a resonance mechanism [7].

Nitzsche et al. [4] highlighted the importance of considering structural feedback in predicting
buffet onset. Houtman and Timme [10] obtained the shock buffet under the influence of a
flexible structure using global stability analysis. Because the Schur complement method is
unsuited for finding fluid instabilities due to the mathematical structure of the coupled physics,
a full eigenvalue solution for the coupled aeroelastic system was considered. In this work, the
extension of the p-L flutter solution method [11, 12] to include fluid modes is developed.

Two main methods for computing an aeroelastic instability onset can be used when considering
the interplay effects between the dominant fluid mode and the structural ones, each with its own
limitations:

• Nonlinear solvers: This approach involves using methods like the p-k [4, 13] and g [14]
method to determine the eigensolutions to the flutter equation by solving a nonlinear alge-
braic equation. These methods may miss flutter instabilities that result from the coupling
of fluid and structural modes if an appropriate initial solution for the aeroelastic modes is
not provided. This limitation is discussed further in Section 3.

• Computation of aeroelastic eigensolutions: Two different methods can be applied here,
namely, 1) the derivation of a state-space model for the aerodynamic system of much
smaller size than the original high-fidelity problem, or 2) the use of tailored eigenvalue
solvers for the full-size coupled aeroelastic problem. For the first method, the state-space
representation of the aerodynamic system of smaller size are based either on time-domain
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methods, such as DMD [4, 8] or autoregressive with exogenous input (ARX) model [5]
or on frequency-domain methods, with a subsequent conversion into the time-domain
required, as done in the p method [15–17] and the p-L method [11]. However, there is
currently no automatic way to detect the aeroelastic mode related to the dominant fluid
mode for these techniques. Either the “least-stable” fluid mode or a time-domain solution
to compute the buffet frequency are required. Nevertheless, as discussed in Section 3.1,
the “least-stable” fluid mode resulting from a state-space representation of the unsteady
flow may not always be the most dominant one. For the second method, determining the
eigenvalues corresponding to fluid modes typically requires a search. For each angle of
attack, several shifts are distributed along the imaginary axis, along with a few shifts with
positive growth rate, enabling a wider search radius albeit with a reduced convergence
rate of the shift-and-invert spectral transformation.

To address the mentioned limitations, the development of more advanced methods becomes
necessary for computing the buffet onset while considering the interplay between aerodynamic
and structural forces. This necessity has been highlighted by Nitzsche et al. [4] and Houtman
and Timme [10]. This work focuses on the describing aeroelastic instabilities in the transonic
regime in the pre-buffet area and thus corresponding to the instability types I and II according
to Gao and Zhang [8]. To achieve this, an eigenvalue solver able to determine the flutter and
buffet onsets of instability without the need of generating time-domain data for the aerodynamic
model is derived. Additionally, it automatically detects the dominant fluid mode responsible for
the buffet onset, including the associated buffet frequency. This is accomplished by extending
the p-L flutter solution method presented in Quero et al. [11] with an additional sweep prior to
the classical flutter sweep. This new feature is complemented with a mode-tracking algorithm
which is applicable to both the structural and fluid modes constituting the aeroelastic coupled
system.

2 AEROELASTIC SOLVER FOR FLUTTER AND BUFFET ONSET PREDICTION

2.1 Rational representation of the aerodynamic term

In this work, aerodynamic data is assumed to be available in the frequency domain, specifically
over the imaginary axis of the complex plane. The focus is on the transonic regime, requiring
an appropriate model description, such as that obtained from the linearized URANS equations
and implemented in the linear-frequency-domain (LFD) solver of the DLR computational fluid
dynamics (CFD) TAU code [18]. Several techniques exist to transform the corresponding aero-
dynamic term in the frequency domain into a suitable generalized state-space form in the time
domain. Most of these techniques require providing the aerodynamic poles’ locations [19–21],
or if not, they rely on a nonlinear optimization method [22, 23]. Typically, aerodynamic stable
poles distributed along the negative real axis are chosen for methods requiring their manual
selection [19–21]. However, including complex aerodynamic poles is essential in the transonic
regime, as the imaginary part of the most dominant fluid mode represents the buffet frequency.
Other methods, such as the autoregressive model with exogenous input (ARX) [5] or the eigen-
system realization algorithm (ERA) [24], can also provide complex aerodynamic poles with a
non-zero imaginary part. However, they require the generation of input-output data in the time
domain, while in this work the efficient LFD solver in the frequency domain is preferred.

The Loewner framework [11, 25] generates the required (generalized) state-space model by
interpolating the provided aerodynamic term in the frequency domain. For further details, the
techniques for obtaining the aerodynamic generalized state-space model are described in Quero
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et al. [11] and are not repeated here. When used for aeroservoelastic applications in the time
domain, the model generated with the Loewner framework requires an additional stabilization
procedure [26,27], as the derived model may include unstable poles. The stabilization technique
used in this work, although optional when searching for aeroelastic eigensolutions, is presented
in Section 2.1.1.

2.1.1 Residualization and stabilization procedure
For the purpose of this work of detecting flutter and buffet onset, stabilization enforcement is not
required, provided that an appropriate mode-tracking algorithm, such as that of Section 2.3, is
used. However, to enable simulation of the resulting model in the time domain, a stabilization
procedure is employed. This is justified in the pre-buffet region where the fluid modes are
still stable. Note that beyond the Hopf bifurcation, a stable limit-cycle oscillation occurs, and
time-domain simulations must consider nonlinear terms in the aerodynamic model. Possible
stabilization procedures are described in [26, 27]. In this work, a stabilization procedure that
provides results similar to those provided of the RH∞ projection, is easy to apply, and converts
the generalized state-space matrices corresponding to a descriptor system into a regular state-
space model, is chosen. The method is described next.

Upon application of the Loewner framework [11] to the generalized aerodynamic forces (GAF)
matrix at a particular Mach number M∞ and a steady condition defined by the angle of attack
α0, the matrices Ea0 (α0,M∞) ∈ Rna×na ,Aa0 (α0,M∞) ∈ Rna×na , Ba0 (α0,M∞) ∈ Rna×nh

and Ca0 (α0,M∞) ∈ Rnh×na are obtained. These represent a generalized state-space model
that interpolates the GAF matrix over the imaginary axis, that is, in the frequency domain. A
transformation to obtain real entries in these matrices has already been applied [11]. The set of
eigenvalues λ (Ea0,Aa0) such that det (λEa0 −Aa0) = 0 is computed numerically. For clarity,
the explicit dependence of the matrices on (α0,M∞) has been omitted. From the computed
eigenvalues, a subset with eigenvalues below a defined numerical tolerance λ∞ is retained:
λf = {λ ∈ λ (Ea0,Aa0) | |λ| ≤ λ∞}. Additionally, if unstable eigenvalues are present, they are
retained by mirroring them through the imaginary axis by exchanging the sign of their real part:

λa = {λ ∈ λf |Re {λ} ≤ 0}
⋃
{−Re {λ}+ iIm {λ} |λ ∈ λf and Re {λ} > 0} .

With the total number na0 of kept stable aerodynamic poles within the tolerance λ∞, a least-
squares fit to the GAF matrix Qhh (α0,M∞, ik) is imposed in the frequency domain:

nr∑
m=1

Rr,m (α0,M∞)

ik − λr,m
+

nc∑
n=1

[
Rc,n (α0,M∞)

ik − λc,n
+

R̄c,n (α0,M∞)

ik − λ̄c,n

]
+ Q0 (α0,M∞) + Q1 (α0,M∞) ik −Q2 (α0,M∞) k2 = Qhh (α0,M∞, ik) , (1)

where nr is the number of real aerodynamic poles λa,m satisfying Im {λa,m} = 0 and nc is
the number of complex conjugate pairs of poles such that na0 = nr + 2nc. The symbol ¯
denotes the complex conjugate and the matrices Rr,m (α0,M∞) ∈ Cnh×nh (Rc,n (α0,M∞) and
R̄c,n (α0,M∞)) are the residues associated to the eigenvalue or pole λr,m (λc,n and λ̄c,n). Due to
the realness of the generalized state-space matrices, the residues and poles, if complex, appear
in conjugate pairs. The polynomial term up to second order in the reduced frequency addresses
the behavior at infinity, so that no matrix Ea is further required. The least-squares fit from Eq.
1 is carried out for each element of the GAF matrix Qhh (α0,M∞, ik) sharing the same set of
aerodynamic poles λa =

{
λr,1, ..., λr,nr , λc,1, λ̄c,1, ..., λc,nc , λ̄c,nc

}
.
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Upon solving the least-squares procedure defined in Eq. 1, the resulting associated state-space
matrices corresponding to the computed residue-pole form must be obtained. This is done via
rank factorization [28] of the residue matrix Rr,m = UmΣmV∗m for the real eigenvalues, which
can be computed by applying a singular-value decomposition (SVD) and extracting the rank
rm with a numerical tolerance from the singular values in the diagonal of the matrix Σm. This
means that a number of rm singular values above a numerical tolerance σ0/σ1, with σ1 the
first entry in the diagonal matrix of the SVD decomposition, are kept. The tolerance σ0 is set
to σ0 = 10−6. The resulting state-space submatrices (where, for clarity, the dependence on
(α0,M∞) has been omitted) for a real pole are:

Ar,m = λr,mIrm ∈ Crm×rm , Br,m =
(
TT
mΣmTm

)
(VmTm)∗ ∈ Crm×nh ,

Cr,m = UmTm ∈ Cnh×rm , m = 1, ..., nr, (2)

where Irm is the identity matrix of size rm and the matrix Tm ∈ Rnh×rm extracts the first rm
columns.

For a complex conjugate pair, the SVD decompositions are denoted as Rn = UnΣnV
∗
n and

R̄n = ŪnΣnV
T
n , so that the corresponding state-space submatrices are:

Ac,n =

[
λnIrn 0

0 λ̄nIrn

]
∈ C2rn×2rn , Bc,n =

[ (
TT
nΣnTn

)
(VnTn)∗(

TT
nΣnTn

) (
VT
nTn

) ] ∈ C2rn×nh ,

Cc,n =
[
UnTn ŪnTn

]
∈ Cnh×2rn , n = 1, ..., nc, (3)

where rn represents the rank of the matrix Σn. Finally, the state-space matrices are obtained by
concatenating the matrices provided in Eqs. 2 and 3 [28]:

Aac =



Ar,1 0 · · · 0

0
. . . ...

... Ar,nr

Ac,1

. . . 0
0 · · · 0 Ac,nc


,

Bac =



Br,1
...

Br,nr

Bc,1
...

Bc,nc


, Cac = [Cr,1 · · · Cr,nr Cc,1 · · · Cc,nc ] .

Lastly, the obtained state-space matrices are converted to ensure that only real entries are
present:

Aa1 = TAacT
∗, Ba1 = TBac, Ca1 = CacT

∗,

where the matrix T converts the complex state-space matrices to real:
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Figure 1: Absolute value of the pitch/pitch compo-
nent of the GAF matrix Qhh against re-
duced frequency. Mach number is 0.73
and angle of attack 4 (deg).
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Figure 2: Phase of the pitch/pitch component of
the GAF matrix Qhh against reduced fre-
quency. Mach number is 0.73 and angle
of attack 4 (deg).

T =

[
Inar 0
0 Inac ⊗ J

]
, J =

1√
2

[
1 1
−i i

]
,

with nar =
∑nr

m=1 rm and nac = 2
∑nc

n=1 rn so that na = nar + nac ≤ na0, where na is
the resulting number of aerodynamic states required for the interpolation of the GAF matrix
Qhh (α0,M∞, ik). If a reduction in the total number of aerodynamic states na is desired, a
balanced truncation can be applied to the state-space matrices Aa1 (α0,M∞), Ba1 (α0,M∞)
and Ca1 (α0,M∞) [29].

2.1.2 Importance of complex aerodynamic poles

To emphasize the importance of complex aerodynamic poles in accurately representing the
GAF matrix in transonic flow, a comparison of the realization obtained by the classical Roger’s
RFA [19] using 8 poles distributed over the negative real axis according to [19], and the Loewner
framework is shown in Figs. 1 (absolute value) and 2 (phase). For a fair comparison, the
resulting model obtained with the Loewner framework was reduced to a total of 8 states, and the
stabilization procedure of Section 2.1.1 was applied. The test case corresponds to the OAT15A
airfoil at Mach number 0.73, an angle of attack 4 (deg), and Reynolds number 3 million, as
in Section 3. The pitch rotation axis is located at 40 % of the airfoil chord measured from the
leading edge. The pitch/pitch component of the GAF matrix Qhh (α0,M∞, ik) is depicted (note
that the explicit dependence of the GAF matrix on the Reynolds number has been omitted, as it
considered constant).

The realization obtained with the classical Roger’s RFA fails to represent the peak associated
with the stamp left by the complex aerodynamic pole over the imaginary axis at the buffet
frequency. No improvement was achieved by increasing the number of real poles, as the least-
squares fit became numerically ill-conditioned. In contrast, the generalized state-space obtained
using the Loewner and shifted-Loewner matrices accurately captures the reference data in the
frequency domain, as obtained by the LFD solver.

Fig. 3 shows the eigenvalues from the state-space realizations corresponding to the RFA ap-
proximation and the Loewner framework . The Loewner framework is used as the basis for the
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Figure 3: Aerodynamic poles corresponding to the RFA approximation and the Loewner realization in the nondi-
mensional complex plane. Mach number is 0.73 and angle of attack ranges 4 (deg).

p-L flutter solution method and is denoted as such in the figure. Each realization considers 8
aerodynamic poles. Unlike the RFA case, where the aerodynamic poles are manually chosen to
lie on the negative real axis, the poles for the Loewner framework are not user-selected but are
instead determined by the realization process. As will be shown in Section 3.1, the imaginary
part of the dominant fluid mode, with a value of 0.4798, corresponds to the pre-buffet reduced
frequency and is automatically detected by the realization carried out using the Loewner frame-
work. The dominant fluid mode for the Loewner realization has been extracted according to the
method described in Section 2.3 and in this case corresponds to the one closest to the imaginary
axis or “least-stable” pole, but this is not always the case (see Section 3.1).

Once the suitability of the chosen approach has been verified, the aerodynamic state-space
model is coupled with the structural model in Section 2.2, and the problem for determining
aeroelastic instabilities (flutter and buffet onset) is formulated in Section 2.3.

2.2 Coupling with the structural model and general formulation

Once the aerodynamic and structural dynamic models are coupled, the number of ng dof de-
scribing the structural behavior is reduced after applying a modal truncation, retaining a num-
ber nh of representative natural eigenmodes of the structure in the matrix φ0 ∈ Rng×nh . These
modes are obtained as eigenvectors of the structure (wind-off conditions) with no damping.
The resulting aeroelastic system in the Laplace domain is represented by the following flutter
equation:

[
p2
(
U∞
Lref

)2

Mhh + p

(
U∞
Lref

)
Bhh + Khh − qdynQhh (p,M∞)

]
uh (p) = 0, (4)

where p = sLref/U∞ = g + ik is obtained by nondimensionalizing the complex Laplace
variable s, with Lref a reference length and U∞ the freestream airspeed. The matrices Mhh,
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Bhh and Khh represent the generalized mass, damping and stiffness, respectively. The p-L
flutter solution method reformulates the aerodynamic forces caused by the motion, described
by the set of nn generalized coordinates uh, resulting in the following equation in generalized
state-space form [11]: I 0 0

0 I 0
0 0 Ea (α0,M∞)

 d

dt

 uh
duh

dt

xa



=


0 I 0

α−1hh (rqdynQ0 −Khh) α−1hh (rqdynQ1 −Bhh) α−1hh qdyn

(
U∞
Lref

)
Ca (α0,M∞)

Ba (α0,M∞) 0
(
U∞
Lref

)
Aa (α0,M∞)


 uh

duh

dt

xa

 ,
(5)

where αhh = Mhh − rqdynQ2 and:

Aa (α0,M∞) = rAa1 (α0,M∞) + (1− r) Aa0 (α0,M∞) , (6)
Ea (α0,M∞) = rIna + (1− r) Ea0 (α0,M∞) , (7)

and similarly for Ba (α0,M∞) and Ca (α0,M∞). The factor (U∞/Lref ) accounts for the con-
version from the reduced frequency, where the realization of the GAF matrix has been carried
out, to the circular frequency ω. The parameter r = {0, 1} in Eq. 5 indicates whether the
residualization procedure of Section 2.1.1 has been applied (r = 1) or not (r = 0). In Eq. 5
qdyn = ρ∞U

2
∞/2 denotes the dynamic pressure, with ρ∞ the freestream density. The reduced

frequency corresponds to the imaginary part of the complex Laplace variable p, defined as
k = Im {p} = ωLref/U∞, where ω denotes the circular frequency. In a more compact notation:

Eae (α0,M∞)
dxae
dt

= Aae (α0,M∞, qdyn) xae,

where Eae (α0,M∞) ∈ R(2nh+na)×(2nh+na), Aae (α0,M∞, qdyn) ∈ R(2nh+na)×(2nh+na) and xae =[
uTh

(
duh

dt

)T
xTa

]T
∈ R2nh+na . The stability of the aeroelastic system can now be analyzed

by solving a generalized eigenvalue problem with generalized eigenvalue λ and generalized
eigenvector φ:

(λEae (α0,M∞)−Aae (α0,M∞, qdyn))φ = 0, (8)

Unlike flutter solvers such as the p-k and g methods, which rely on the solution of a nonlinear
algebraic equation and require an initial guess for the aeroelastic eigensolution, Eq. 8 provides
all eigenvalues of the aeroelastic system. This forms the basis of the p-L flutter solution method,
provided the aerodynamic term has been obtained using of the Loewner and shifted-Loewner
matrices. Note that if the relevant fluid mode is included along with the structural modes in
Eq. 8, its solution provides the flutter (if the instability is caused by one or more structural
modes) and buffet instability (if the instability is caused by one or more fluid modes) onset
values, where the buffet onset computation will include the effect of the structural feedback on
the unsteady aerodynamics.
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2.3 Extended mode-tracking procedure including fluid and structural modes
Once the generalized eigenvalue problem has been formulated in Eq. 8, a technique to track
the aeroelastic eigensolution as a parameter β changes is sought. Different choices for the
parameter β can be considered, such as the freestream velocity U∞, the freestream density ρ∞,
or the atmospheric altitude h [12]. The following description follows that provided in Quero et
al. [12] for using aeroelastic sensitivities to track the aeroelastic modes.

Assume that the solution defined by the linear generalized eigenvalue problem of Eq. 8 at a
stage j, defined by a particular value of the parameter β, is known. For the next value of the
parameter β at the stage j + 1 associated with an increase in the dynamic pressure qdyn, a first-
order Taylor approximation may be applied provided the change in the aeroelastic eigensolution
is small:

λ̃(j+1) = λ(j) +

(
dλ

dβ

)(j)

∆β, φ̃
(j+1)

= φ(j) +

(
dφ

dβ

)(j)

∆β (9)

Thus, each eigensolution at the next parameter value β(j+1) = β(j)+∆β may be estimated once
the derivative terms (dλ/dβ)(j) and (dφ/dβ)(j) are known. In order to obtain them, Eq. 8 is
derived with respect to the parameter β:

(
Aae − λ(j)Eae

)(dφ
dβ

)(j)

+

(
dAae

dβ
−
(
dλ

dβ

)(j)

Eae − λ(j)
dEae

dβ

)
φ(j) = 0. (10)

Noticing that the generalized aeroelastic eigensolution obtained by Eq. 8 does not result in
unique eigenvectors (only their direction is determined), an additional constraint is introduced
with help of the weighting matrix W,

(
φ(j)

)T
Wφ(j) = W0. (11)

Choosing a matrix W which is real and symmetric, a linear system of complex equations for
the determination of the aeroelastic derivatives (dλ/dβ)(j) and (dφ/dβ)(j) can be obtained:[

−Eaeφ
(j) Aae − λ(j)Eae

0 2
(
φ(j)

)T
W

]
(
dλ
dβ

)(j)(
dφ
dβ

)(j)
 =

 −
(
dAae

dβ
− λ(j) dEae

dβ

)
φ(j)

−
(
φ(j)

)T
dW
dβ
φ(j)

 . (12)

Note that the use of the additional constraint given by Eq. 11 requires the scaling of the eigen-
vectors obtained after solving the linear generalized eigenvalue defined by Eq. 8. In this work,
the matrix W is chosen to be the identity, W = I2nh+na . With this choice, the term dW/dβ
in the right-hand side of Eq. 12 is identically a zero matrix, dW/dβ = 0. Additionally, the
constant W0 is set to 1 in Eq. 11, W0 = 1, so that the aeroelastic eigenvector φ(j) is scaled as:

φ(j) =
φ

(j)
0√(

φ
(j)
0

)T
Wφ

(j)
0

,
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with φ(j)
0 ∈ C2nh+na the unscaled eigenvector obtained by direct solution of Eq. 8 and W =

I2nh+na . Aeroelastic derivatives dAae/dβ and dEae/dβ required for the right-hand side term of
Eq. 12 are provided in [12] for different scenarios for the case r = 0. For the application cases
of Section 3, a residualization has been used (r = 1), and thus the derivatives are computed
numerically by finite differences.

After determining the aeroelastic eigensolution by solving Eq. 8, the first-order approximation
of the eigensolution provided by Eq. 9 is used (with the derivatives provided by Eq. 12) together
with a scalar which combines information from both the eigenvalue and eigenvector [12, 30].
The aeroelastic modes are then assigned by choosing the one corresponding to the smallest
scalar value.

Note that the classical flutter solution process includes the aeroelastic modes corresponding to
the structural modes in wind-off conditions. In this work, the aim is to augment those modes by
automatically including the dominant fluid mode in the analysis so that the buffet onset value
can be computed within the same solver, namely, by the eigenvalue solution provided in Eq. 8.
This is carried out in a two-step process, as described next.

Step 1

To select the dominant fluid modes, the pure aerodynamic system without structural feedback
is considered first. These are obtained by computing the eigenvalues λ (Ea,Aa), where the
(generalized) state-space matrices are provided in Eqs. 7 and 6 respectively. Recall that r = 1
if the residualization of Section 2.1.1 is applied; otherwise r = 0.

To assess the significance of the aerodynamic poles within the GAF matrix over the imaginary
axis, the residues Rj associated with each aerodynamic pole λa,j are computed. These residues
are determined using the generalized two-sided Rayleigh quotient:

Rj =

(
Caφj

) (
ψ∗jBa

)
ψ∗jEaφj

, j = 1, ..., na,

where φj and ψj are the right and left eigenvectors associated to the eigenvalue λa,j , that is,
Aaφj = λa,jEaφj and ψ∗jAa = λa,jψ

∗
jEa. The Rayleigh quotient, a fundamental tool in the

dominant pole algorithm (DPA) [31–33], is used here. However, given the comparatively low
number of states na required to represent the GAF matrix in relation to the actual number of
flow states required in the CFD model, in this work the Rayleigh quotient is computed for each
of the aerodynamic poles individually, obviating the need for iterative DPA application. Once
the residue of the aerodynamic poles Rj are available, the following criterion is employed to
evaluate the significance of each pole contribution to the GAF matrix:

δj = ‖Rj‖2 /Re {λa,j} , j = 1, ..., nar + nac/2, (13)

where ‖‖2represents the 2-norm of the residue matrix Rj . As complex aerodynamic poles occur
in conjugate pairs, only the set of aerodynamic poles satisfying Im {λa,j} ≥ 0 is considered
when evaluating δj with Eq. 13. From the total of nar + nac/2 available poles, nd dominant
aerodynamic poles, as specified by the user, are then chosen such that δ1 ≥ δ2 ≥ ... ≥ δnd

.

10



After extracting the nd dominant fluid modes, the aeroelastic system in its p-L formulation as
given in Eq. 5, accounting for coupling effects between the aerodynamic and structural models,
is considered. To recreate conditions where the aerodynamic system remains unaffected by
structural terms, a factor qm premultiplying the matrix αhh = Mhh − rqdynQ2, that is, qmαhh,
is introduced in Eq. 5. Alternatively, only the mass matrix Mhh may be multiplied by the
factor qm. By letting qm → ∞ the pure aerodynamic problem without structural effects is
restored, as the second block-row in the matrix Aae (α0,M∞, qdyn) approaches zero and the
eigenvalues λ (Ea (α0,M∞) ,Aa (α0,M∞)) become a subset of the eigenvalues provided by
Eq. 8. Additional (almost) zero eigenvalues λ corresponding to the structural dof are obtained
when solving Eq. 8 and can be disregarded.

By assigning the closest eigenvalues obtained from Eq. 8 to the previously obtained dominant
fluid modes through evaluation of the criterion defined in Eq. 13, the dominant fluid modes
can be subsequently tracked while setting the aeroelastic parameter β = qm, with its value
progressively decreased from qm → ∞ to qm = 1, whereby the dynamic pressure is fixed to
the desired value qdyn,0. This is typically a small value, say qdyn,0 = 0.1 (Pa), thus representing
the common flutter sweep starting from a low dynamic pressure value. Both the structural and
dominant fluid modes are now encompassed in the analysis and can be tracked while increasing
the dynamic pressure, as described in step 2 below.

Step 2

In step 2, the classical sweep is conducted, where the dynamic pressure is increased from the
initial value qdyn,0, kept constant during step 1, to the desired level. Throughout this process,
the value qm = 1 remains constant, as the variation in qm was solely required to incorporate
additional dominant fluid modes at the beginning of step 2. The aeroelastic parameter β is
set to U∞, ρ∞, or the flight altitude h. If the dynamic pressure in step 1 (qdyn,0) was set to a
small value representing a wind-off condition, the structural modes can be assigned to a subset
of the aeroelastic modes obtained by solving Eq. 8. As previously noted, the most dominant
fluid mode is already identified from step 1 and can be seamlessly included in this sweep. By
subsequently increasing the aeroelastic parameter β, the evolution of both the structural and
most dominant fluid modes with increasing dynamic pressure value can be effectively tracked.

3 APPLICATION CASE

In this section the methods of Section 2 are applied to an aeroelastic system consisting of an
OAT15A supercritical airfoil [34] and a two dof structural model including heave and pitch
motions. For the structural model, the pitch rotation axis is located at 40 % of the airfoil chord,
and the structural matrices are defined as follows:

Mhh =

[
48.1056 (kg) 0

0 4.8106 (kg m2)

]
, Khh =

[
2.5322 · 105 (N/m) 0

0 0.4502 · 105 (N m)

]
,

whereas the structural damping has been set to zero. The corresponding natural frequencies are
11.547 (Hz) and 15.396 (Hz) for the heave and pitch dof, respectively.

Regarding for the aerodynamic model, Fig. 4 depicts the unstructured mesh used for the
URANS modeling employing the Spalart-Allmaras (SA) turbulence closure model, as detailed
by Nitzsche et al. [4]. The Mach number is 0.73, the Reynolds number 3 million and the
freestream temperature 273.15 (K).
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Figure 4: OAT15A airfoil mesh, Mach number 0.73, Reynolds number 3 million and freestream temperature
273.15 (K) [4].

3.1 Fluid modes extraction

Prior to the computation of buffet and flutter onset values at different conditions, the adequacy
of the p-L method to describe the dominant fluid mode is investigated. To that aim the pure
aerodynamic system, that is, without structural feedback, is considered. This corresponds to
the initial stage of Step 1 in Section 2.3, where the dominant fluid modes are extracted. Fig.
5 depicts the location of a subset of 100 fluid modes as extracted directly from the DLR-CFD
TAU model together with the most dominant fluid mode obtained using the p-L method in con-
junction with the criterion given in Eq. 13. The directly extracted fluid modes are found as the
eigenvalues of the spatially discretized flux Jacobian matrix of the DLR-CFD TAU model [35].
Evaluated at the steady-state flow solution and normalized by the cell volumes, this matrix
describes the linear, time-invariant dynamics of the flow. A subset of eigenvalues in a speci-
fied region of the matrix’s spectrum is computed by employing the implicitly restarted Arnoldi
method [36] in combination with the shift-and-invert method.

The positive imaginary part of the complex plane is shown, as the fluid modes appear in com-
plex conjugate pairs. Note the relative agreement between both methods and the correct trend
regarding the increase in angle of attack. However, slight differences exist between the methods
and further comparison with the eigenvalues extracted from the linearized CFD solver shall be
focus of future research. It is worth noting that fluid modes closer to the imaginary axis are
obtained from the linearized CFD solver compared to those representing buffet onset in Fig. 5,
particularly evident in cases where the angle of attack is 3 or 6 (deg). This highlights the fact
that the criterion for dominance of a fluid mode involves not only the distance to the imaginary
axis but also the residue value, as addressed in Eq. 13. Consequently, the terms “least-stable” or
“dominant” fluid mode, as mentioned in [6], should not be used interchangeably, and the term
“most dominant” fluid mode is proposed.

When applying the p-L method to represent the GAF matrix, two observations made by Gao et
al. [6] can be confirmed:
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Figure 5: Fluid modes obtained with the DLR-TAU CFD solver and the p-L method. Mach number is 0.73 and
angle of attack ranges from 3 to 6 (deg) in 1 (deg) increment.

• The dominant fluid mode remains unaffected by the generalized coordinates representing
structural motion. This has been verified by modifying the pitch axis of rotation of the air-
foil, yielding nearly identical values for the aerodynamic poles corresponding to the dom-
inant fluid mode. This observation also aligns with the peak identified by Nitzsche [37] in
the aerodynamic frequency response, which remains consistent regardless of the motion
imposed on the airfoil contour. This peak represents the stamp left by the dominant fluid
mode on the imaginary axis, with its imaginary part representing the buffet frequency.

• The selection of order for the realization of the GAF matrix within the p-L method can
influence the fluid modes, except for the dominant one. This implies that while the con-
tribution of the dominant fluid mode to the aerodynamic transfer function matrix (GAF)
is paramount, adjustments to the location and residue values of other fluid modes lead to
similar contributions to the GAF matrix.

3.2 Aeroelastic instabilities in the pre-buffet region

In this section the stability of the aeroelastic system for two different steady angle of attack α0

values is considered. For these two different values, the predicted instabilities are attributed
to different aeroelastic modes. When α0 = 0, a classical flutter-type instability is identified,
whereby the aeroelastic mode causing the instability can be traced back to an structural mode
when the dynamic pressure is reduced. Conversely, for α0 = 4 (deg) the observed arises from
the fluid mode under structural feedback, corresponding the reduction of flutter onset case [4,5].

To verify the predicted instabilities, a classical flutter solver type based on the solution of the
nonlinear algebraic equation presented in Eq. 4 is considered. The g method [14] has been
chosen as the classical flutter solver, as no solutions could be found for the α0 = 4 (deg) case
using the p-k method [13] when tracking the fluid mode.
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Figure 6: Aeroelastic modes corresponding to the structural modes (sweep in density). Mach number is 0.73 and
angle of attack 0 (deg).

Angle of attack α0 = 0

In this case classical flutter is observed for the combination of parameters considered. Thus, the
evolution of the aeroelastic modes corresponding to the structural modes for wind-off conditions
when increasing the dynamic pressure is depicted in Fig. 6, where the arrows point out the
direction of the increasing parameter β, which is taken to be the density ρ. The density is
increased from a very small value of 10−8 (kg/m3) up to 0.3 (kg/m3) with an increment value
of 4β = 4ρ = 0.002 (kg/m3). The condition at which the aeroelastic mode corresponding
mainly to the heave motion crosses the imaginary axis indicates the flutter onset. Both the p-L
method and the classical g method predict the same values. The corresponding density at the
flutter onset condition is ρF = 0.24 (kg/m3) and the aeroelastic mode frequency fF = 11.95
(Hz), with a corresponding reduced flutter reduced frequency kF = 0.31. For increasing values
of the real part, the predictions for the aeroelastic modes deviate between the two methods, as
the g method progressively loses its validity for increasing distances from the imaginary axis,
while the p-L method retains its prediction capabilities [11].

The dominant fluid mode is not depicted because no buffet onset is observed. The flutter onset
value has been obtained considering the two structural dof. If a similar flutter onset instability
were observed considering only one structural dof, this would correspond to the type I instability
as defined by Gao and Zhang [8].

Angle of attack α0 = 4 (deg)

In this case a buffet onset value is predicted for increasing density values. The results corre-
sponding to steps 1 and 2, as described in Section 2.3, are presented. Fig. 7 shows the aeroelastic
mode corresponding to the dominant fluid mode when decreasing the value qm from 1012 down
to qm = 1. A variable step size4qm has been considered and the arrow points in the direction
of decreasing qm. The dynamic pressure is set to a constant value of qdyn,0 = 0.001 (Pa).

Once the dominant fluid mode has been tracked to qm = 1, step 2 described in Section 2.3 is
carried out. As for the α0 = 0 case, the parameter β is the density ρ. Its value is increased
from that corresponding to the dynamic pressure qdyn,0 up to a value of ρ = 0.1046 (kg/m3) in
increments of 4β = 4ρ = 0.002 (kg/m3). Figs. 8 and 9 show the evolution of the aeroelastic
and fluid modes during step 2, respectively, where the arrows indicate the direction of increasing
density ρ. As previously stated, the fluid mode could not be found for any density value when
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Figure 7: Fluid mode evolution in step 1 (sweep in qm). Mach number is 0.73 and angle of attack 4 (deg).
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Figure 8: Aeroelastic modes corresponding to the
structural modes (sweep in density).
Mach number is 0.73 and angle of attack
4 (deg).
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Figure 9: Aeroelastic modes corresponding to the
dominant fluid mode (sweep in density).
Mach number is 0.73 and angle of attack
4 (deg).

using the p-k flutter solution method. The g method was able to track the fluid mode for a limited
range of density values in the interval [0.0426 0.0958] (kg/m3), using the initial frequency value
as provided by the buffet frequency of the dominant fluid mode. For density values outside this
interval, the g method could not find the fluid mode. The buffet onset value occurs at a density
value of ρB = 0.067 (kg/m3) for a reduced frequency of kB = 0.47268, very close to the pre-
buffet frequency. This phenomenon corresponds to the type II instability as defined by Gao and
Zhang [8], which is characterized by a reduction in the buffet onset due to structural feedback.

This example showcases the advantage of the proposed method, as it provides the buffet onset
prediction in an automated manner, similar to the flutter onset prediction for the α0 = 0 case.
In contrast, classical flutter solution methods based on the nonlinear solution of Eq. 4 were
unable to find the aeroelastic mode representative of the dominant fluid mode, or if they did, it
was limited to parameter interval after providing an initial value for the search, requiring prior
knowledge of the system, such as the buffet frequency. This is not required by the proposed
general flutter solver, as the dominant fluid mode is automatically included in the search and
the buffet frequency is a result of the tracking procedure.
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4 CONCLUSIONS

In this work, a general flutter solver based on the p-L method [11] is presented, capable of
predicting both flutter and buffet onset values. The solver automatically computes instabil-
ities caused by structural and fluid modes, providing the buffet frequency without requiring
a user search, as global stability analysis methods do. The solver can incorporate multiple
fluid modes, allowing for the application of different mode-tracking techniques. Specifically,
the mode-tracking procedure by Quero et al. [12] has been extended to include fluid modes.
Both residualized and non-residualized forms of the (generalized) aerodynamic state-space are
considered. This involves computing aeroelastic sensitivities numerically, and using finite dif-
ferences for their approximation has been shown to yield robust results.

The aerodynamic term is represented by a (generalized) state-space model, obtained by interpo-
lating the frequency-domain data from high-fidelity CFD solvers. In this work, the LFD method
is used. Unlike classical RFA techniques, this unsteady aerodynamic model includes aerody-
namic poles with nonzero imaginary parts, essential for representing the pre-buffet frequency.
A criterion is proposed to select the most dominant fluid mode from the generated unsteady
aerodynamic model, demonstrating that the “least-stable” fluid mode and the dominant fluid
mode are not necessarily equivalent. The pre-buffet frequency is extracted from the imaginary
part of the dominant fluid mode, eliminating the need for a user search as required by global
stability analysis methods.

Furthermore, it is shown that classical flutter solution methods, which solve a nonlinear eigen-
value problem, lack robustness when searching for the fluid mode. These method fail to nu-
merically find the aeroelastic mode corresponding to the dominant fluid mode, regardless of the
initial values provided for the search. In contrast, the proposed method simultaneously identifies
the aeroelastic modes corresponding to both the fluid and structural modes.

The eigenvalue corresponding to the dominant fluid mode has been verified against values ob-
tained from global stability analysis at various angles of attack without structural feedback.
Future work shall address this verification including structural feedback.

The application of the proposed method is not limited to the presented example. It can also
address other phenomena where aeroelastic modes associated with fluid modes cross the imag-
inary axis. These include the vortex breakdown in delta wing configurations [38] or the consid-
eration of multiple relevant fluid modes in pre-buffet regions for threedimensional configura-
tions [9]. Thus, future work shall explore applying this method to more complex configurations.
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